Anatomical-Foliar Diversity of Agave salmiana subsp. salmiana (Asparagaceae) in Three Populations of the Teotihuacán Region (Mexico)
Abstract
:1. Introduction
2. Results
2.1. Anatomical Description of the Leaf of Agave salmiana subsp. salmiana
2.2. Anatomical Variation Between Localities
3. Discussion
3.1. Anatomical Aspects in Asparagaceae
3.2. Variation Between Localities
4. Material and Methods
4.1. Processing for Dissociates
4.2. Statistic Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Mendoza, A.J. Los agaves de México. Ciencias 2007, 87, 14–23. [Google Scholar]
- García-Herrera, E.J.; Méndez-Gallegos, S.J.; Talavera-Magaña, D. El género Agave spp. en México: Principales usos de importancia socioeconómica y agroecológica. Rev. Salud Pública Nutr. 2010, 5, 109–129. [Google Scholar]
- García-Mendoza, A.; Franco-Martínez, I.S.; Sandoval-Gutiérrez, D. Cuatro especies nuevas de Agave (Asparagaceae, Agavoideae) del sur de México. Acta Bot. Mex. 2019, 126, e1461. [Google Scholar] [CrossRef]
- Granados, S.D. Los Agaves en México; Universidad Autónoma Chapingo: Texcoco, Mexico, 1993; pp. 91–97. [Google Scholar]
- García-Mendoza, A.J. Agaváceas. In Biodiversidad de Oaxaca; García-Mendoza, A.J., Ordoñez, M.J., Briones-Salas, M., Eds.; Instituto de Biología-Universidad Nacional Autónoma de México-Fondo Oaxaqueño para la Conservación de la Naturaleza-World Wildlife Fund: Ciudad de México, Mexico, 2004; pp. 159–160. [Google Scholar]
- Illsey, G.C.; Gómez, A.T.; Rivera, M.G.; Morales, M.M.; García, B.J.; Ojeda, S.A.; Calzada, R.M.; Mancilla, S.N. Conservación In Situ y Manejo Campesino de Magueyes Mezcaleros; Informe Final SNIB-CONABIO Proyecto No. V028; Grupo de Estudios Ambientales A.C.: Ciudad de México, Mexico, 2005. [Google Scholar]
- Parsons, J.R.; Parsons, A.H. Maguey Utilization in Highland Central México: An Archaeological Ethnography; University of Michigan: Ann Arbor, IL, USA, 1990; p. 388. [Google Scholar]
- Colunga, G.M.P.; Zizumbo-Villarreal, D.; Martínez-Torres, J. Tradiciones en el aprovechamiento de los agaves mexicanos: Una aportación a su protección legal y conservación biológica y cultural. In En lo Ancestral Hay Futuro: Del Tequila, los Mezcales y Otros Agaves; Colunga, G.M.P.A., Larqué-Saavedra, L., Eguiarte, D.Y., Zizumbo-Villarreal, Eds.; Centro de Investigación Científica y Tecnológica, Instituto Nacional de Ecología: Ciudad de México, Mexico, 2007; pp. 229–248. [Google Scholar]
- Mora-López, J.L.; Reyes-Agüero, J.A.; Flores-Flores, J.L.; Peña-Valdivia, C.B.; Aguirre-Rivera, J.R. Variación morfológica y humanización de la sección Salmianae del género Agave. Agrociencia 2011, 45, 465–477. [Google Scholar]
- Reyes-Agüero, J.A.; Peña-Valdivia, C.B.; Aguirre-Rivera, J.R.; Mora-López, J.L. Variación Intraespecífica de Agave mapisaga Trel. y Agave salmiana Otto Ex Salm-Dyck. (Asparagaceae) relacionada con los usos ancestrales en la Región Hñähñu en el Centro de México. Agrociencia 2019, 53, 563–579. [Google Scholar]
- Figueredo-Urbina, C.J.; Álvarez-Ríos, G.D.; García-Montes, M.A.; Octavio-Aguilar, P. Morphological and genetic diversity of traditional varieties of agave in Hidalgo State, Mexico. PLoS ONE 2021, 16, e0254376. [Google Scholar] [CrossRef]
