Establishment of Betalain-Producing Cell Line and Optimization of Pigment Production in Cell Suspension Cultures of Celosia argentea var. plumosa
Abstract
:1. Introduction
2. Results
2.1. Callus Induction, Cell Line Selection, and Proliferation
2.2. Establishment of Cell Suspension Cultures
2.3. Optimization Conditions for Betalain Production by C. argentea var. plumosa Cell Suspension Culture Using Statistical Experimental Design
2.4. Determination of Growth Profile After Optimization and Total Betalain Content (TBC)
2.5. Antioxidant Activity Assays
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Seed Surface Sterilization
4.3. Callus Induction
4.4. Cell Line Selection and Proliferation
4.5. Establishment of Cell Suspension Cultures and Growth Pattern After Optimization
4.6. Optimization Conditions for Betalain Production by C. argentea var. plumosa Cell Suspension Culture Using Statistical Experimental Design
4.7. Preparation of Extract
4.8. Determination of Total Betalain Content (TBC)
4.9. Antioxidant Activity Assays
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dey, S.; Nagababu, B.H. Applications of food color and bio-preservatives in the food and its effect on the human health. Food Chem. Adv. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Chung, K.T. Azo dyes and human health: A review. J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 233–261. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Tiwari, K.S.; Gupta, C.; Tiwari, M.K.; Khan, A.; Sonkar, S.P. A brief review on natural dyes, pigments: Recent advances and future perspectives. Results Chem. 2023, 5, 100733. [Google Scholar] [CrossRef]
- Delgado-Vargas, F.; Jimenez, A.R.; Paredes-Lopez, O. Natural Pigments: Carotenoids, anthocyanins, and betalains—Characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289, ISBN 1040869009. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT 2022, 153, 112527. [Google Scholar] [CrossRef]
- Strack, D.; Vogt, T.; Schliemann, W. Recent advances in betalain research. Phytochemistry 2003, 62, 247–269. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Carle, R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 2004, 15, 19–38. [Google Scholar] [CrossRef]
- Polturak, G.; Aharoni, A. “La Vie en Rose”: Biosynthesis, sources, and applications of betalain pigments. Mol. Plant 2018, 11, 7–22. [Google Scholar] [CrossRef]
- Gengatharan, A.; Dykes, G.A.; Choo, W.S. Betalains: Natural plant pigments with potential application in functional foods. LWT—Food Sci. Technol. 2015, 64, 645–649. [Google Scholar] [CrossRef]
- Henarejos-Escudero, P.; Guadarrama-Flores, B.; Guerrero-Rubio, M.A.; Gómez-Pando, L.R.; García-Carmona, F.; Gandía-Herrero, F. Development of betalain producing callus lines from colored Quinoa varieties (Chenopodium quinoa Willd). J. Agric. Food Chem. 2018, 66, 467–474. [Google Scholar] [CrossRef]
