Contrasting Alleles of OsNRT1.1b Fostering Potential in Improving Nitrogen Use Efficiency in Rice
Abstract
:1. Introduction
2. Results
2.1. Response of Rice at Different Nitrogen Levels
2.2. Response of Allele Groups of Rice Varieties at T6 and at Harvest
2.3. Correlation of Productivity Traits and NUE with Morphological and Physiological Parameters Determining Growth Under 43.75 kg ha−1 (N7) and 87.5 kg ha−1 (N14) Nitrogen Applications
2.4. Principal Component Analysis (PCA)
2.5. Nitrogen Use Efficiency (NUE)
3. Discussion
3.1. Rice Response at Different Nitrogen Levels and Effects of Alleles of OsNRT1.1b
3.2. Trait Relationships for Efficient Nitrogen Use
4. Materials and Methods
4.1. Plant Materials and Cultivation
4.2. Trait Collection
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fathi, A. Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A Review. Agrisost 2022, 28, e3917. [Google Scholar] [CrossRef]
- Adhikari, C.; Bronson, K.; Panuallah, G.; Regmi, A.; Saha, P.; Dobermann, A. On-farm soil N supply and N Nutrition in the rice-wheat system of Nepal and Bangladesh. Field Crops Res. 1999, 64, 273–286. [Google Scholar] [CrossRef]
- Herrera, J.M.; Rubio, G.; Haner, L.L.; Delgado, J.A.; Lucho-Constantino, C.A.; Islas-Valdez, S.; Pellet, D. Emerging and established technologies to increase nitrogen use efficiency of cereals. Agronomy 2016, 6, 25. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Chen, Y.; Jiang, Y.; Shi, Y.; Zhao, L.; Liao, P.; Wang, W.; Xu, K.; Dai, Q.; et al. Excessive nitrogen application leads to lower rice yield and grain quality by inhibiting the grain filling of inferior grains. Agriculture 2022, 12, 962. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, B.; Chu, C. Toward Improving Nitrogen Use Efficiency in Rice: Utilization, Coordination, and Availability. Curr. Opin. Plant Biol. 2023, 71, 102327. [Google Scholar] [CrossRef] [PubMed]
- Rice Knowledge Bank; International Rice Research Institute: Los Baños, Laguna, Philippines, 2023; Available online: www.knowledgebank.irri.org (accessed on 26 July 2024).
- Pampolino, M.F.; Larazo, W.M.; Alberto, M.C.; Buresh, R.J. Carbon and nitrogen cycling under rice–maize cropping. In Proceedings of the ASA–CSSA–SSSA International Annual Meetings, Indianapolis, IN, USA, 15 November 2006; pp. 12–16. [Google Scholar]
- Chivenge, P.; Sharma, S.; Bunquin, M.A.; Hellin, J. Improving nitrogen use efficiency—A key for sustainable rice production systems. Front. Sustain. Food Syst. 2021, 5, 737412. [Google Scholar] [CrossRef]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse Gas Emissions from Global Production and Use of Nitrogen Synthetic Fertilisers in Agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar]
- Hu, B.; Wang, W.; Ou, S.; Tang, J.; Li, H.; Che, R.; Zhang, Z.; Chai, X.; Wang, H.; Wang, Y.; et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 2015, 47, 834–838. [Google Scholar] [CrossRef]
- Zhang, Z.; Chu, C. Nitrogen-use divergence between indica and japonica Rice: Variation at nitrate assimilation. Mol. Plant 2020, 13, 6–7. [Google Scholar] [CrossRef]
- Wang, W.; Hu, B.; Li, A.; Chu, C. NRT1.1s in Plants: Functions Beyond Nitrate Transport. J. Exp. Bot. 2020, 71, 4373–4379. [Google Scholar] [CrossRef]
- Theerawitaya, C.; Praseartkul, P.; Taota, K.; Tisarum, R.; Samphumphuang, T.; Singh, H.P.; Cha-um, S. Investigating high throughput phenotyping based morpho-physiological and biochemical adaptations of indian pennywort (Centella asiatica L. Urban) in response to different irrigation regimes. Plant Physiol. Biochem. 2023, 202, 107927. [Google Scholar] [CrossRef] [PubMed]