- Ramírez, V.P.R.O.; Pascka, A.L.; Herrera, F.; Castillo, M.; Livera, F.; Rincón, F.; Zavala. Recursos Fitogenéticos de México para la Alimentación y la Agricultura; Informe Nacional; Servicio Nacional de Inspección y Certificación de Semillas y Sociedad Mexicana de Fitogenética A.C.: Chapingo, Mexico, 2000; pp. 1–100. [Google Scholar]
- Alfaro-Rojas, G.; Legaria, S.J.P.; Rodríguez, P.J.E. Diversidad genética en poblaciones de agaves pulqueros (Agave spp.) del nororiente del Estado de México. Rev. Fitotec. Mex. 2007, 30, 1–12. [Google Scholar] [CrossRef]
- Neto, I.L.D.C.; Martins, F.M. Anatomia dos órgãos vegetativos de Agave sisalana Perrine ex En-Gelm (Agavaceae). Rev. Caatinga 2012, 25, 72–78. [Google Scholar]
- Colunga, G.M.P.E.; Estrada-Loera, E.; May-Pat, F. Patterns of morphological variation, diversity, and domestication of wild and cultivated populations of Agave in Yucatan, Mexico. Am. J. Bot. 1986, 83, 1069–1082. [Google Scholar] [CrossRef]
- Torres-García, I.; Rendón-Sandoval, F.J.; Blancas, J.; Casas, A.; Moreno-Calles, A.I. The genus Agave in agroforestry systems of Mexico. Bot. Sci. 2019, 97, 263–290. [Google Scholar] [CrossRef]
- Casas, A.; Camou, A.; Otero-Arnaiz, A.; Rangel-Landa, S.; Cruse-Sanders, J.; Solís, L.; Pérez-Negrón, E. Manejo tradicional de biodiversidad y ecosistemas en Mesoamérica: El Valle de Tehuacán. Investig. Ambient. 2014, 6, 23–44. [Google Scholar]
- García-Mendoza, A.J. Flora del Valle de Tehuacán Cuicatlán, Fascículo 88; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2011; pp. 52–57. ISBN 978-607-02-2566-6. [Google Scholar]
- Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 2002, 33, 125–159. [Google Scholar] [CrossRef]
- Violle, C.; Enquist, B.J.; McGill, B.J.; Jiang, L.; Albert, C.H.; Hulshof, C.; Jung, V.; Messier, J. The return of the variance: Intraspecific variability in community ecology. Trends Ecol. Evol. 2012, 27, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Mencuccini, M. The ecological significance of long-distance water transport: Short-term regulation, long-term acclimation, and the hydraulic costs of stature across plant life forms. Plant Cell Environ. 2003, 26, 163–182. [Google Scholar] [CrossRef]
- Trewavas, A. Aspects of Plant Intelligence. Ann. Bot. 2003, 92, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Bernardino-Nicanor, A.; Mora-Escobedo, R.; Montañez-Soto, J.L.; Filardo-Kerstupp, S.; González-Cruz, L. Microstructural differences in Agave atrovirens Karw leaves and pine by age effect. Afr. J. Agric. Res. 2012, 7, 3550–3559. [Google Scholar] [CrossRef]
- Sosa del Castillo, M.; García-Alemán, S.; Pérez-Hernández, Y.; Abreu-Cruz, E.; González-Oramas, O. Caracterización de la lámina foliar de plantas de Agave fourcroydes Lem. Obtenidas por propagación asexual. Biot. Veg. 2014, 14, 37–44. [Google Scholar]
- Chávez-Güitrón, L.E.; Salinas-Pérez, F.D.C.; Pérez-Salinas, E.A.; Caballero, J.; Vallejo-Zamora, A.; Sandoval-Zapotitla, E. Variación de caracteres epidérmico-foliares de Agave salmiana subsp. salmiana (Asparagaceae) en el centro de México. Bot. Sci. 2019, 97, 711–724. [Google Scholar] [CrossRef]
- Pérez-España, V.H.; Cuervo-Parra, J.A.; Paz-Camacho, C.; Morales-Ovando, M.A.; Gómez-Aldapa, C.A.; Rodriguez-Jimenez, G.C.; Romero-Cortes, T. General Characterization of Cuticular Membrane Isolated from Agave salmiana. Int. J. Bio-Resour. Stress Manag. 2019, 10, 46–52. [Google Scholar] [CrossRef]