- Winson, K.W.S.; Chew, B.L.; Sathasivam, K.; Subramaniam, S. The establishment of callus and cell suspension cultures of Hylocereus costaricensis for the production of betalain pigments with antioxidant potential. Ind. Crop. Prod. 2020, 155, 112750. [Google Scholar] [CrossRef]
- Guadarrama-Flores, B.; Rodriguez-Monroy, M.; Cruz-Sosa, F.; Garcia-Carmona, F.; Gandia-Herrero, F. Production of dihydroxylated betalains and dopamine in cell suspension cultures of Celosia argentea var. plumosa. J. Agric. Food Chem. 2015, 63, 2741–2749. [Google Scholar] [CrossRef] [PubMed]
- Albano, C.; Negro, C.; Tommasi, N.; Gerardi, C.; Mita, G.; Miceli, A.; de Bellis, L.; Blando, F. Betalains, phenols and antioxidant capacity in cactus pear [Opuntia ficus-indica (L.) Mill.] fruits from Apulia (South Italy) genotypes. Antioxidants 2015, 4, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Schliemann, W.; Cai, Y.; Degenkolb, T.; Schmidt, J.; Corke, H. Betalains of Celosia argentea. Phytochemistry 2001, 58, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Thorat, B.R. Review on Celosia argentea L. plant. Res. J. Pharmacogn. Phytochem. 2018, 10, 109–119. [Google Scholar] [CrossRef]
- Palada, M.; Crossman, S.M.A. Evaluation of Tropical Leaf Vegetables in the Virgin Islands; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1999. [Google Scholar]
- Sadowska-Bartosz, I.; Bartosz, G. Biological properties and applications of betalains. Molecules 2021, 26, 2520. [Google Scholar] [CrossRef]
- Wijesinghe, V.N.; Choo, W.S. Antimicrobial betalains. J. Appl. Microbiol. 2022, 133, 3347–3367. [Google Scholar] [CrossRef]
- Saber, A.; Abedimanesh, N.; Somi, M.H.; Khosroushahi, A.Y.; Moradi, S. Anticancer properties of red beetroot hydro-alcoholic extract and its main constituent; betanin on colorectal cancer cell lines. BMC Complement. Med. Ther. 2023, 23, 246. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Wagner, A.E.; Schini-Kerth, V.B.; Rimbach, G. Betanin-A food colorant with biological activity. Mol. Nutr. Food Res. 2015, 59, 36–47. [Google Scholar] [CrossRef]
- Georgiev, V.; Slavov, A.; Vasileva, I.; Pavlov, A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng. Life Sci. 2018, 18, 779–798. [Google Scholar] [CrossRef]
- Xu, W.; Cheng, Y.; Guo, Y.; Yao, W.; Qian, H. Effects of geographical location and environmental factors on metabolite content and immune activity of Echinacea purpurea in China based on metabolomics analysis. Ind. Crop. Prod. 2022, 189, 115782. [Google Scholar] [CrossRef]
- Bapat, V.A.; Kavi Kishor, P.B.; Jalaja, N.; Jain, S.M.; Penna, S. Plant cell cultures: Biofactories for the production of bioactive compounds. Agronomy 2023, 13, 858. [Google Scholar] [CrossRef]
- Akita, T.; Hina, Y.; Nishi, T. New medium composition for high betacyanin production by a cell suspension culture of table beet (Beta vulgaris L.). Biosci. Biotechnol. Biochem. 2002, 66, 902–905. [Google Scholar] [CrossRef] [PubMed]
- Biswas, M.; Das, S.S.; Dey, S. Establishment of a stable Amaranthus tricolor callus line for production of food colorant. Food Sci. Biotechnol. 2013, 22, 1–8. [Google Scholar] [CrossRef]
