Pre-Grafting Exposure to Root-Promoting Compounds Improves Top-Grafting Performance of Citrus Trees
Abstract
:1. Introduction
2. Results
2.1. Biometric Parameters
2.2. Root Parameters
2.3. Leaf Physiological Characteristics
2.3.1. Soluble Sugar and Starch Contents
2.3.2. Soluble Protein and Free Amino Acid Contents
2.3.3. Anti-Oxidative Enzyme Activities
2.4. Plant Nutrient Composition
2.4.1. Plant Nutrient Concentrations
2.4.2. Plant Nutrient Accumulation
2.4.3. Plant Nutrient Distribution
2.5. Cluster and Comprehensive Effects Analyses
2.6. Correlation Analysis and Partial Least Squares Path Model Analysis
3. Discussion
3.1. Root Promotion Before Top Grafting Supports Root Growth of Top-Grafted Citrus Trees
3.2. Rooting Promotion Before Top Grafting Enhances Nutrient Acquisition of Top-Grafted Citrus Trees
3.3. Rooting Promotion Before Top Grafting Affects Leaf Physiology of Top-Grafted Citrus Trees
3.4. Rooting Promotion Before Top Grafting Improves Growth of Top-Grafted Citrus Trees
4. Materials and Methods
4.1. Site Description and Experimental Setup
4.2. Experimental Treatments
4.3. Growth Parameters
4.4. Root Parameters
4.5. Physiological Analyses
4.6. Nutrient Content Analyses
4.7. Data Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Conti, G.; Xoconostle-Cázares, B.; Marcelino-Pérez, G.; Hopp, H.E.; Reyes, C.A. Citrus Genetic Transformation: An Overview of the Current Strategies and Insights on the New Emerging Technologies. Front. Plant Sci. 2021, 12, 768197. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.P.; Yang, C.; Zhang, L.N.; Feng, J.; Xi, W.P. Effect of Light-Emitting Diodes and Ultraviolet Irradiation on the Soluble Sugar, Organic Acid, and Carotenoid Content of Postharvest Sweet Oranges (Citrus sinensis (L.) Osbeck). Molecules 2019, 24, 3440. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, H.W.L.; De Carvalho, L.M.; De Barros, I.; Teodoro, A.V.; Girardi, E.A.; Passos, O.S. Dos Santos Soares Filho, W., 2022. Productive performance of ‘Pera’ sweet orange grafted onto 37 rootstocks in tropical cohesive soils under rainfed condition. Sci. Hortic. 2022, 303, 111229. [Google Scholar] [CrossRef]
- Primo-Capella, A.; Forner-Giner, M.Á.; Martínez-Cuenca, M.R.; Terol, J. Comparative transcriptomic analyses of citrus cold-resistant vs. sensitive rootstocks might suggest a relevant role of ABA signaling in triggering cold scion adaption. BMC Plant Biol. 2022, 22, 209. [Google Scholar] [CrossRef] [PubMed]
- Balfagón, D.; Rambla, J.L.; Granell, A.; Arbona, V.; Gomez-Cadenas, A. Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environ. Exp. Bot. 2022, 195, 104793. [Google Scholar] [CrossRef]
- Chen, Z.; Deng, H.; Xiong, B.; Li, S.; Yang, L.; Yang, Y.; Huang, S.; Tan, L.; Sun, G.; Wang, Z. Rootstock Effects on Anthocyanin Accumulation and Associated Biosynthetic Gene Expression and Enzyme Activity during Fruit Development and Ripening of Blood Oranges. Agriculture 2022, 12, 342. [Google Scholar] [CrossRef]
- Calderón, F.J.; Weibel, A.M.; Trentacoste, E.R. Effects of different interstock length on vegetative growth and flowering in peach cv. Pavie Catherine. Sci. Hortic. 2021, 285, 110174. [Google Scholar] [CrossRef]