- Pérez España, V.H.; Cuervo Parra, J.A.; Aparicio Burgos, J.E.; Morales Ovando, M.A.; Peralta Gil, M.; Romero Cortes, T. Importancia de la capa cuticular durante la colonización del hongo causante de la negrilla en Agave salmiana Otto ex Salm-Dyck ssp. salmiana. Rev. Mex. De Cienc. For. 2022, 13, 166–176. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Ackerly, D.D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 2009, 79, 109–126. [Google Scholar] [CrossRef]
- Galindo, S.A. Variación Intraespecífica de Rasgos Funcionales de Cedrela Odorata Sobre un Gradiente Climático en la Península de Nicoya, Costa Rica; Tesis Magister Posgrado del Centro Agronómico Tropical de Investigación y Enseñanza, División de Educación: Turrialba, Costa Rica, 2018. [Google Scholar]
- Rôças, G.; Scarano, F.R.; Barros, C.F. Leaf anatomical variation in Alchornea triplinervia (Spreng) Müll. Arg. (Euphorbiaceae) under distinct light and soil water regimes. Bot. J. Linn. Soc. 2001, 136, 231–238. [Google Scholar] [CrossRef]
- Martínez-Quezada, D.M.; Sandoval-Zapotitla, E.; Solís-De la Cruz, J.; Velázquez-Vázquez, D.E.; Herrera-Cabrera, E.B. Caracterización anatómica y análisis de variación de epidermis foliar y caulinar entre dos genotipos de Vanilla planifolia Jacks. ex Andrews. Agroproductividad 2016, 249, 26–33. [Google Scholar]
- Sandoval-Zapotitla, E.; Martínez-Quezada, D.M.; Reyes-Santiago, J.; Islas-Luna, M.A.; Rosas, U. Leaf morpho-anatomical diversity in Echeveria aff. Gigantea (Crassulaceae). Bot. Sci. 2019, 97, 218–235. [Google Scholar] [CrossRef]
- Avendaño-Arrazate, C.H.; Iracheta-Donjuan, L.; Gódinez-Aguilar, J.C.; López-Gómez, P.; Barrios-Ayala, A. Caracterización morfológica de Agave cupreata, especie endémica de México. Phyton 2015, 84, 148–162. [Google Scholar]
- Barrientos Rivera, G.; Esparza Ibarra, E.L.; Segura Pacheco, H.R.; Talavera Mendoza, Ó.; Sampedro Rosas, M.L.; Hernández Castro, E. Caracterización morfológica de Agave angustifolia y su conservación en Guerrero, México. Rev. Mex. Cienc. Agrícolas 2019, 10, 655–668. [Google Scholar] [CrossRef]
- Cabrera-Toledo, D.; Vargas-Ponce, O.; Ascencio-Ramírez, S.; Valadez-Sandoval, L.M.; Pérez-Alquicira, J.; Morales-Saavedra, J.; Huerta-Galván, O.F. Morphological and Genetic Variation in Monocultures, Forestry Systems and Wild Populations of Agave maximiliana of Western Mexico: Implications for Its Conservation. Front. Plant Sci. 2020, 11, 817. [Google Scholar] [CrossRef]
- Sandoval-Zapotitla, E.; Rojas, A.; Guzmán, C.; Carmona, L.; Ponce, M.; León, C.; Loyola, C.; Vallejo, A.; Medina, A. Técnicas Aplicadas al Estudio de la Anatomía Vegetal; Cuadernos del Instituto de Biología 38, Instituto de Biología, UNAM: Ciudad de Mexico, Mexico, 2005; pp. 35–61. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 1 February 2024).
- Wattendorff, J.; Holloway, P.J. Studies on the ultrastructure and histochemistry of plant cuticles: The cuticular membrane of Agave americana L. in situ. Ann. Bot. 1980, 46, 13–28. [Google Scholar] [CrossRef]
- Wattendorff, J.; Holloway, P.J. Studies on the ultrastructure and histochemistry of plant cuticles: Isolate cuticular membrane preparations of Agave americana L. and the effects of various extraction procedures. Ann. Bot. 1982, 49, 769–804. [Google Scholar] [CrossRef]
- Nobel, S.P. Environmental Biology of Agaves and Cacti; Cambridge University Press: Cambridge, UK, 1988; pp. 4–10. [Google Scholar]