- de Aguiar Lage, D.; da Silva Tirado, M.; Vanicore, S.R.; de Carvalho Sabino, K.C.; Albarello, N. Production of betalains from callus and cell suspension cultures of Pereskia aculeata Miller, an unconventional leafy vegetable. Plant Cell Tissue Organ Cult. 2015, 122, 341–350. [Google Scholar] [CrossRef]
- Lystvan, K.; Kumorkiewicz, A.; Szneler, E.; Wybraniec, S. Study on betalains in Celosia cristata Linn. callus culture and identification of new malonylated amaranthins. J. Agric. Food Chem. 2018, 66, 3870–3879. [Google Scholar] [CrossRef]
- Anand, P.; Singh, K.P.; Singh, S.K.; Prasad, K.V. Sucrose and light induced betalain biosynthesis in callus cultures of bougainvillea (Bougainvillea spp.). Indian J. Agric. Sci. 2020, 90, 1658–1662. [Google Scholar] [CrossRef]
- Monroy, M.R.; Jimenez Aparicio, A.; Davila Ortiz, G.; Sepulveda Jimenez, G. Effect of carbon source on cell growth and betalain production in cell suspension culture of Beta vulgaris. Biotechnol. Lett. 1994, 16, 853–858. [Google Scholar] [CrossRef]
- Timoneda, A.; Sheehan, H.; Feng, T.; Lopez-Nieves, S.; Maeda, H.A.; Brockington, S. Redirecting primary metabolism to boost production of tyrosine-derived specialised metabolites in planta. Sci. Rep. 2018, 8, 17256. [Google Scholar] [CrossRef]
- Fadzliana, N.A.F.; Rogayah, S.; Shaharuddin, N.A.; Janna, O.A. Addition of L-tyrosine to improve betalain production in red pitaya callus. Pertanika J. Trop. Agric. Sci. 2017, 40, 521–532. [Google Scholar]
- Winson, K.W.S.; Chew, B.L.; Sathasivam, K.; Subramaniam, S. Effect of amino acid supplementation, elicitation and LEDs on Hylocereus costaricensis callus culture for the enhancement of betalain pigments. Sci. Hortic. 2021, 289, 110459. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant callus: Mechanisms of induction and repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef] [PubMed]
- Songserm, P.; Klanrit, P.; Klanrit, P.; Phetcharaburanin, J.; Thanonkeo, P.; Apiraksakorn, J.; Phomphrai, K.; Klanrit, P. Antioxidant and anticancer potential of bioactive compounds from Rhinacanthus nasutus cell suspension culture. Plants 2022, 11, 1994. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T. Biotechnology applications of plant callus cultures. Engineering 2019, 5, 50–59. [Google Scholar] [CrossRef]
- Girod, P.A.; Zryd, J.P. Clonal variability and light induction of betalain synthesis in red beet cell cultures. Plant Cell Rep. 1987, 6, 27–30. [Google Scholar] [CrossRef]
- Polturak, G.; Aharoni, A. Advances and future directions in betalain metabolic engineering. New Phytol. 2019, 224, 1472–1478. [Google Scholar] [CrossRef]
- Sang a Roon, T.; Techaparin, A.; Thanonkeo, P.; Apiraksakorn, J.; Klanrit, P. Production of betalain pigments from cell suspension culture of Celosia argentea. In Proceedings of the the UBRC 16th: Research and Innovation for SDGs in the Next Normal, Ubon Ratchathani, Thailand, 11–12 July 2022; pp. 24–34. [Google Scholar]
