Early Flowering and Maturity Promote the Successful Adaptation and High Yield of Quinoa (Chenopodium quinoa Willd.) in Temperate Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Experimental Design, and Phenotyping
2.2. Statistical Analysis
2.2.1. Analysis for the Single Traits
2.2.2. Heritability
2.2.3. Selection Index
3. Results
3.1. Phenotypic Analysis of Quinoa Accessions under Field Conditions
3.2. Calculation of a Selection Index Based on Important Agronomical Traits
3.3. Selection of Adapted Quinoa Accessions for Cultivation in Temperate Regions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peterson, A.J.; Murphy, K.M. Quinoa cultivation for temperate North America: Considerations and areas for investigation. In Quinoa: Improvement and Sustainable Production; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 173–192. [Google Scholar]
- Vita, F.; Ghignone, S.; Bazihizina, N.; Rasouli, F.; Sabbatini, L.; Kiani-Pouya, A.; Kiferle, C.; Shabala, S.; Balestrini, R.; Mancuso, S. Early responses to salt stress in quinoa genotypes with opposite behavior. Physiol. Plant. 2021, 173, 1392–1420. [Google Scholar] [CrossRef] [PubMed]
- Melini, V.; Melini, F. Functional components and anti-nutritional factors in gluten-free grains: A focus on quinoa seeds. Foods 2021, 10, 351. [Google Scholar] [CrossRef] [PubMed]
- Alandia, G.; Rodriguez, J.; Jacobsen, S.-E.; Bazile, D.; Condori, B. Global expansion of quinoa and challenges for the Andean region. Glob. Food Secur. 2020, 26, 100429. [Google Scholar] [CrossRef]
- Galwey, N. The potential of quinoa as a multi-purpose crop for agricultural diversification: A review. Ind. Crops Prod. 1992, 1, 101–106. [Google Scholar] [CrossRef]
- Jacobsen, S.-E. The scope for adaptation of quinoa in Northern Latitudes of Europe. J. Agron. Crop Sci. 2017, 203, 603–613. [Google Scholar] [CrossRef]
- Bertero, H.; King, R.; Hall, A. Photoperiod-sensitive development phases in quinoa (Chenopodium quinoa Willd.). Field Crops Res. 1999, 60, 231–243. [Google Scholar] [CrossRef]
- Christiansen, J.L.; Jacobsen, S.-E.; Jørgensen, S.T. Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agric. Scand. Sect. B-Soil Plant Sci. 2010, 60, 539–544. [Google Scholar]
- Bazile, D.; Jacobsen, S.-E.; Verniau, A. The global expansion of quinoa: Trends and limits. Front. Plant Sci. 2016, 7, 622. [Google Scholar] [CrossRef]
- Wilson, H.D. Quinua biosystematics I: Domesticated populations. Econ. Bot. 1988, 42, 461–477. [Google Scholar] [CrossRef]
- Fuentes, F.; Martinez, E.; Hinrichsen, P.; Jellen, E.; Maughan, P. Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv. Genet. 2009, 10, 369–377. [Google Scholar] [CrossRef]
- Maughan, P.; Smith, S.; Rojas-Beltran, J.; Elzinga, D.; Raney, J.; Jellen, E.; Bonifacio, A.; Udall, J.; Fairbanks, D. Single nucleotide polymorphism identification, characterization, and linkage mapping in quinoa. Plant Genome 2012, 5, 114–125. [Google Scholar] [CrossRef]
- Zhang, T.; Gu, M.; Liu, Y.; Lv, Y.; Zhou, L.; Lu, H.; Liang, S.; Bao, H.; Zhao, H. Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genom. 2017, 18, 685. [Google Scholar] [CrossRef]
- Patiranage, D.S.R.; Rey, E.; Emrani, N.; Wellman, G.; Schmid, K.; Schmöckel, S.M.; Tester, M.; Jung, C. Genome-wide association study in quinoa reveals selection pattern typical for crops with a short breeding history. eLife 2022, 11, e66873. [Google Scholar] [CrossRef]