- Álvarez de Zaya, A. El complejo estomático en la familia Agavaceae II. Epidermis adulta. Feddes Repert. 1990, 101, 113–134. [Google Scholar] [CrossRef]
- Dickison, W.C. Integrative Plant Anatomy; Academic Press: Cambridge, MA, USA, 2000; pp. 24–28. [Google Scholar]
- Hernández, J.A. Caracterización Morfológica, Anatómica e Histológica del Sotol (Dasylirion cedrosanum Trel.); Universidad Autónoma Agraria “Antonio Narro”, División de Agronomía, Departamento de Botánica, Tesis de Ingeniero en Agrobiología Buenavista: Saltillo, Mexico, 2008. [Google Scholar]
- Evert, R.F. Anatomía Vegetal de Esaú. Meristemas, Células y Tejidos del Cuerpo Vegetal: Su Estructura, Función y Desarrollo, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 601. [Google Scholar]
- Macía, M.J. Las Plantas de Fibra, Botánica Económica de los Andes Centrales; Moraes, M., Ollgaard, R.B., Kvist, L.P., Borchsenius, F., Balslev, H., Eds.; Universidad Mayor de San Andrés: La Paz, Bolivia, 2006; pp. 370–384. [Google Scholar]
- Rodríguez-Garay, B.; Lomelí-Sención, J.A.; Tapia-Campos, E.; Gutiérrez-Mora, A.; García-Galindo, J.; Rodríguez-Domínguez, J.M.; Vicente-Ramírez, I. Diversidad morfológica y molecular del Agave tequilana Weber var. Azul y Agave angustifolia Haw. variedad Lineño. Cultiv. Prod. Ind. 2009, 29, 220–228. [Google Scholar] [CrossRef]
- Salinas, M.L.; Ogura, T.; Soffchi, L. Irritant contact dermatitis caused by needle-like calcium oxalate crystals, raphides, in Agave tequilana among workers in tequila distilleries and Agave plantations. Contact Dermat. 2001, 44, 94–96. [Google Scholar] [CrossRef]
- Wattendorff, J. Ultrastructure of the suberized styloid crystal cells in Agave leaves. Planta 1976, 128, 163–165. [Google Scholar] [CrossRef]
- Wattendorff, J. A third type of raphide crystal in the plant kingdom, six-sided raphides with laminated sheaths in Agave americana L. Planta 1976, 130, 303–311. [Google Scholar] [CrossRef]
- Kostman, T.A.; Tarlyn, N.M.; Loewus, F.A.; VR Franceschi, V.R. La biosíntesis de ácido L-ascórbico y la conversión de los carbonos 1 y 2 del ácido L-ascórbico en ácido oxálico se producen dentro de idioblastos de cristales de oxalato de calcio individuales. Fisiol. Veg. 2001, 125, 634–640. [Google Scholar] [CrossRef]
- Zhiñin-Quezada, H.; Narváez-Manchay, E.; Merino-Gálvez, B.; Pucha-Cofrep, D. Diversidad anatómica de cinco biotipos de la especie Theobroma cacao (cacao) en la región sur de Ecuador. Rev. Investig. Agrar. 2020, 2, 55–67. [Google Scholar] [CrossRef]
- Ilarslan, H.; Palmer, R.G.J.; Horner, H.T. Calcium oxalate crystals in developing seeds of soybean. Ann. Bot. 2001, 88, 243–257. [Google Scholar] [CrossRef]
- Golovchenko, O.V. The morphology of the epidermis in some lupin species. In Lupin, an Ancient Crop for the New Millennium, Proceedings of the 9th International Lupin Conference, Klink/Muritz, Germany, 20–24 June 1999; International Lupin Association: Rostock, Germany, 2000; pp. 269–272. [Google Scholar]
- Safia, B.; Derridj, A.; Moriana, A.; Gijon, M.D.C.; Mevy, J.-P.; Gauquelin, T. Comparative analysis of stomatal characters in eight wild atlas pistachio populations (Pistacia atlántica Desf.; Anacardiaceae). Int. Res. 2011, 2, 60–69. [Google Scholar]
- Jiménez Noriega, M.S. Variaciones Morfo-Anatómicas de Seis Especies a lo Largo de un Gradiente Altitudinal en el Cerro Tláloc, Estado de México. Master’s Thesis, Colegio de Postgraduados, Montecillo Texcoco, Mexico, 2014; pp. 71–82. [Google Scholar]