- Bhat, J.A.; Deshmukh, R.; Zhao, T.; Patil, G.; Deokar, A.; Shinde, S.; Chaudhary, J. Harnessing high-throughput phenotyping and genotyping for enhanced drought tolerance in crop plants. J. Biotechnol. 2020, 324, 248–260. [Google Scholar] [CrossRef]
- Cruz, M.; Arbelaez, J.D.; Loaiza, K.; Cuasquer, J.; Rosas, J.; Graterol, E. Genetic and phenotypic characterization of rice grain quality traits to define research strategies for improving rice milling, Appearance, and Cooking Qualities in Latin America and the Caribbean. Plant Genome 2021, 14, e20134. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, S. High-throughput field crop phenotyping: Current status and challenges. Breed. Sci. 2022, 72, 3–18. [Google Scholar] [CrossRef]
- Yu, F.; Feng, S.; Du, W.; Wang, D.; Guo, Z.; Xing, S.; Jin, Z.; Cao, Y.; Xu, T. A study of nitrogen deficiency inversion in rice leaves based on the hyperspectral reflectance differential. Front. Plant Sci. 2020, 11, 573272. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, S.; Li, D.; Wang, C.; Jiang, H.; Zheng, Q.; Peng, Z. Estimation of paddy rice nitrogen content and accumulation both at leaf and plant levels from UAV hyperspectral imagery. Remote Sens. 2021, 13, 2956. [Google Scholar] [CrossRef]
- Zhou, J.; Li, F.; Wang, X.; Yin, H.; Zhang, W.; Du, J.; Pu, H. Hyperspectral and fluorescence imaging approaches for nondestructive detection of rice chlorophyll. Plants 2024, 13, 1270. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Zhang, Y.; Peng, S.; Chen, H.; Zhu, D. Effects of post-anthesis nitrogen uptake and translocation on photosynthetic production and rice yield. Sci. Rep. 2018, 8, 12891. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; McMaster, G.S. Importance of the phyllochron in studying development and growth in grasses. Crop Sci. 1995, 35, 1–3. [Google Scholar] [CrossRef]
- Elidio, C.D.; Ding, C.; Zhu, X.; Li, G. Different developments of rice leaf and their response to nitrogen. Technol. Agron. 2022, 2, 2. [Google Scholar] [CrossRef]
- Zhou, W.; Lv, T.; Yang, Z.; Wang, T.; Fu, Y.; Chen, Y.; Hu, B.; Ren, W. Morphophysiological Mechanism of Rice Yield Increase in Response to Optimized Nitrogen Management. Sci. Rep. 2017, 7, 17226. [Google Scholar] [CrossRef] [PubMed]
- Fu, X. Study on the Cloning of the Rice Leaf Shape Gene NL7 and Its Molecular Regulation Mechanism. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2019. [Google Scholar]
- Zhu, Y.; Li, T.; Xu, J.; Wang, J.; Wang, L.; Zou, W.; Zeng, D.; Zu, L.; Chen, G.; Hu, J.; et al. Leaf width gene LW5/D1 affects plant architecture and yield in rice by regulating nitrogen utilization efficiency. Plant Physiol. Biochem. 2020, 157, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, R.; Singh, B.B. Effects of various nitrogen levels on growth, yield and yield attributes of different genotypes of rice (Oryza sativa L.). Agriways 2015, 3, 65–70. [Google Scholar]
- Fan, X.; Feng, H.; Tan, Y.; Xu, Y.; Qisong, M.; Xu, G. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J. Integr. Plant Biol. 2016, 58, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.Z.; Fang, S.Q.; Ye, Z.Q.; Liu, D.; Zhao, K.L.; Jin, C.W. NRT1.1 dual-affinity nitrate transport/signalling and its roles in plant abiotic stress resistance. Front. Plant Sci. 2021, 12, 715694. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, S.; Jiang, S.; Bai, L.; Liu, Y.; Peng, S.; Chen, R.; Liu, Q.; Xiao, Y.; Kang, H. Identification of a rice leaf width gene Narrow Leaf 22 (NAL22) through genome-wide association study and gene editing technology. Int. J. Mol. Sci. 2023, 24, 4073. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Fei, P.; Song, J.; Li, D.; Ge, C.; Chen, W. Responses of Rice Leaf Thickness, SPAD Readings and Chlorophyll a/b Ratios to Different Nitrogen Supply Rates in Paddy Field. Field Crops Res. 2009, 114, 426–432. [Google Scholar]