- Von Baer, I.; Bazile, D.; Martinez, E.A. Cuarenta años de mejoramiento de quinoa (Chenopodium quinoa Willd) en la araucania: Origen de” la regalona-B”. Rev. Geogr. Valpso. 2009, 42, 34–44. [Google Scholar]
- Jacobsen, S.-E.; Mujica, A. Genetic resources and breeding of the Andean grain crop quinoa (Chenopodium quinoa Willd.). Plant Genet. Resour. Newsl. 2002, 130, 54–61. [Google Scholar]
- Emrani, N.; Hasler, M.; Patiranage, D.S.; Nathaly, M.T.; Rey, E.; Jung, C. An efficient method to produce segregating populations in quinoa (Chenopodium quinoa). Plant Breed. 2020, 139, 1190–1200. [Google Scholar] [CrossRef]
- De Bock, P.; Van Bockstaele, F.; Muylle, H.; Quataert, P.; Vermeir, P.; Eeckhout, M.; Cnops, G. Yield and nutritional characterization of thirteen quinoa (Chenopodium quinoa willd.) varieties grown in north-west Europe—Part I. Plants 2021, 10, 2689. [Google Scholar] [CrossRef] [PubMed]
- Präger, A.; Munz, S.; Nkebiwe, P.M.; Mast, B.; Graeff-Hönninger, S. Yield and quality characteristics of different quinoa (Chenopodium quinoa Willd.) cultivars grown under field conditions in Southwestern Germany. Agronomy 2018, 8, 197. [Google Scholar] [CrossRef]
- Bhargava, A.; Shukla, S.; Ohri, D. Chenopodium quinoa—An Indian perspective. Ind. Crops Prod. 2006, 23, 73–87. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Hernández-Ledesma, B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Curr. Opin. Food Sci. 2017, 14, 1–6. [Google Scholar] [CrossRef]
- Consultation, J.F.W. Protein and Amino Acid Requirements in Human Nutrition; World Health Organization Technical Report Series 935; World Health Organization: Geneva, Switzerland, 2007; pp. 1–265.
- Danielsen, S.; Munk, L. Evaluation of disease assessment methods in quinoa for their ability to predict yield loss caused by downy mildew. Crop Prot. 2004, 23, 219–228. [Google Scholar] [CrossRef]
- Baker, R.J. Selection Indices in Plant Breeding; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Céron-Rojas, J.J.; Crossa, J. Linear Selection Indices in Modern Plant Breeding; Springer Nature: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Lozano-Isla, F.; Apaza, J.-D.; Mujica Sanchez, A.; Blas Sevillano, R.; Haussmann, B.I.; Schmid, K. Enhancing quinoa cultivation in the Andean highlands of Peru: A breeding strategy for improved yield and early maturity adaptation to climate change using traditional cultivars. Euphytica 2023, 219, 26. [Google Scholar] [CrossRef]
- Zali, H.; Barati, A.; Pour-Aboughadareh, A.; Gholipour, A.; Koohkan, S.; Marzoghiyan, A.; Bocianowski, J.; Bujak, H.; Nowosad, K. Identification of superior barley genotypes using selection index of ideal genotype (SIIG). Plants 2023, 12, 1843. [Google Scholar] [CrossRef] [PubMed]
- Jahufer, M.; Casler, M. Application of the Smith-Hazel selection index for improving biomass yield and quality of switchgrass. Crop Sci. 2015, 55, 1212–1222. [Google Scholar] [CrossRef]
- Stanschewski, C.S.; Rey, E.; Fiene, G.; Craine, E.B.; Wellman, G.; Melino, V.J.; Patiranage, D.S.; Johansen, K.; Schmöckel, S.M.; Bertero, D. Quinoa Phenotyping Methodologies: An International Consensus. Plants 2021, 10, 1759. [Google Scholar] [CrossRef] [PubMed]
- Koziol, M.J. Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). J. Sci. Food Agric. 1991, 54, 211–219. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, R version 4.3.3; R Foundation for Statistical Computing: Vienna, Austria, 2024.