- Ochoa-Villarreal, M.; Howat, S.; Hong, S.M.; Jang, M.O.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Plant cell culture strategies for the production of natural products. BMB Rep. 2016, 49, 149–158. [Google Scholar] [CrossRef]
- Hanchinal, V.M.; Survase, S.A.; Sawant, S.K.; Annapure, U.S. Response surface methodology in media optimization for production of β-carotene from Daucus carota. Plant Cell Tissue Organ Cult. 2008, 93, 123–132. [Google Scholar] [CrossRef]
- Omar, R.; Abdullah, M.A.; Hasan, M.A.; Marziah, M. Development of growth medium for Centella asiatica cell culture via response surface methodology. Am. J. Appl. Sci. 2004, 1, 215–219. [Google Scholar] [CrossRef]
- Vasilev, N.; Grömping, U.; Lipperts, A.; Raven, N.; Fischer, R.; Schillberg, S. Optimization of BY-2 cell suspension culture medium for the production of a human antibody using a combination of fractional factorial designs and the response surface method. Plant Biotechnol. J. 2013, 11, 867–874. [Google Scholar] [CrossRef]
- Gibson, S.I. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol. 2000, 124, 1532–1539. [Google Scholar] [CrossRef] [PubMed]
- Ceja-López, J.A.; Morales-Morales, J.; Araujo-Sánchez, J.; Kantún, W.G.; Ku, A.; de Miranda-Ham, M.L.; Rodriguez-Zapata, L.C.; Castaño, E. Evaluation of natural pigments production in response to various stress signals in cell lines of Stenocereus queretaroensis. Plants 2022, 11, 2948. [Google Scholar] [CrossRef] [PubMed]
- Carimi, F.; Terzi, M.; De Michele, R.; Zottini, M.; Lo Schiavo, F. High levels of the cytokinin BAP induce PCD by accelerating senescence. Plant Sci. 2004, 166, 963–969. [Google Scholar] [CrossRef]
- Bayhan, N.; Yücesan, B. The impact of sucrose and 6-benzylaminopurine on shoot propagation and vitrification in Aronia melanocarpa (black chokeberry). Plant Cell Tissue Organ Cult. 2024, 156, 55. [Google Scholar] [CrossRef]
- Carreón-Hidalgo, J.P.; Franco-Vásquez, D.C.; Gómez-Linton, D.R.; Pérez-Flores, L.J. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res. Int. 2022, 151, 110821. [Google Scholar] [CrossRef]
- Steiner, U.; Schliemann, W.; Böhm, H.; Strack, D. Tyrosinase involved in betalain biosynthesis of higher plants. Planta 1999, 208, 114–124. [Google Scholar] [CrossRef]
- Sunnadeniya, R.; Bean, A.; Brown, M.; Akhavan, N.; Hatlestad, G.; Gonzalez, A.; Symonds, V.V.; Lloyd, A. Tyrosine hydroxylation in betalain pigment biosynthesis is performed by cytochrome P450 enzymes in beets (Beta vulgaris). PLoS ONE 2016, 11, e0149417. [Google Scholar] [CrossRef]
- Timoneda, A.; Feng, T.; Sheehan, H.; Walker-Hale, N.; Pucker, B.; Lopez-Nieves, S.; Guo, R.; Brockington, S. The evolution of betalain biosynthesis in Caryophyllales. New Phytol. 2019, 224, 71–85. [Google Scholar] [CrossRef]
- Sawicki, T.; Bączek, N.; Wiczkowski, W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Foods 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Park, S.-J.; Sharma, A.; Lee, H.-J. A review of recent studies on the antioxidant activities of a third-millennium food: Amaranthus spp. Antioxidants 2020, 9, 1236. [Google Scholar] [CrossRef]