- Cao, Y.; Jiang, K.; Wu, J.; Yu, F.; Du, W.; Xu, T. inversion modeling of japonica rice canopy chlorophyll content with UAV hyperspectral remote sensing. PLoS ONE 2020, 15, e0238530. [Google Scholar] [CrossRef]
- Ma, G.H.; Yuan, L.P. hybrid rice achievements, development and prospect in China. J. Integr. Agric. 2015, 14, 197–205. [Google Scholar] [CrossRef]
- Bueno, C.S.; Lafarge, T. Higher crop performance of rice hybrids than of elite inbreds in the tropics: 1. hybrids accumulate more biomass during each phenological phase. Field Crops Res. 2009, 112, 229–237. [Google Scholar] [CrossRef]
- Ju, J.; Yamamoto, Y.; Wang, Y.L.; Shan, Y.H.; Dong, G.C.; Miyazaki, A.; Yoshida, T. Genotypic differences in dry matter accumulation, nitrogen use efficiency, and harvest index in recombinant inbred lines of rice under hydroponic culture. Plant Prod. Sci. 2009, 12, 208–216. [Google Scholar] [CrossRef]
- Ali, J.; Jewel, Z.A.; Mahender, A.; Anandan, A.; Hernandez, J.; Li, Z. Molecular Genetics and Breeding for Nutrient Use Efficiency in Rice. Int. J. Mol. Sci. 2018, 19, 1762. [Google Scholar] [CrossRef]
- Gupta, P.C.; O’Toole, J.C. Upland Rice, A Global Perspective; International Rice Research Institute: Los Baños, Laguna, Philippines, 1986; p. 375. [Google Scholar]
- Wang, B.; Zhou, G.; Guo, S.; Li, X.; Yuan, J.; Hu, A. Improving nitrogen use efficiency in rice for sustainable agriculture: Strategies and future perspectives. Life 2022, 12, 1653. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, M.; Ashraf, U.; Liu, S.; Zhang, J. Exploring the relationships between yield and yield-related traits for rice varieties released in China from 1978 to 2017. Front. Plant Sci. 2019, 10, 543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Song, N.; Chen, Q.; Sun, H.; Peng, T.; Huang, S.; Zha, Q. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application. J. Integr. Agric. 2021, 20, 1465–1473. [Google Scholar] [CrossRef]
- Liang, Z.; Bao, A.; Li, H.; Cai, H. The effect of nitrogen level on rice growth, carbon-nitrogen metabolism, and gene expression. Biologia 2015, 70, 1340–1350. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef]
- Loggini, B.; Scartazza, A.; Brugnoli, E.; Navari-Izzo, F. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol. 1999, 119, 1091–1100. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org (accessed on 4 January 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siangliw, J.L.; Ruangsiri, M.; Theerawitaya, C.; Cha-um, S.; Poncheewin, W.; Songtoasesakul, D.; Thunnom, B.; Ruanjaichon, V.; Toojinda, T. Contrasting Alleles of OsNRT1.1b Fostering Potential in Improving Nitrogen Use Efficiency in Rice. Plants 2024, 13, 2932. https://doi.org/10.3390/plants13202932
Siangliw JL, Ruangsiri M, Theerawitaya C, Cha-um S, Poncheewin W, Songtoasesakul D, Thunnom B, Ruanjaichon V, Toojinda T. Contrasting Alleles of OsNRT1.1b Fostering Potential in Improving Nitrogen Use Efficiency in Rice. Plants. 2024; 13(20):2932. https://doi.org/10.3390/plants13202932
Chicago/Turabian StyleSiangliw, Jonaliza L., Mathurada Ruangsiri, Cattarin Theerawitaya, Suriyan Cha-um, Wasin Poncheewin, Decha Songtoasesakul, Burin Thunnom, Vinitchan Ruanjaichon, and Theerayut Toojinda. 2024. "Contrasting Alleles of OsNRT1.1b Fostering Potential in Improving Nitrogen Use Efficiency in Rice" Plants 13, no. 20: 2932. https://doi.org/10.3390/plants13202932
APA StyleSiangliw, J. L., Ruangsiri, M., Theerawitaya, C., Cha-um, S., Poncheewin, W., Songtoasesakul, D., Thunnom, B., Ruanjaichon, V., & Toojinda, T. (2024). Contrasting Alleles of OsNRT1.1b Fostering Potential in Improving Nitrogen Use Efficiency in Rice. Plants, 13(20), 2932. https://doi.org/10.3390/plants13202932