- Pinheiro, J.C.; Bates, D.M. Linear mixed-effects models: Basic concepts and examples. In Mixed-Effects Models in S and S-Plus; Chapman & Hall: New York, NY, USA, 2000; pp. 3–56. [Google Scholar]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Bretz, F.; Posch, M.; Glimm, E.; Klinglmueller, F.; Maurer, W.; Rohmeyer, K. Graphical approaches for multiple comparison procedures using weighted Bonferroni, Simes, or parametric tests. Biom. J. 2011, 53, 894–913. [Google Scholar] [CrossRef]
- Maldonado Taipe, N.; Barbier, F.; Schmid, K.; Jung, C.; Emrani, N. High-density mapping of QTL controlling agronomically important traits in quinoa (Chenopodium quinoa Willd.). Front. Plant Sci. 2022, 13, 1903. [Google Scholar] [CrossRef]
- Benlhabib, O.; Boujartani, N.; Maughan, P.J.; Jacobsen, S.E.; Jellen, E.N. Elevated genetic diversity in an F2: 6 population of quinoa (Chenopodium quinoa) developed through an inter-ecotype cross. Front. Plant Sci. 2016, 7, 1222. [Google Scholar] [CrossRef] [PubMed]
- Oustani, M.; Mehda, S.; Halilat, M.T.; Chenchouni, H. Yield, growth development and grain characteristics of seven Quinoa (Chenopodium quinoa Willd.) genotypes grown in open-field production systems under hot-arid climatic conditions. Sci. Rep. 2023, 13, 1991. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, I.; Alseekh, S.; Shahid, M.; Leniak, E.; Wagner, M.; Mahmoudi, H.; Thushar, S.; Fernie, A.R.; Murphy, K.M.; Schmöckel, S.M. The diversity of quinoa morphological traits and seed metabolic composition. Sci. Data 2022, 9, 323. [Google Scholar] [CrossRef]
- Maliro, M.F.; Guwela, V.F.; Nyaika, J.; Murphy, K.M. Preliminary Studies of the Performance of Quinoa (Chenopodium quinoa Willd.) Genotypes under Irrigated and Rainfed Conditions of Central Malawi. Front. Plant Sci. 2017, 8, 227. [Google Scholar] [CrossRef]
- Schmalenbach, I.; Zhang, L.; Reymond, M.; Jiménez-Gómez, J.M. The relationship between flowering time and growth responses to drought in the Arabidopsis landsberg erecta x Antwerp-1 population. Front. Plant Sci. 2014, 5, 609. [Google Scholar] [CrossRef]
- Osnato, M.; Cota, I.; Nebhnani, P.; Cereijo, U.; Pelaz, S. Photoperiod control of plant growth: Flowering time genes beyond flowering. Front. Plant Sci. 2022, 12, 805635. [Google Scholar] [CrossRef]
- Jacobsen, S.E.; Stølen, O. Quinoa—Morphology, phenology and prospects for its production as a new crop in Europe. Eur. J. Agron. 1993, 2, 19–29. [Google Scholar] [CrossRef]