- Wang, T.; Xiong, B.; Tan, L.; Yang, Y.; Zhang, Y.; Ma, M.; Xu, Y.; Liao, L.; Sun, G.; Liang, D.; et al. Effects of interstocks on growth and photosynthetic characteristics in ‘Yuanxiaochun’ Citrus seedlings. Funct. Plant Biol. 2020, 47, 977–987. [Google Scholar] [CrossRef]
- Bhandari, N.; Basnet, M.; Khanal, S. Standardization of Grafting Time of Mandarin (Citrus reticulata Blanco) in Central Mid Hill of Nepal. Int. J. Fruit Sci. 2021, 21, 599–608. [Google Scholar] [CrossRef]
- Karunakaran, R.; Ilango, R.V.J. Graft success, growth, and early flowering onset, as affected by grafting time in topworked tea plants. J. Crop Improv. 2020, 34, 397–403. [Google Scholar] [CrossRef]
- Safari, M.; Rezaei, M. Grafting Success of Berberis Integerrima Cv. Bidaneh on Wild Type Barberries. Int. J. Fruit Sci. 2021, 21, 1030–1039. [Google Scholar] [CrossRef]
- Casamali, B.; Van Iersel, M.W.; Chavez, D.J. Plant Growth and Physiological Responses to Improved Irrigation and Fertilization Management for Young Peach Trees in the Southeastern United States. HortScience 2021, 56, 336–346. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, C.; Li, Y.; Jang, C.; Chun, C.; Peng, L. Effects and cost comparison of different interstock sprout inhibition and removal treatments in top grafted citrus trees. J. Fruit Sci. 2018, 35, 711–717. [Google Scholar]
- Espinoza-Núñez, E.; Mourão, F.D.A.; Stuchi, E.S.; Cantuarias-Avilés, T.; Dos Santos Dias, C.T. Performance of ‘Tahiti’ lime on twelve rootstocks under irrigated and non-irrigated conditions. Sci. Hortic. 2011, 129, 227–231. [Google Scholar] [CrossRef]
- Shi, X.G.; Shen, G.X. Fertilization and ground management of renewal citrus orchards by top grafting. Zhejiang Ganju 2000, 2, 27–28. (In Chinese) [Google Scholar]
- Nawaz, M.A.; Imtiaz, M.; Kong, Q.; Cheng, F.; Ahmed, W.; Huang, Y.; Bie, Z. Grafting: A technique to modify ion accumulation in horticultural crops. Front. Plant Sci. 2016, 7, 1457. [Google Scholar] [CrossRef]
- Pokhrel, S.; Meyering, B.; Bowman, K.D.; Albrecht, U. Horticultural attributes and root architectures of field-grown ‘Valencia’trees grafted on different rootstocks propagated by seed, cuttings, and tissue culture. HortScience 2021, 56, 163–172. [Google Scholar] [CrossRef]
- Lal, R.; Mukherjee, A. Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef]
- Xie, J.; Shi, X.J.; Zhang, Y.; Wan, Y.; Hu, Q.J.; Zhang, Y.Q.; Wang, J.; He, X.H.; Evgenia, B. Improved nitrogen use efficiency, carbon sequestration and reduced environmental contamination under a gradient of manure application. Soil Tillage Res. 2022, 220, 105386. [Google Scholar] [CrossRef]
- Brazien, Z.; Paltanaviius, V.; Aviienyt, D. The influence offulvic acid on spring cereals and sugar beets seed germination and plant productivity. Environ. Res. 2021, 195, 110824. [Google Scholar] [CrossRef]
- Sorrenti, G.; Muzzi, E.; Toselli, M. Root growth dynamic and plant performance of nectarine trees amended with biochar and compost. Sci. Hortic. 2019, 257, 108710. [Google Scholar] [CrossRef]
- Głuszek, S.; Derkowska, E.; Paszt, L.S.; Sitarek, M.; Sumorok, B. Influence of bioproducts and mycorrhizal fungi on the growth and yielding of sweet cherry trees. Hortic. Sci. 2020, 47, 122–129. [Google Scholar] [CrossRef]