- Bondada, B.R.; Oosterhuis, D.M. Comparative epidermal ultrastructure of Cotton (Gossypium hirsutum L.) leaf, bract and capsule wall. Ann. Bot. 2000, 86, 143–1152. [Google Scholar] [CrossRef]
- Yiotis, C.; Manetas, Y.; Psaras, G.K. Leaf and green stem anatomy of the drought deciduous Mediterranean shrub Calicotome villosa (Poiret) Link. (Leguminosae). Flora 2006, 201, 102–107. [Google Scholar] [CrossRef]
- Locosselli, G.M.; Ceccantini, G. Plasticity of stomatal distribution pattern and stem tracheid dimensions in Podocarpus lambertii: An ecological study. Ann. Bot. 2012, 110, 1057–1066. [Google Scholar] [CrossRef]
- Zamora-Natera, J.F.; Terrazas, T. Foliar and petiole anatomy of four species of Lupinus (Fabaceae). Rev. Mex. Biodivers. 2012, 83, 687–697. [Google Scholar]
- Tiwari, S.P.; Kumar, P.; Yadav, D.; Chauhan, D.K. Comparative morphological, epidermal, and anatomical studies of Pinus roxburghii needles at different altitudes in the North-West Indian Himalayas. Turk. J. Bot. 2013, 37, 65–73. [Google Scholar] [CrossRef]
- Kofidis, G.; Bosabalidis, A.M.; Moustakas, M. Combined effects of altitude and season on leaf characteristics of Clinopodium vulgare L. (Labiatae). Environ. Exp. Bot. 2007, 60, 69–76. [Google Scholar] [CrossRef]
- Yang, L.; Han, M.; Zhou, G.; Li, J. The changes in water-use efficiency and stomatal density of Leymus chinensis along Northeast China Transect. Acta Ecol. Sin. 2007, 27, 16–24. [Google Scholar]
- Paridari, I.C.; Jalali, S.G.; Sonboli, A.; Zarafshar, M.; Bruschi, P. Leaf macro- and micro-morphological altitudinal variability of Carpinus betulus in the Hyrcanian forest (Iran). J. For. Res. 2013, 24, 301–307. [Google Scholar] [CrossRef]
- Jiménez-Noriega, M.S.; Terrazas, T.; López-Mata, L. Morpho-anatomical variation along an elevation gradient of Ribes ciliatum in the north of Sierra Nevada, Mexico. Bot. Sci. 2015, 93, 23–32. [Google Scholar] [CrossRef]
- Sanchez, M.C.; Ribeiro, S.P.; Dalvi, V.C.; Junior, M.B.S.; Souza, H.C.; Lemos-Filho, J.P. Differential leaf traits of a neotropical tree Cariniana legalis (Mart.) Kuntze (Lecythidadeae): Comparing saplings and emergent trees. Trees-Struct Funct. 2010, 24, 79–88. [Google Scholar] [CrossRef]
- Briceño, B.; Azocar, A.; Fariñas, M.; Rada, F. Características anatómicas de dos especies de Lupinus L. de los Andes venezolanos. Pittieria 2000, 1, 21–35. [Google Scholar]
- Seisdedos, L.; Planchuelo, A.M. Morfoanatomía de las plántulas de dos especies de lupinos graníferos: Lupinus albus y L. angustifolius (Fabaceae, Faboideae). Lilloa 2018, 55, 1–10. [Google Scholar] [CrossRef]
- Josifoski, R. Plant Stomata Density Is Related to the Plant Adaptation in the Environment; 1041SCG Biological Systems; Griffith University: Brisbane, Australia, 2018. [Google Scholar]
- McKown, A.D.; Guy, R.D.; Quamme, L.; Klapste, J.; La Mantia, J.; Constabel, C.P.; El-Kassaby, Y.A.; Hamelin, R.C.; Zifkin, M.; Azam, M.S. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. Mol. Ecol. 2014, 23, 5771–5790. [Google Scholar] [CrossRef]
- Hetherington, A.M.; Woodward, F.I. The role of stomata in sensing and driving environmental change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef]
- Said, S.A.; Fernández, C.; Greff, S.; Derridj, A.; Gauquelin, T.; Mevy, J.P. Inter-population variability of leaf morpho-anatomical and terpenoid patterns of Pistacia atlantica Desf. ssp. atlantica growing along an aridity gradient in Algeria. Flora-Morfol. Distrib. Ecol. Func. Plantas 2011, 206, 397–405. [Google Scholar]