- Maldonado-Taipe, N.; Rey, E.; Tester, M.; Jung, C.; Emrani, N. Leaf and shoot apical meristem transcriptomes of quinoa (Chenopodium quinoa Willd.) in response to photoperiod and plant development. Plant Cell Environ. 2024, 47, 2027–2043. [Google Scholar] [CrossRef]
- Craine, E.B.; Davies, A.; Packer, D.; Miller, N.D.; Schmöckel, S.M.; Spalding, E.P.; Tester, M.; Murphy, K.M. A comprehensive characterization of agronomic and end-use quality phenotypes across a quinoa world core collection. Front. Plant Sci. 2023, 14, 1101547. [Google Scholar] [CrossRef]
Seed Code | Accession Code | Accession Name | Origin |
---|---|---|---|
195120 | QP-002 | Moroccan Yellow | NA |
195121 | QP-003 | Bouchane-3 | NA |
195122 | QP-004 | PI-614889 | Chile |
195123 | QP-005 | ICBA-Q5 | NA |
195124 | QP-006 | PI-614927 | Bolivia |
195125 | QP-019 | E-DK-4 | NA |
195126 | QP-026 | Indian Quinoa | NA |
195127 | QP-030 | PUC-mix-red | Chile |
195128 | QP-032 | Brightest-Brilliant-Rainbow (BBR) | NA |
195129 | QP-035 | RU-5 | United Kingdom |
195130 | QP-036 | Regalona | Chile |
195131 | QP-041 | Ames-13721 | United States |
195132 | QP-042 | Ames-13745 | United States |
195133 | QP-043 | Oro-de-Valle | NA |
195134 | QP-046 | Ames-13744 | United States |
195135 | QP-055 | PUC-mix-green | Chile |
195136 | QP-060 | Ames-13743 | Chile |
195137 | QP-061 | BO-58 | Chile |
195138 | QP-065 | Vikinga | NA |
195139 | QP-084 | EMBRAPA-Brazil | NA |
195140 | QP-086 | Nde-09 | Chile |
195141 | QP-089 | RU-2 | United Kingdom |
195142 | QP-096 | PI-634923 | Chile |
195143 | QP-097 | NSL-86649 | NA |
195144 | QP-099 | BO-29 | Chile |
195145 | QP-103 | BO-03 | Chile |
195146 | QP-105 | NL-6 | Chile |
195147 | QP-107 | BO-32 | Chile |
195148 | QP-108 | BO-31 | Chile |
195149 | QP-113 | Redhead | NA |
195150 | QP-126 | BO-30 | Chile |
195151 | QP-127 | Bouchane-4 | NA |
195152 | QP-128 | PI-614883 | Argentina |
195153 | QP-139 | NSL-91567 | NA |
195154 | QP-141 | PI-634921 | NA |
195155 | QP-165 | BO-51 | Chile |
195156 | QP-169 | D-11889 | Argentina |
195157 | QP-172 | PI-634919 | Chile |
195158 | QP-175 | BO-63 | Chile |
195159 | QP-176 | BO-42 | Chile |
195160 | QP-181 | BO-11 | Chile |
195161 | QP-220 | PI-634918 | Chile |
195162 | QP-225 | Cherry-Vanilla | United States |
195163 | QP-231 | Bouchane-2 | NA |
195164 | QP-232 | Bouchane-1 | NA |
195165 | QP-233 | ICBA-Q3 | NA |
195166 | QP-343 | PI-614886 | Chile |
195167 | QP-346 | Titicaca | Denmark |
Trait | Minimum | Maximum | Mean | SD | CV% |
---|---|---|---|---|---|
DTF | 63 | 79 | 69.77 | 4.2 | 4.77 |