- Smeriglio, A.; Denaro, M.; Barreca, D.; Calderaro, A.; Bisignano, C.; Ginestra, G.; Bellocco, E.; Trombetta, D. In vitro evaluation of the antioxidant, cytoprotective, and antimicrobial properties of essential oil from Pistacia vera L. variety Bronte Hull. Int. J. Mol. Sci. 2017, 18, 1212. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, E.A.; Shanab, S.M.M. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J. Geo-Mar. Sci. 2013, 42, 556–564. [Google Scholar]
2,4-D (mg/L) | BAP (mg/L) | Callus Induction * (%) | Callus Color | Callus Texture |
---|---|---|---|---|
0 | 0 | 0.00 ± 0.00 c | - | - |
0 | 0.1 | 100.00 ± 0.00 a | Yellow | Compact |
0 | 0.5 | 100.00 ± 0.00 a | Yellow/pink | Compact |
0 | 1 | 100.00 ± 0.00 a | Yellow/pink | Compact |
0 | 1.5 | 100.00 ± 0.00 a | Yellow | Compact |
0 | 2 | 100.00 ± 0.00 a | Yellow | Compact |
0.1 | 0 | 100.00 ± 0.00 a | Bright yellow | Compact |
0.1 | 0.1 | 100.00 ± 0.00 a | Yellow/pink | Compact |
0.1 | 0.5 | 100.00 ± 0.00 a | Yellow | Compact |
0.1 | 1 | 100.00 ± 0.00 a | Yellow | Compact |
0.1 | 1.5 | 96.30 ± 6.42 ab | Yellow | Compact |
0.1 | 2 | 92.59 ± 12.83 ab | Yellow | Compact |
0.5 | 0 | 100.00 ± 0.00 a | Bright yellow | Compact |
0.5 | 0.1 | 100.00 ± 0.00 a | Yellow | Compact |
0.5 | 0.5 | 100.00 ± 0.00 a | Yellow | Compact |
0.5 | 1 | 100.00 ± 0.00 a | Bright yellow/yellow | Compact |
0.5 | 1.5 | 100.00 ± 0.00 a | Yellow | Compact |
0.5 | 2 | 100.00 ± 0.00 a | Bright yellow/yellow | Compact |
1 | 0 | 100.00 ± 0.00 a | Bright yellow | Compact |
1 | 0.1 | 100.00 ± 0.00 a | Pink/yellow | Semi friable |
1 | 0.5 | 100.00 ± 0.00 a | Bright yellow/yellow | Compact |
1 | 1 | 100.00 ± 0.00 a | Yellow | Compact |
1 | 1.5 | 100.00 ± 0.00 a | Bright yellow/yellow | Compact |
1 | 2 | 100.00 ± 0.00 a | Bright yellow/yellow | Compact |
1.5 | 0 | 100.00 ± 0.00 a | Bright yellow | Compact |
1.5 | 0.1 | 100.00 ± 0.00 a | Bright yellow | Compact |
1.5 | 0.5 | 100.00 ± 0.00 a | Bright yellow | Compact |
1.5 | 1 | 100.00 ± 0.00 a | Bright yellow/yellow | Compact |
1.5 | 1.5 | 100.00 ± 0.00 a | Bright yellow | Compact |
1.5 | 2 | 100.00 ± 0.00 a | Yellow | Compact |
2 | 0 | 100.00 ± 0.00 a | Bright yellow | Compact |
2 | 0.1 | 100.00 ± 0.00 a | Bright yellow/yellow | Compact |
2 | 0.5 | 96.29 ± 6.42 ab | Bright yellow | Compact |
2 | 1 | 100.00 ± 0.00 a | Bright yellow | Compact |
2 | 1.5 | 100.00 ± 0.00 a | Bright yellow | Compact |
2 | 2 | 100.00 ± 0.00 a | Bright yellow | Compact |
Code | Factor | Unit | Level | ||||
---|---|---|---|---|---|---|---|
−1.31 | −1 | 0 | +1 | +1.31 | |||
A | Sucrose | g/L | 2.098 | 10.000 | 35.000 | 60.000 | 67.902 |
B | BAP | mg/L | 0.074 | 0.200 | 0.600 | 1.000 | 1.126 |
C | Tyrosine | mg/L | 0.016 | 0.150 | 0.570 | 1.000 | 1.134 |
Std | Run | Sucrose (g/L) | BAP (mg/L) | Tyrosine (mg/L) | Betalain Content (mg/L) | |
---|---|---|---|---|---|---|
Predicted | Observed | |||||
6 | 1 | 60.00 | 0.20 | 1.00 | 12.55 | 13.66 |