- Afonso, S.; Oliveira, I.; Meyer, A.S.; Gonçalves, B. Biostimulants to Improved Tree Physiology and Fruit Quality: A Review with Special Focus on Sweet Cherry. Agronomy 2022, 12, 659. [Google Scholar] [CrossRef]
- Overvoorde, P.; Fukaki, H.; Beeckman, T. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2010, 2, a001537. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Gao, B.; Li, W.F.; Mao, J.; Yang, S.J.; Li, W.; Ma, Z.H.; Zhao, X.; Chen, B.H. Effects of exogenous growth regulators and bud picking on grafting of grapevine hard branches. Sci. Hortic. 2020, 264, 109186. [Google Scholar] [CrossRef]
- Chen, H.L.; Lei, Y.Z.; Sun, J.J.; Ma, M.Y.; Deng, P.; Quan, J.E.; Bi, H.T. Effects of Different Growth Hormones on Rooting and Endogenous Hormone Content of Two Morus alba L. Cuttings. Horticulturae 2023, 9, 552. [Google Scholar] [CrossRef]
- Dubrovsky, J.G.; Sauer, M.; Napsucialy-Mendivil, S.; Ivanchenko, M.G.; Friml, J.; Shishkova, S.; Celenza, J.; Benková, E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl. Acad. Sci. USA 2008, 105, 8790–8794. [Google Scholar] [CrossRef]
- Teale, W.D.; Paponov, I.A.; Palme, K. Auxin in action: Signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 2006, 7, 847–859. [Google Scholar] [CrossRef]
- Yang, J.M.; Ye, T.; Liu, G.H.; Xu, X.T.; Zheng, Y.X.; Wang, W.K. Synthesis and bioactivity of indoleacetic acid-carbendazim and its effects on Cylindrocladium parasiticum. Pestic. Biochem. Physiol. 2019, 158, 128–134. [Google Scholar] [CrossRef]
- Tang, F.D.; Liang, Y.J.; Han, S.J.; Gong, W.G.; Ding, B.Y. Effect of biological agents on survival rate and root growth of Scots Pine seedlings. J. For. Res. 2004, 15, 124–126. [Google Scholar]
- Mao, J.P.; Zhang, D.; Zhang, X.; Li, K.; Liu, Z.; Meng, Y.; Lei, C.; Han, M.Y. Effect of exogenous indole-3-butanoic acid (IBA) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Sci. Hortic. 2018, 232, 112–120. [Google Scholar] [CrossRef]
- Balliu, A.; Sallaku, G. Exogenous auxin improves root morphology and restores growth of grafted cucumber seedlings. Hortic. Sci. 2017, 44, 82–90. [Google Scholar] [CrossRef]
- Chen, J.T.; Wang, X.R.; Liu, X.Y.; Wang, S.F.; Zhao, J.N.; Zhang, H.; Wang, Y.B.; Li, C.F. Beneficial Effects of Biochar-Based Organic Fertilizers on Nitrogen Assimilation, Photosynthesis, and Sucrose Synthesis of Sugar Beet (Beta vulgaris L.). Int. J. Plant Prod. 2022, 16, 755–768. [Google Scholar] [CrossRef]
- García, A.C.; Olaetxea, M.; Santos, L.A.; Mora, V.; Baigorri, R.; Fuentes, M.; Zamarreño, A.M.; Berbara, R.L.L.; Garcia-Mina, J.M. Involvement of hormone and ROS signaling pathways in the beneficial action of humic substances on plants growing under normal and stressing conditions. BioMed Res. Int. 2016, 2016, 3747501. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Sadaf, J.; Shah, G.A.; Shahzad, K.; Ali, N.; Shahid, M.; Safdar Ali, S.; Hussain, R.A.; Ahmed, Z.I.; Traore, B.; Ismail, I.M.I.; et al. Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers. Sci. Total Environ. 2017, 607, 715–724. [Google Scholar] [CrossRef]