Emergence (%) | 19.25 | 100 | 48.45 | 15.54 | 12.4 |
Homogeneity (%) | 0 | 100 | 74.83 | 28.52 | 24.2 |
Panicle length (cm) | 10 | 62.5 | 33.37 | 7.9 | 5.02 |
Plant height (cm) | 112.5 | 217.5 | 160 | 20.56 | 8.44 |
Panicle density | 1 | 7 | 4.71 | 1.23 | 17.05 |
Panicle shape | 1 | 5 | 2.79 | 0.62 | 7.42 |
Stem lodging (%) | 0 | 100 | 24.29 | 26.7 | 54.9 |
Mildew susceptibility | 1 | 5 | 3.26 | 1.16 | 17.84 |
Saponin content (mm) | 0 | 21 | 10.7 | 5.82 | 19.81 |
TKW (g) | 1.48 | 4.9 | 2.42 | 0.35 | 10.86 |
Seed yield (t/ha) | 0.18 | 5.8 | 2.61 | 1.03 | 27.27 |
Trait | Variance Components | R2 | h2 | |||
---|---|---|---|---|---|---|
Genotype | Year | Genotype × Year | Residual | |||
DTF | 11.08 *** | 0 | 5.94 *** | 0.95 | 0.95 | 0.78 |
Emergence (%) | 36.19 *** | 51.95 *** | 55.58 *** | 119.16 | 0.62 | 0.43 |
Homogeneity (%) | 327.45 *** | 0 | 318.10 *** | 155.44 | 0.8 | 0.64 |
Panicle length (cm) | 2.80 *** | 33.45 *** | 11.85 *** | 29.63 | 0.31 | 0.2 |
Plant height (cm) | 181.49 *** | 69.82 *** | 135.87 *** | 56.58 | 0.9 | 0.7 |
Panicle density | 0.64 *** | 0.41 *** | 0.27 *** | 0.34 | 0.77 | 0.77 |
Panicle shape | 0.04 *** | 0 | 0.14 *** | 0.21 | 0.54 | 0.29 |
Stem lodging (%) | 177.18 *** | 56.49 *** | 319.73 *** | 171.27 | 0.77 | 0.48 |
Mildew susceptibility | 0.34 *** | 0 | 0.69 *** | 0.31 | 0.78 | 0.46 |
Saponin content (mm) | 4.43 *** | 29.17 *** | 5.48 *** | 9.39 | 0.86 | 0.51 |
TKW (g) | 0.06 *** | 0 | 0.01 *** | 0.02 | 0.99 | 0.86 |
Seed yield (t/ha) | 0.51 *** | 0.45 *** | 0.11 *** | 0.2 | 0.97 | 0.85 |
Accession | Accession Name | I-2020 | Ranking 2020 | I-2021 | Ranking 2021 |
---|---|---|---|---|---|
QP-002 | Moroccan Yellow | −1.31 | 29 | −0.53 | 41 |
QP-003 | Bouchane-3 | 2.38 | 3 | 0.71 | 28 |
QP-004 | PI-614889 | −0.66 | 18 | −0.28 | 37 |
QP-005 | ICBA-Q5 | −1.2 | 24 | −0.37 | 39 |
QP-006 | PI-614927 | −1.76 | 34 | 2.93 | 6 |
QP-019 | E-DK-4 | −2.07 | 40 | −1.8 | 47 |
QP-026 | Indian Quinoa | −1.85 | 37 | 1.8 | 13 |
QP-030 | PUC-mix-red | −3.15 | 45 | −0.3 | 38 |
QP-032 | BBR | −1.8 | 36 | −0.64 | 42 |
QP-035 | RU-5 | −1.03 | 22 | 0.77 | 26 |
QP-036 | Regalona | −1.12 | 23 | −0.42 | 40 |
QP-041 | Ames-13721 | 1.06 | 7 | −0.25 | 36 |
QP-042 | Ames-13745 | −1.71 | 33 | −0.81 | 44 |
QP-043 | Oro-de-Valle | −2.06 | 39 | 1.25 | 19 |
QP-046 | Ames-13744 | −1.77 | 35 | 1.05 | 21 |
QP-055 | PUC-mix-green | −0.66 | 17 | 0.92 | 23 |
QP-060 | Ames-13743 | −0.03 | 13 | 2.07 | 11 |
QP-061 | BO-58 | −1.21 | 27 | 0.25 | 33 |
QP-065 | Vikinga | 1.72 | 4 | 2.28 | 9 |