- Balok, C.A.; Hilaire, R.S. Drought responses among seven southwestern landscape tree taxa. J. Am. Soc. Hortic. Sci. 2002, 127, 211–218. [Google Scholar] [CrossRef]
- Geada-López, G.; Sotolongo-Sospedra, R.; Valle, L.P.D.; Ramírez-Hernández, R. Diferenciación anatómica foliar en poblaciones naturales de Pinus caribaea var. caribaea (Pinaceae) en Pinar del Río y Artemisa, Cuba. Jard. Bot. Nac. 2021, 42, 175–188. [Google Scholar]
- Lüttge, U. Ecophysiology of crassulacean acid metabolism (CAM). Ann. Bot. 2004, 93, 629–652. [Google Scholar] [CrossRef]
- Moreno, P.F.L. Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agron. Colomb. 2009, 27, 179–191. [Google Scholar]
- Nilsen, E.T.; Orcutt, D.D. Physiology of Plants Under Stress, Abiotic Factors; John Wiley and Sons: New York, NY, USA, 1996; pp. 26–33. [Google Scholar]
- Ely, F.; Torres, F.; Gavira, J. Morfología y anatomía foliar de Monochaetum meridense (Melatomatáceae). Acta Bot. Venez. 2005, 28, 197–212. [Google Scholar]
- Bacelar, E.A.; Santos, D.L.; Moutinho-Pereira, J.M.; Goncalves, B.C.; Ferreira, H.F.; Correia, C.M. Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage. Plant Sci. 2006, 170, 596–605. [Google Scholar] [CrossRef]
- Guerfel, M.; Baccouri, O.; Boujnah, D.; Chaibi, W.; Zarrouk, M. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci. Hortic. 2009, 119, 257–263. [Google Scholar] [CrossRef]
- Carvalho, P.D.; Barros, C.F.; Scarano, F.R. In situ variation in leaf anatomy and morphology of Andira legalis (Leguminosae) in two neighbouring but contrasting light environments in Brazilian sandy coastal plain. Acta Bot. Bras. 2009, 23, 267–273. [Google Scholar]
- Castillo, Q.D.; Sáenz, R.J.; Narcia, V.M.; Vázquez, R.J.A. Propiedades físico-mecánicas de la fibra de Agave lechuguilla Torr. de cinco procedencias bajo plantaciones. Rev. Mex. Cienc. For. 2013, 4, 78–91. [Google Scholar]
- Van den Oever, L.; Baas, P.; Zandee, M. Comparative wood anatomy of Symplocos and latitude and altitude of provenance. IAWA Bull. New Ser. 1981, 2, 3–24. [Google Scholar] [CrossRef]
- Motomura, H.; Noshiro, S.; Mikage, M. Variable wood formation and adaptation to the alpine environment of Ephedra pachyclada (Gnetales: Ephedraceae) in the Mustang District, Western Nepal. Ann. Bot. 2007, 100, 315–324. [Google Scholar] [CrossRef]
- Feeny, P.P. Plant apparency and chemical defense. In Biochemical Interaction Between Plants and Insects; Springer: Boston, MA, USA, 1976; pp. 1–40. [Google Scholar]
- Rhoades, D.F. Evolution of plants chemical defense against herbivores. In Herbivores: Their Interaction with Secondary Plant Metabolites; Rosenthal, G.A., Janzen, D.H., Eds.; Academic Press: New York, NY, USA, 1979; pp. 4–48. [Google Scholar]
- Coley, P.D.; Briant, J.P.; Chapin, F.S. Resources availability and plant antiherbivore defense. Science 1985, 230, 895–899. [Google Scholar] [CrossRef]
- Pinos-Rodríguez, J.M.; Aguirre-Rivera, J.R.; García-López, J.C.; Rivera-Miranda, M.T.; González-Muñoz, S.; López-Aguirre, S.; Chávez-Villalobos, D. Use of “maguey” (Agave salmiana Otto ex, Salm. Dick) as forage for ewes. J. Appl. Anim. Res. 2006, 30, 101–107. [Google Scholar] [CrossRef]