- Van der Heijden, G.; Dambrine, E.; Pollier, B.; Zeller, B.; Ranger, J.; Legout, A. Mg and Ca uptake by roots in relation to depth and allocation to aboveground tissues: Results from an isotopic labeling study in a beech forest on base-poor soil. Biogeochemistry 2015, 122, 375–393. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, J.W.; Wang, S.Q.; Xing, G.X. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil. Plant Soil 2014, 378, 279–294. [Google Scholar] [CrossRef]
- Du, Y.L.; Fan, L.X.; Tian, C.Y.; Wu, T. Auxin positively regulates nitrogen remobilization in cucumber leaves. Hortic. Environ. Biotechnol. 2018, 59, 189–198. [Google Scholar] [CrossRef]
- Sorrenti, G.; Ventura, M.; Toselli, M. Effect of biochar on nutrient retention and nectarine tree performance: A three-year field trial. J. Plant Nutr. Soil Sci. 2016, 179, 336–346. [Google Scholar] [CrossRef]
- Warnock, D.D.; Mummey, D.L.; McBride, B.; Major, J.; Lehmann, J.; Rillig, M.C. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments. Appl. Soil Ecol. 2010, 46, 450–456. [Google Scholar] [CrossRef]
- Shen, H.J.; Zhang, Q.Q.; Zhang, X.; Jiang, X.Y.; Zhu, S.G.; Chen, A.F.; Wu, Z.; Xiong, Z.Q. In situ effects of biochar field-aged for six years on net N mineralization in paddy soil. Soil Tillage Res. 2021, 205, 104766. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Song, Y.F.; Wu, Z.; Yan, X.Y.; Gunina, A.; Kuzyakov, Y.; Xiong, Z.Q. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. J. Clean. Prod. 2020, 242, 118435. [Google Scholar] [CrossRef]
- Yu, B.; Chen, X.; Cao, W.; Liu, Y.; Zou, C. Responses in Zinc Uptake of Different Mycorrhizal and Non-mycorrhizal Crops to Varied Levels of Phosphorus and Zinc Applications. Front. Plant Sci. 2020, 11, 606472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, X.; Liu, Y.; Liu, D.; Chen, X.; Zou, C. Zinc uptake by roots and accumulation in maize plants as affected by phosphorus application and arbuscular mycorrhizal colonization. Plant Soil 2017, 413, 59–71. [Google Scholar] [CrossRef]
- Liang, B.; Yang, X.Y.; He, X.H.; Murphy, D.V.; Zhou, J.B. Long-term combined application of manure and NPK fertilizers influenced nitrogen retention and stabilization of organic C in Loess soil. Plant Soil 2012, 353, 249–260. [Google Scholar] [CrossRef]
- Liu, C.A.; Li, F.R.; Zhou, L.M.; Zhang, R.H.; Yu, J.; Lin, S.L.; Wang, L.J.; Siddique, K.H.M.; Li, F.M. Effect of organic Organic Fertilizer and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semiarid environment. Agric. Water Manag. 2013, 117, 123–132. [Google Scholar] [CrossRef]
- Gupta, A.K.; Patra, P.K.; Tripathi, L.K. Silicon and organic manure influence on phosphorus dynamics in Alfisols of West Bengal, India. J. Plant Nutr. 2022, 45, 3118–3128. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Tao, J.; Yao, R. Integrated application of inorganic fertilizer with fulvic acid for improving soil nutrient supply and nutrient use efficiency of winter wheat in a salt-affected soil. Appl. Soil Ecol. 2022, 170, 104255. [Google Scholar] [CrossRef]
- Qiao, J.A.; Zhang, Y.; Wang, Q.; Li, M.; Sun, H.; Liu, N.; Zhang, L.L.; Zhang, Y.; Liu, Z.B. Effects of potassium fulvic acid and potassium humate on microbial biodiversity in bulk soil and rhizosphere soil of Panax ginseng. Microbiol. Res. 2022, 254, 126914. [Google Scholar] [CrossRef]