QP-084 | EMBRAPA-Brazil | 0.88 | 9 | 3.48 | 3 |
QP-086 | Nde-09 | 1 | 8 | 3.02 | 5 |
QP-089 | RU-2 | −1.48 | 30 | 1.97 | 12 |
QP-096 | PI-634923 | −1.53 | 31 | 0.77 | 25 |
QP-097 | NSL-86649 | −2.52 | 43 | 0.07 | 35 |
QP-099 | BO-29 | −0.92 | 19 | 2.29 | 8 |
QP-103 | BO-03 | 1.35 | 6 | 2.53 | 7 |
QP-105 | NL-6 | 2.49 | 1 | 4.31 | 1 |
QP-107 | BO-32 | −5.03 | 48 | −2.81 | 48 |
QP-108 | BO-31 | −2.38 | 42 | 1.65 | 15 |
QP-113 | Redhead | −1.59 | 32 | 0.73 | 27 |
QP-126 | BO-30 | −1.21 | 26 | 1.25 | 18 |
QP-127 | Bouchane-4 | 0.66 | 10 | 1.52 | 16 |
QP-128 | PI-614883 | −2.64 | 44 | 0.69 | 30 |
QP-139 | NSL-91567 | −1.29 | 28 | 0.26 | 32 |
QP-141 | PI-634921 | 0.34 | 11 | 1.76 | 14 |
QP-165 | BO-51 | −3.24 | 46 | 0.83 | 24 |
QP-169 | D-11889 | −1.2 | 25 | 1.01 | 22 |
QP-172 | PI-634919 | −4.04 | 47 | −1.18 | 45 |
QP-175 | BO-63 | 2.43 | 2 | 3.05 | 4 |
QP-176 | BO-42 | −2.22 | 41 | 0.62 | 31 |
QP-181 | BO-11 | −0.96 | 20 | 0.69 | 29 |
QP-220 | PI-634918 | −0.58 | 15 | 0.2 | 34 |
QP-225 | Cherry-Vanilla | −0.99 | 21 | −1.36 | 46 |
QP-231 | Bouchane-2 | −0.03 | 14 | 1.26 | 17 |
QP-232 | Bouchane-1 | 0.25 | 12 | 1.11 | 20 |
QP-233 | ICBA-Q3 | −0.62 | 16 | 2.1 | 10 |
QP-343 | PI-614886 | −2.01 | 38 | −0.78 | 43 |
QP-346 | Titicaca | 1.59 | 5 | 3.54 | 2 |
Accession | Difference | p-Value |
---|---|---|
QP-002 | 0.78 | 1.00 |
QP-003 | 1.67 | 0.99 |
QP-004 | 0.38 | 1.00 |
QP-005 | 0.82 | 0.39 |
QP-019 | 0.26 | 1.00 |
QP-032 | 1.16 | 0.49 |
QP-036 | 0.70 | 1.00 |
QP-041 | 1.30 | 1.00 |
QP-042 | 0.90 | 1.00 |
QP-055 | 1.58 | 0.45 |
QP-060 | 2.10 | 0.98 |
QP-061 | 1.46 | 0.15 |
QP-065 | 0.56 | 1.00 |
QP-103 | 1.19 | 1.00 |
QP-105 | 1.82 | 0.43 |
QP-127 | 0.85 | 1.00 |
QP-139 | 1.55 | 0.82 |
QP-141 | 1.42 | 0.76 |
QP-175 | 0.62 | 1.00 |
QP-181 | 1.65 | 0.87 |
QP-220 | 0.78 | 0.82 |
QP-225 | 0.37 | 1.00 |
QP-231 | 1.29 | 0.92 |
QP-232 | 0.86 | 0.69 |
QP-343 | 1.23 | 0.14 |
Accession Code | Accessions Name | Origin | Days to Flowering | Downy Mildew Susceptibility | Height (cm) | TKW (g) | Saponin Content (mm) | Seed Yield (t/ha) | I | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GMD-2020 | GMD-2021 | GMD-2020 | GMD-2021 | GMD-2020 | GMD-2021 | GMD-2020 | GMD-2021 | GMD-2020 | GMD-2021 | GMD-2020 | GMD-2021 | GMD-2020 | GMD-2021 | |||
QP-003 | Bouchane-3 | NA | −6.98 *** | 1.34 | −0.28 | 0.73 | −21.36 *** | 15.65 | 0.02 | 0.34 *** | −9.16 * | 3.84 | 0.26 | 0.29 | 3.29 ** | −0.19 |
QP-065 | Vikinga | Denmark | −4.96 *** | −5.63 *** | −0.08 | 0.39 | −40.07 *** | −21.83 *** | −0.06 | 0.08 | −11.19 ** | −5.47 | −0.48 | −1.35 | 2.63 *** | 1.37 |