- Fournier, G.P. Los hñähñu del Valle del Mezquital: Maguey, Pulque y Alfarería. In Consejo Nacional para la Cultura y las Artes; Instituto Nacional de Antropología e Historia y Escuela Nacional de Antropología e Historia: Ciudad de México, Mexico, 2007; p. 420. [Google Scholar]
- Negrete, L.A.P.; Quiñones, P.V.; Prieto, R.A. Extracción de fibras de agave para elaborar papel y artesanías. Acta Univ. 2010, 20, 77–83. [Google Scholar]
Character | Tecámac | San Martín | Teotihuacán |
---|---|---|---|
IEADA | * 8.30 ± 1.38 a | ** 8.72 ± 1.14 a | 8.43 ± 1.35 a |
IEABA | * 7.20 ± 1.23 b | ** 8.09 ± 1.20 a | 7.96 ± 1.36 a |
LCOADA | ** 55.50 ± 8.98 a | * 46.43 ± 5.15 b | 47.64 ± 5.85 b |
LCOABA | ** 57.00 ± 6.31 a | * 45.95 ± 4.49 c | 51.13 ± 5.82 b |
GPAADA | ** 6.22 ± 1.41 a | 5.60 ± 1.15 b | * 5.52 ± 1.39 b |
GPAABA | ** 6.10 ± 1.14 a | 5.43 ± 1.15 b | * 5.36 ± 1.12 b |
ABCLADA | ** 39.32 ± 8.45 a | 38.00 ± 8.29 a | * 34.78 ± 6.60 b |
ABCLABA | ** 36.51 ± 6.98 a | * 33.23 ± 5.85 b | 33.88 ± 5.69 b |
ARCPADA | * 9.23 ± 2.57 b | ** 10.78 ± 2.62 a | 9.46 ± 2.52 b |
ARCPABA | * 9.09 ± 2.58 b | 9.36 ± 2.29 ab | ** 10.04 ± 3.01 a |
AECPADA | ** 40.73 ± 5.98 a | 38.82 ± 5.88 ab | * 37.77 ± 8.11 b |
AECPABA | ** 37.99 ± 6.23 a | * 36.30 ± 7.25 a | 37.08 ± 7.39 a |
ASCEADA | ** 4178.57 ± 714.66 a | 3735.87 ± 571.12 b | * 3357.84 ± 568.52 c |
ASCEABA | ** 4174.01 ± 638.24 a | 3368.38 ± 919.57 b | * 3272.91 ± 484.79 b |
LEST | ** 98.55 ± 22.18 a | 83.94 ± 17.63 b | * 82.30 ± 24.25 b |
ACADA | 19.51 ± 3.56 b | ** 22.33 ± 3.96 a | * 18.14 ± 4.61 c |
ACABA | 18.39 ± 3.55 b | ** 22.06 ± 3.90 a | * 18.35 ± 5.67 b |
LPPADA | * 52.84 ± 10.82 c | ** 75.18 ± 11.35 a | 65.22 ± 12.31 b |
LPPABA | * 51.33 ± 9.32 c | ** 71.25 ± 10.04 a | 55.87 ± 8.62 b |
APPADA | ** 45.21 ± 12.75 a | * 39.77 ± 7.05 b | 41.09 ± 8.62 b |
APPABA | ** 45.26 ± 10.83 a | 41.57 ± 6.88 b | * 38.53 ± 8.53 c |
LCPADA | ** 91.77 ± 15.26 a | * 70.68 ± 14.03 b | 75.35 ± 14.92 b |
LCPABA | ** 95.62 ± 19.22 a | * 74.18 ± 14.25 b | 75.11 ± 19.59 b |
ACPADA | ** 39.97 ± 8.54 a | 38.32 ± 6.51 a | * 30.07 ± 9.34 b |
ACPABA | ** 42.44 ± 7.65 a | 39.14 ± 8.22 b | * 29.37 ± 9.05 c |
ACEADA | ** 2300.20 ± 945.31 a | 2010.72 ± 811.66 b | * 1644.14± 567.67 c |
ACEABA | 1563.34 ± 458.60 a | ** 1563.84 ± 490.13 a | * 1189.37 ± 388.78 b |
LPADA | 1235.26 ± 206.80 b | * 989.01 ± 183.69 c | ** 1397.81 ± 94.73 a |
LPABA | 1252.69 ± 237.70 b | * 996.99 ± 162.20 c | ** 1461.41 ± 139.28 a |
LFIB | ** 1585.85 ± 298.88 a | *1038.30 ± 159.42 c | 1311.62 ± 400.81 b |
AFIB | 22.55 ± 7.10 ab | * 21.38 ± 4.70 b | ** 23.86 ± 6.69 a |
GPFIB | ** 5.93 ± 1.15 a | * 5.19 ± 1.05 b | 5.74 ± 1.92 a |
LTRA | 1212.66 ± 224.43 a | * 952.22± 147.99 b | ** 1220.11 ± 378.13 a |
ATRA | * 30.24 ± 4.68 b | 30.76 ± 4.37 b | ** 33.79 ± 13.67 a |
GPTRA | * 4.90 ± 1.16 b | 5.28 ± 1.18 b | ** 6.38 ± 2.82 a |
LFTRA | * 1064.76 ± 458.89 a | 1104.44 ± 373.92 a | ** 1202.64 ± 675.71 a |
AFTRA | 11.51 ± 2.69 a | * 11.08 ± 28.18 a | ** 12.02 ± 3.78 a |
GPFTRA | * 2.60 ± 0.74 b | ** 2.90 ± 0.73 a | 2.84 ± 0.86 ab |
LD1 (0.658) | LD2 (0.342) | ||
---|---|---|---|
LPPABA | −0.70359314 | ASCEABA | −0.64819398 |
LCPADA | 0.54619874 | ACPABA | −0.43531551 |
LFIB | 0.36317273 | LPADA | 0.64223283 |
LTRA | 0.48391477 | LPABA | 0.59032855 |
Locality | Altitude (masl) | Age of the Plant (years) | Blade Length (m) | Blade Width (cm) | Annual Temperature Range (°C) | Annual Precipitation (mm) |
---|---|---|---|---|---|---|