- Sun, J.; Xia, J.B.; Zhao, X.M.; Su, L.; Li, C.R.; Liu, P. Effects of 1-aminobenzotriazole on the growth and physiological characteristics of Tamarix chinensis cuttings under salt stress. J. For. Res. 2021, 32, 1641–1651. [Google Scholar] [CrossRef]
- Chen, P.P.; Song, H.Y.; Zhou, Y.Z.; Yang, M.H.; Pei, X.D.; Yi, Z.X.; Tu, N.M. Effect of Water Control Before Transplanting and ABT Treatment on Tobacco Seedling Quality and Physiological Properties at Green Stage. Agric. Sci. Technol. 2016, 17, 2283–2286+2368. [Google Scholar]
- Pacholczak, A.; Nowakowska, K. The Effect of Biostimulators and Indole-3-Butyric Acid on Rooting of Stem Cuttings of Two Ground Cover Roses. Acta Agrobot. 2020, 73, JM09557. [Google Scholar] [CrossRef]
- Tamizhselvan, P.; Madhavan, S.; Constan-Aguilar, C.; Elrefaay, E.R.; Liu, J.; Pencík, A.; Novák, O.; Cairó, A.; Hrtyan, M.; Geisler, M. Chloroplast Auxin Efflux Mediated by ABCB28 and ABCB29 Fine-Tunes Salt and Drought Stress Responses in Arabidopsis. Plants 2024, 13, 7. [Google Scholar] [CrossRef]
- Sosnowski, J.; Truba, M.; Vasileva, V. The Impact of Auxin and Cytokinin on the Growth and Development of Selected Crops. Agriculture 2023, 13, 724. [Google Scholar] [CrossRef]
- Damodaran, S.; Strader, L.C. Indole 3-Butyric Acid Metabolism and Transport in Arabidopsis thaliana. Front. Plant Sci. 2019, 10, 851. [Google Scholar] [CrossRef]
- Shaaban, M.; Van Zwieten, L.; Bashir, S.; Younas, A.; Núñez-Delgado, A.; Chhajro, M.A.; Kubar, K.A.; Ali, U.; Rana, M.S.; Mehmood, M.A.; et al. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J. Environ. Manag. 2018, 228, 429–440. [Google Scholar] [CrossRef]
- Pandey, D.; Daverey, A.; Arunachalam, K. Biochar: Production, properties and emerging role as a support for enzyme immobilization. J. Clean. Prod. 2020, 255, 120267. [Google Scholar] [CrossRef]
- Martínez-Alcántara, B.; Martínez-Cuenca, M.R.; Bermejo, A.; Legaz, F.; Quiñones, A. Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic versus Mineral Fertilizers in Citrus Trees. PLoS ONE 2017, 11, e0161619. [Google Scholar] [CrossRef]
- Bharali, A.; Baruah, K.K. Effects of integrated nutrient management on sucrose phosphate synthase enzyme activity and grain quality traits in rice. Physiol. Mol. Biol. Plants 2022, 28, 383–389. [Google Scholar] [CrossRef]
- Gao, F.; Li, Z.L.; Du, Y.P.; Duan, J.H.; Zhang, T.J.; Wei, Z.B.; Guo, L.; Gong, W.N.; Liu, Z.G.; Zhang, M. The Combined Application of Urea and Fulvic Acid Solution Improved Maize Carbon and Nitrogen Metabolism. Agronomy 2022, 12, 1400. [Google Scholar] [CrossRef]
- Zhang, F.G.; Liu, M.H.; Li, Y.; Che, Y.Y.; Xiao, Y. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 2019, 655, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.Y.; Zhang, Z.C.; Guo, P.R.; Wang, R.; Liu, T.; Luo, J.Q.; Hao, B.H.; Wang, Y.C.; Guo, W. Synergistic mechanisms of bioorganic fertilizer and AMF driving rhizosphere bacterial community to improve phytoremediation efficiency of multiple HMs-contaminated saline soil. Sci. Total Environ. 2023, 883, 163708. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.B.; Shen, Z.Z.; Zhang, F.G.; Waseem, R.Z.; Yuan, J.; Huang, R.; Ruan, Y.Z.; Li, R.; Shen, Q.R. Bacillus amyloliquefaciens Strain W19 can Promote Growth and Yield and Suppress Fusarium Wilt in Banana Under Greenhouse and Field Conditions. Pedosphere 2016, 26, 733–744. [Google Scholar] [CrossRef]