QP-084 | EMBRAPA-Brazil | NA | −0.96 | −1.64 | 0.58 | 0.40 | −37.36 *** | −24.43 *** | 0.16 ** | 0.12 *** | 5.51 *** | 1.85 | 0.71 | 1.73 *** | 1.79 *** | 2.58 *** |
QP-086 | Nde-09 | Chile | 2.04 * | 1.38 * | −0.76 | −0.60 | 3.34 | 2.86 | 0.23 * | 0.26 *** | 0.52 | 0.50 | 1.75*** | 1.95 ** | 1.91 *** | 2.12 ** |
QP-103 | BO-03 | Chile | −6.96 *** | −5.64 *** | 2.08 *** | −0.94 | −29.86 *** | −13.60 | 0.39 ** | 0.12 *** | −1.49 | −3.82 | −0.55 * | −1.11 | 2.26 *** | 1.63 |
QP-105 | NL-6 | Chile | −6.96 *** | −5.65 *** | 0.72 | −1.26 * | −25.36 | −24.30 *** | 0.33 *** | 0.13 | 2.18 | −1.16 | 1.10 *** | 0.73 * | 3.40 *** | 3.41 *** |
QP-127 | Bouchane-4 | NA | −6.96 *** | −5.64 *** | 0.91 | 1.06 | −49.03 *** | −16.93 | −0.08 | −0.15 ** | −3.49 | −4.15 ** | −1.32 *** | −0.64 | 1.57 *** | 0.62 |
QP-175 | BO-63 | Chile | 2.37 ** | 1.36 | −1.92 *** | −2.27 *** | 2.64 | 2.23 | 0.86 *** | 0.48 *** | 4.84 | 3.85 | 1.36 *** | 0.70 | 3.34 *** | 2.15 *** |
QP-233 | ICBA-Q3 | NA | −4.94 *** | −1.64 | 1.78 *** | −0.96 | 20.74 *** | 6.68 | 0.26 | 0.18 *** | 0.85 | −1.14 | 0.16 *** | 0.01 | 0.30 | 1.20 * |
QP-346 | Titicaca | Denmark | 2.05 * | −5.64 *** | −0.30 | 0.40 | −30.49 *** | −28.19 *** | 0.60 ** | 0.26 *** | −3.15 | −5.81 *** | −0.28 | −0.56 | 2.50 *** | 2.64 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emrani, N.; Maldonado-Taipe, N.; Hasler, M.; Patiranage, D.S.R.; Jung, C. Early Flowering and Maturity Promote the Successful Adaptation and High Yield of Quinoa (Chenopodium quinoa Willd.) in Temperate Regions. Plants 2024, 13, 2919. https://doi.org/10.3390/plants13202919
Emrani N, Maldonado-Taipe N, Hasler M, Patiranage DSR, Jung C. Early Flowering and Maturity Promote the Successful Adaptation and High Yield of Quinoa (Chenopodium quinoa Willd.) in Temperate Regions. Plants. 2024; 13(20):2919. https://doi.org/10.3390/plants13202919
Chicago/Turabian StyleEmrani, Nazgol, Nathaly Maldonado-Taipe, Mario Hasler, Dilan S. R. Patiranage, and Christian Jung. 2024. "Early Flowering and Maturity Promote the Successful Adaptation and High Yield of Quinoa (Chenopodium quinoa Willd.) in Temperate Regions" Plants 13, no. 20: 2919. https://doi.org/10.3390/plants13202919
APA StyleEmrani, N., Maldonado-Taipe, N., Hasler, M., Patiranage, D. S. R., & Jung, C. (2024). Early Flowering and Maturity Promote the Successful Adaptation and High Yield of Quinoa (Chenopodium quinoa Willd.) in Temperate Regions. Plants, 13(20), 2919. https://doi.org/10.3390/plants13202919