11 | 2 | 35.00 | 0.07 | 0.57 | 16.93 | 9.27 |
7 | 3 | 10.00 | 1.00 | 1.00 | 19.02 | 20.21 |
20 | 4 | 35.00 | 0.60 | 0.57 | 31.53 | 32.48 |
1 | 5 | 10.00 | 0.20 | 0.15 | 15.61 | 18.51 |
18 | 6 | 35.00 | 0.60 | 0.57 | 31.53 | 31.56 |
9 | 7 | 2.09 | 0.60 | 0.55 | 11.19 | 3.41 |
2 | 8 | 60.00 | 0.20 | 0.15 | 12.99 | 13.62 |
4 | 9 | 60.00 | 1.00 | 0.15 | 29.82 | 25.33 |
19 | 10 | 35.00 | 0.60 | 0.57 | 31.53 | 35.64 |
16 | 11 | 35.00 | 0.60 | 0.57 | 31.53 | 38.74 |
12 | 12 | 35.00 | 1.12 | 0.57 | 29.21 | 32.65 |
14 | 13 | 35.00 | 0.60 | 1.13 | 36.89 | 31.82 |
10 | 14 | 67.90 | 0.60 | 0.57 | 18.93 | 22.49 |
13 | 15 | 35.00 | 0.60 | 0.01 | 33.50 | 34.35 |
15 | 16 | 35.00 | 0.60 | 0.57 | 31.53 | 26.59 |
3 | 17 | 10.00 | 1.00 | 0.15 | 13.43 | 14.14 |
8 | 18 | 60.00 | 1.00 | 1.00 | 33.40 | 32.33 |
17 | 19 | 35.00 | 0.60 | 0.57 | 31.53 | 29.53 |
5 | 20 | 10.00 | 0.20 | 1.00 | 17.19 | 23.50 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Note |
---|---|---|---|---|---|---|
Model | 1486.93 | 9 | 165.21 | 4.84 | 0.0108 | significant |
A-sucrose | 99.01 | 1 | 99.01 | 2.90 | 0.1194 | |
B-BAP | 249.58 | 1 | 249.58 | 7.31 | 0.0222 | |
C-tyrosine | 19.03 | 1 | 19.03 | 0.55 | 0.4725 | |
AB | 180.88 | 1 | 180.88 | 5.30 | 0.0441 | |
AC | 2.02 | 1 | 2.02 | 0.05 | 0.8127 | |
BC | 8.08 | 1 | 8.08 | 0.23 | 0.6371 | |
A2 | 630.27 | 1 | 630.27 | 18.46 | 0.0016 | |
B2 | 166.35 | 1 | 166.35 | 4.87 | 0.0518 | |
C2 | 31.15 | 1 | 31.15 | 0.91 | 0.3621 | |
Residual | 341.44 | 10 | 34.14 | |||
Lack of Fit | 248.04 | 5 | 49.61 | 2.66 | 0.1537 | not significant |
Pure Error | 93.39 | 5 | 18.68 | |||
Cor Total | 1828.37 | 19 | ||||
R-Squared (R2) = 0.8132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang A Roon, T.; Klanrit, P.; Klanrit, P.; Thanonkeo, P.; Apiraksakorn, J.; Thanonkeo, S.; Klanrit, P. Establishment of Betalain-Producing Cell Line and Optimization of Pigment Production in Cell Suspension Cultures of Celosia argentea var. plumosa. Plants 2024, 13, 3225. https://doi.org/10.3390/plants13223225
Sang A Roon T, Klanrit P, Klanrit P, Thanonkeo P, Apiraksakorn J, Thanonkeo S, Klanrit P. Establishment of Betalain-Producing Cell Line and Optimization of Pigment Production in Cell Suspension Cultures of Celosia argentea var. plumosa. Plants. 2024; 13(22):3225. https://doi.org/10.3390/plants13223225
Chicago/Turabian StyleSang A Roon, Thapagorn, Poramaporn Klanrit, Poramate Klanrit, Pornthap Thanonkeo, Jirawan Apiraksakorn, Sudarat Thanonkeo, and Preekamol Klanrit. 2024. "Establishment of Betalain-Producing Cell Line and Optimization of Pigment Production in Cell Suspension Cultures of Celosia argentea var. plumosa" Plants 13, no. 22: 3225. https://doi.org/10.3390/plants13223225
APA StyleSang A Roon, T., Klanrit, P., Klanrit, P., Thanonkeo, P., Apiraksakorn, J., Thanonkeo, S., & Klanrit, P. (2024). Establishment of Betalain-Producing Cell Line and Optimization of Pigment Production in Cell Suspension Cultures of Celosia argentea var. plumosa. Plants, 13(22), 3225. https://doi.org/10.3390/plants13223225