- Elrys, A.S.; Abdo, A.I.E.; Abdel-Hamed, E.M.W.; Desoky, E.S.M. Integrative application of licorice root extract or lipoic acid with fulvic acid improves wheat production and defenses under salt stress conditions. Ecotoxicol. Environ. Saf. 2020, 190, 110144. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.Y.; Lin, W.Z.; Jahan, M.S.; Wang, J.; Sun, J.; Jiang, J.K.; Gu, W.Y.; Zou, J.R.; Shu, S.; et al. Foliar application of a mixture of putrescine, melatonin, proline, and potassium fulvic acid alleviates high temperature stress of cucumber plants grown in the greenhouse. Technol. Hortic. 2022, 2, 6. [Google Scholar] [CrossRef]
- Cheng, B.X.; Wang, C.X.; Yue, L.; Chen, F.R.; Cao, X.S.; Lan, Q.Q.; Liu, T.X.; Wang, Z.Y. Selenium nanomaterials improve the quality of lettuce (Lactuca sativa L.) by modulating root growth, nutrient availability, and photosynthesis. NanoImpact 2023, 29, 100449. [Google Scholar] [CrossRef]
- Falcioni, R.; Moriwaki, T.; Rodrigues, M.; de Oliveira, K.M.; Furlanetto, R.H.; dos Reis, A.S.; dos Santos, G.L.A.A.; Mendonça, W.A.; Crusiol, L.G.T.; Gonçalves, J.V.F.; et al. Nutrient Deficiency Lowers Photochemical and Carboxylation Efficiency in Tobacco. Theor. Exp. Plant Physiol. 2023, 35, 81–97. [Google Scholar] [CrossRef]
- Xue, Y.B.; Zhu, S.N.; Schultze-Kraft, R.; Liu, G.D.; Chen, Z.J. Dissection of Crop Metabolome Responses to Nitrogen, Phosphorus, Potassium, and Other Nutrient Deficiencies. Int. J. Mol. Sci. 2022, 23, 9079. [Google Scholar] [CrossRef]
- Islam, M.M.; Jahan, K.; Sen, A.; Urmi, T.A.; Haque, M.M.; Ali, H.M.; Siddiqui, M.H.; Murata, Y. Exogenous application of calcium ameliorates salinity stress tolerance of tomato (Solanum lycopersicum L.) and enhances fruit quality. Antioxidants 2023, 12, 558. [Google Scholar] [CrossRef]
- Parađiković, N.; Zeljković, S.; Tkalec, M.; Vinković, T.; Dervić, I.; Marić, M. Influence of rooting powder on propagation of sage (Salvia officinalis L.) and rosemary (Rosmarinus officinalis L.) with green cuttings. Poljoprivreda 2013, 19, 10–15. [Google Scholar]
- Katel, S.; Mandal, H.R.; Kattel, S.; Yadav, S.P.S.; Lamshal, B.S. Impacts of plant growth regulators in strawberry plant: A review. Heliyon 2022, 8, e11959. [Google Scholar] [CrossRef] [PubMed]
- De Souza, L.L.G.; Chaves, L.H.G.; Cavalcante, A.R.; Guimarães, J.P.; De Souza, F.G.; De Lima, W.B.; Guerra, H.O.C.; Fernandes, J.D. Melon Seedlings Phytomass under Poultry Litter Biochar Doses. Agric. Sci. 2021, 12, 181–197. [Google Scholar]
- Reyes-Cabrera, J.; Leon, R.G.; Erickson, J.E.; Silveira, M.L.; Rowland, D.L.; Morgan, K.T. Biochar Changes Shoot Growth and Root Distribution of Soybean during Early Vegetative Stages. Crop Sci. 2017, 57, 454–461. [Google Scholar] [CrossRef]
- Raza, S.T.; Wu, J.P.; Ali, Z.; Anjum, R.; Bazai, N.A.; Feyissa, A.; Chen, Z. Differential Effects of Organic Amendments on Maize Biomass and Nutrient Availability in Upland Calcareous Soil. Atmosphere 2021, 12, 1034. [Google Scholar] [CrossRef]