Tecámac | 2238–2359 | 6–8 | 1.48 ± 0.22 | 32.95 ± 4.01 | 6–31 | 636 |
San Martín de las Pirámides | 2238–2925 | 8 | 1.66 ± 0.05 | 30.6 ± 2.40 | 10–30 | 600 |
Teotihuacán | 2257–2535 | 8 | 1.61 ± 0.02 | 32.8 ± 3.04 | 6–31 | 586 |
No. | Characters | Acronym |
---|---|---|
1 | Adaxial stomatal index | IEADA |
2 | Abaxial stomatal index | IEABA |
3 | Adaxial guard cell length | LCOADA |
4 | Abaxial guard cell length | LCOABA |
5 | Adaxial anticline wall thickness | GPAADA |
6 | Abaxial anticline wall thickness | GPAABA |
7 | Width of adaxial lateral cuticular border | ABCLADA |
8 | Width of abaxial lateral cuticular border | ABCLABA |
9 | Width of adaxial polar cuticular ridge | ARCPADA |
10 | Width of abaxial polar cuticular ridge | ARCPABA |
11 | Adaxial polar cuticular space width | AECPADA |
12 | Abaxial polar cuticular space width | AECPABA |
13 | Surface area of adaxial epidermal cells | ASCEADA |
14 | Surface area of abaxial epidermal cells | ASCEABA |
15 | Styloid length | LEST |
16 | Adaxial cuticle width | ACADA |
17 | Abaxial cuticle width | ACABA |
18 | Adaxial outer periclinal wall length | LPPADA |
19 | Abaxial outer periclinal wall length | LPPABA |
20 | Adaxial outer periclinal wall width | APPADA |
21 | Abaxial outer periclinal wall width | APPABA |
22 | Length of adaxial palisade parenchyma cells | LCPADA |
23 | Length of abaxial palisade parenchyma cells | LCPABA |
24 | Width of adaxial palisade parenchyma cells | ACPADA |
25 | Width of abaxial palisade parenchyma cells | ACPABA |
26 | Cross-sectional area of adaxial epidermal cells | ACEADA |
27 | Cross-sectional area of abaxial epidermal cells | ACEABA |
28 | Total length of parenchyma in adaxial palisade | LPADA |
29 | Total length of parenchyma in abaxial palisade | LPABA |
30 | Fiber length | LFIB |
31 | Fiber width | AFIB |
32 | Fiber wall thickness | GPFIB |
33 | Tracheid length | LTRA |
34 | Tracheid width | ATRA |
35 | Tracheid wall thickness | GPTRA |
36 | Fibro tracheid length | LFTRA |
37 | Fibro tracheid width | AFTRA |
38 | Fibro tracheid wall thickness | GPFTRA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval-Zapotitla, E.; Chávez-Güitrón, L.E.; Salinas-Pérez, F.d.C.; Rosas, U.; Vallejo-Zamora, A. Anatomical-Foliar Diversity of Agave salmiana subsp. salmiana (Asparagaceae) in Three Populations of the Teotihuacán Region (Mexico). Plants 2024, 13, 3195. https://doi.org/10.3390/plants13223195
Sandoval-Zapotitla E, Chávez-Güitrón LE, Salinas-Pérez FdC, Rosas U, Vallejo-Zamora A. Anatomical-Foliar Diversity of Agave salmiana subsp. salmiana (Asparagaceae) in Three Populations of the Teotihuacán Region (Mexico). Plants. 2024; 13(22):3195. https://doi.org/10.3390/plants13223195
Chicago/Turabian StyleSandoval-Zapotitla, Estela, Lorena E. Chávez-Güitrón, Florencia del C. Salinas-Pérez, Ulises Rosas, and Alejandro Vallejo-Zamora. 2024. "Anatomical-Foliar Diversity of Agave salmiana subsp. salmiana (Asparagaceae) in Three Populations of the Teotihuacán Region (Mexico)" Plants 13, no. 22: 3195. https://doi.org/10.3390/plants13223195
APA StyleSandoval-Zapotitla, E., Chávez-Güitrón, L. E., Salinas-Pérez, F. d. C., Rosas, U., & Vallejo-Zamora, A. (2024). Anatomical-Foliar Diversity of Agave salmiana subsp. salmiana (Asparagaceae) in Three Populations of the Teotihuacán Region (Mexico). Plants, 13(22), 3195. https://doi.org/10.3390/plants13223195