- Zhang, M.M.; Li, X.Y.; Wang, X.L.; Feng, J.P.; Zhu, S.P. Potassium fulvic acid alleviates salt stress of citrus by regulating rhizosphere microbial community, osmotic substances and enzyme activities. Front. Plant Sci. 2023, 14, 1161469. [Google Scholar] [CrossRef]
- Pirlak, L.; Çinar, M. Effects of Bacteria and Iba on the Rooting of Citrange Citrus Rootstocks Cuttings. Alinteri J. Agric. Sci. 2020, 35, 1. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Riaz, M.; Xia, H.; Li, Y.X.; Wang, X.L.; Jiang, C.C. Four-year biochar study: Positive response of acidic soil microenvironment and citrus growth to biochar under potassium deficiency conditions. Sci. Total Environ. 2022, 813, 152515. [Google Scholar] [CrossRef]
- Zhang, F.S.; Chen, X.P.; Chen, Q. Fertilization Guide for Major Crops in China; China Agricultural University Press: Beijing, China, 2009; pp. 92–96. [Google Scholar]
- Li, B.; Wang, Y.; Hu, T.; Qiu, D.; Francis, F.; Wang, S.; Wang, S. Root-Associated Microbiota Response to Ecological Factors: Role of Soil Acidity in Enhancing Citrus Tolerance to Huanglongbing. Front. Plant Sci. 2022, 13, 937414. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Yemm, E.W.; Cocking, E.C.; Ricketts, R.E. The Determination of Amino Acids with Ninhydrin. Analyst 1955, 80, 209–214. [Google Scholar] [CrossRef]
- Ates, F.; Kaya, O. The Relationship Between Iron and Nitrogen Concentrations Based On Kjeldahl Method and SPAD-502 Readings in Grapevine (Vitis vinifera L. cv. ‘Sultana Seedless’). Erwerbs-Obstbau 2021, 63, 53–59. [Google Scholar] [CrossRef]
- Pestana, M.; Beja, P.; Correia, P.J.; De Varennes, A.; Faria, E.A. Relationships between nutrient composition of flowers and fruit quality in orange trees grown in calcareous soil. Tree Physiol. 2005, 25, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.L. Flame photometric determination of potassium in unashed plant leaves. Anal. Chem. 2002, 35, 874–875. [Google Scholar] [CrossRef]
- Wang, T.W.; Tan, J.; Li, L.Y.; Yang, Y.; Zhang, X.M.; Wang, J.R. Combined analysis of inorganic elements and flavonoid metabolites reveals the relationship between flower quality and maturity of Sophora japonica L. Front. Plant Sci. 2023, 14, 1255637. [Google Scholar] [CrossRef]
- Benitez-Altuna, F.; Trienekens, J.; Gaitán-Cremaschi, D. Categorizing the sustainability of vegetable production in Chile: A farming typology approach. Int. J. Agric. Sustain. 2023, 21, 2202538. [Google Scholar] [CrossRef]
- Tan, W.B.; Li, W.S.; Li, J.J.; Liu, D.L.; Xing, W. Drought resistance evaluation of sugar beet germplasms by response of phenotypic indicators. Plant Signal. Behav. 2023, 18, 2192570. [Google Scholar] [CrossRef]
- Bertrand, F.; Gaston Sanchez, G.; Trinchera, L.; Russolillo, G. Plspm: Partial Least Squares Path Modeling (PLS-PM). R Package Version 0.5.1. Available online: http://cran.r-project.org/package=plspm (accessed on 10 February 2024).
- Zhang, Y.; Cheng, D.M.; Xie, J.; Hu, Q.J.; Xie, J.W.; Shi, X.J. Long-term field application of manure induces deep selection of antibiotic resistomes in leaf endophytes of Chinese cabbage. Sci. Total Environ. 2023, 882, 163334. [Google Scholar] [CrossRef]
Parts | Treatments | N (g kg−1) | P (g kg−1) | K (g kg−1) | Ca (g kg−1) | Mg (g kg−1) |
---|---|---|---|---|---|---|
Root | CK | 15.45 ± 0.55 a | 1.43 ± 0.25 b | 5.78 ± 1.36 b | 11.82 ± 0.67 b | 3.15 ± 0.14 a |
RPP | 17.25 ± 3.67 a | 1.55 ± 0.08 b | 8.25 ± 2.38 ab | 12.86 ± 0.54 ab | 3.43 ± 0.59 a | |
BC | 16.91 ± 0.29 a | 1.98 ± 0.10 a | 10.24 ± 0.58 a | 13.85 ± 0.69 ab | 3.30 ± 0.07 a | |
OF | 16.30 ± 0.86 a | 1.73 ± 0.24 ab | 6.28 ± 0.78 b | 15.04 ± 2.05 a | 3.24 ± 0.03 a | |
PFA | 16.01 ± 1.51 a | 1.52 ± 0.17 b | 9.73 ± 2.45 a | 12.76 ± 1.81 ab | 3.54 ± 0.36 a | |
Stem | CK | 7.59 ± 0.16 a | 0.62 ± 0.00 a | 4.33 ± 0.10 b | 10.73 ± 0.33 a | 0.80 ± 0.00 a |
RPP | 8.47 ± 1.07 a | 0.63 ± 0.02 a | 4.66 ± 0.08 a | 11.26 ± 0.22 a | 0.84 ± 0.02 a | |
BC | 7.77 ± 0.15 a | 0.63 ± 0.01 a | 4.09 ± 0.06 c | 11.12 ± 0.32 a | 0.83 ± 0.01 a | |
OF | 7.70 ± 0.17 a | 0.64 ± 0.01 a | 4.76 ± 0.22 a | 12.38 ± 0.26 a | 0.83 ± 0.02 a | |
PFA | 8.10 ± 0.44 a | 0.63 ± 0.01 a | 4.44 ± 0.07 b | 11.52 ± 3.14 a | 0.85 ± 0.04 a | |
Branch | CK | 11.16 ± 0.64 a | 1.00 ± 0.01 b | 6.20 ± 0.04 b | 8.28 ± 0.00 c | 1.23 ± 0.02 a |
RPP | 11.65 ± 0.52 a | 1.03 ± 0.03 b | 6.50 ± 0.03 ab | 8.38 ± 0.05 b | 1.30 ± 0.07 a | |
BC | 11.90 ± 0.14 a | 1.01 ± 0.03 b | 6.42 ± 0.01 ab | 8.66 ± 0.05 a | 1.19 ± 0.15 a | |
OF | 11.70 ± 0.53 a | 1.10 ± 0.04 a | 6.54 ± 0.34 ab | 8.29 ± 0.00 c | 1.31 ± 0.22 a | |
PFA | 12.11 ± 0.68 a | 1.03 ± 0.01 b | 6.87 ± 0.59 a | 8.30 ± 0.02 c | 1.15 ± 0.04 a | |
Leaf | CK | 24.46 ± 0.44 b | 0.93 ± 0.17 a | 12.28 ± 0.15 a | 10.73 ± 0.68 c | 1.02 ± 0.02 b |
RPP | 26.27 ± 1.20 a | 0.93 ± 0.08 a | 12.39 ± 0.32 a | 12.12 ± 0.65 b | 1.06 ± 0.03 b | |
BC | 24.95 ± 0.78 ab | 0.99 ± 0.16 a | 12.25 ± 0.34 a | 12.54 ± 0.14 b | 1.06 ± 0.09 b | |
OF | 25.74 ± 0.75 ab | 0.97 ± 0.07 a | 12.36 ± 0.22 a | 13.82 ± 1.17 a | 1.05 ± 0.04 b | |
PFA | 25.37 ± 0.51 ab | 0.94 ± 0.01 a | 12.96 ± 0.79 a | 11.53 ± 0.12 bc | 1.30 ± 0.01 a |
Treatment | Comprehensive Score | Ranking |
---|---|---|
CK | 0.08 | 5 |
RPP | 0.65 | 1 |
BC | 0.64 | 2 |
OF | 0.56 | 4 |
PFA | 0.58 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Chen, Z.; Lali, M.N.; Xiong, H.; Wang, Y.; Niu, R.; Zhao, J.; He, X.; Zhang, Y.; Shi, X.; et al. Pre-Grafting Exposure to Root-Promoting Compounds Improves Top-Grafting Performance of Citrus Trees. Plants 2024, 13, 3159. https://doi.org/10.3390/plants13223159
Xie J, Chen Z, Lali MN, Xiong H, Wang Y, Niu R, Zhao J, He X, Zhang Y, Shi X, et al. Pre-Grafting Exposure to Root-Promoting Compounds Improves Top-Grafting Performance of Citrus Trees. Plants. 2024; 13(22):3159. https://doi.org/10.3390/plants13223159
Chicago/Turabian StyleXie, Jiawei, Zhihui Chen, Mohammad Naeem Lali, Huaye Xiong, Yuheng Wang, Runzheng Niu, Jingkun Zhao, Xinhua He, Yueqiang Zhang, Xiaojun Shi, and et al. 2024. "Pre-Grafting Exposure to Root-Promoting Compounds Improves Top-Grafting Performance of Citrus Trees" Plants 13, no. 22: 3159. https://doi.org/10.3390/plants13223159
APA StyleXie, J., Chen, Z., Lali, M. N., Xiong, H., Wang, Y., Niu, R., Zhao, J., He, X., Zhang, Y., Shi, X., & Rennenberg, H. (2024). Pre-Grafting Exposure to Root-Promoting Compounds Improves Top-Grafting Performance of Citrus Trees. Plants, 13(22), 3159. https://doi.org/10.3390/plants13223159