Impacts of Climate Changes on Spatiotemporal Variation of Cotton Water Requirement and Irrigation in Tarim Basin, Central Asia
Abstract
:1. Introduction
2. Results
2.1. Spatiotemporal Characteristics of Temperature and Precipitation
2.2. Changes in the Evapotranspiration and Water Requirement of Cotton
2.3. Changes in the Irrigation of Cotton
2.4. Changes in Water Profit and Loss Index
3. Discussion
3.1. The Effects of Climate Change on Water Requirement and Irrigation of Cotton
3.2. The Effects of Drought on Water Requirement and Irrigation of Cotton
4. Methods and Data
4.1. Study Area
4.2. Dataset
4.3. Methods
4.3.1. Calculation of Cotton Water Requirement
4.3.2. Calculation of the Cotton Irrigation and Water Profit and Loss Index
4.3.3. Mann–Kendall Abrupt Change Test
4.3.4. Climate Tendency Rate
4.3.5. Partial Correlation Analysis
4.3.6. Software Tools
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Zhang, S.; Peng, H.; Hu, X.; Ma, Y. Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agric. For. Meteorol. 2013, 171–172, 20–30. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, R.; Chen, X.; Yu, G.; Gan, M.; Disse, M. Agricultural water allocation strategies along the oasis of Tarim River in Northwest China. Agric. Water Manag. 2017, 187, 24–36. [Google Scholar] [CrossRef]
- Geng, Q.; Zhao, Y.; Sun, S.; He, X.; Wang, D.; Wu, D.; Tian, Z. Spatio-temporal changes and its driving forces of irrigation water requirements for cotton in Xinjiang, China. Agric. Water Manag. 2023, 280, 108218. [Google Scholar] [CrossRef]
- Zhang, T.; Zhai, Y.; Ma, X.; Shen, X.; Bai, Y.; Zhang, R.; Ji, C.; Hong, J. Towards environmental sustainability: Life cycle assessment-based water footprint analysis on China’s cotton production. J. Clean. Prod. 2021, 313, 127925. [Google Scholar] [CrossRef]
- Jans, Y.; von Bloh, W.; Schaphoff, S.; Müller, C. Global cotton production under climate change—Implications for yield and water consumption. Hydrol. Earth Syst. Sci. 2021, 25, 2027–2044. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, C. Study on evapotranspiration of cotton field under drip irrigation in oasis of arid region. Arid Zone Res. 2023, 40, 152–162. [Google Scholar] [CrossRef]
- Lei, C.; Zhang-Lu, Q.; Xin-Lin, H.E.; Yan, Y.U. The Effect of Drip Irrigation Under Mulch in the Process of Evapotranspiration in Oasis Cotton Fields. China Rural Water Hydropower 2018, 6, 6–11. [Google Scholar]
- Wu, C. Study on Evapotranspiration and Crop Coefficient of Cotton with Drip Irrigation under Mulch in Arid Oasis; Tarim University: Alaer, China, 2016. [Google Scholar]
- Chen, X.; Qi, Z.; Gui, D.; Gu, Z.; Ma, L.; Zeng, F.; Li, L. Simulating impacts of climate change on cotton yield and water requirement using RZWQM2. Agric. Water Manag. 2019, 222, 231–241. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Han, S.; Macadam, I.; Liu, D.L. Prediction of cotton yield and water demand under climate change and future adaptation measures. Agric. Water Manag. 2014, 144, 42–53. [Google Scholar] [CrossRef]
- Su, Y.; Wang, J.; Li, J.; Wang, L.; Wang, K.; Li, A.; Gao, L.; Wang, Z. Spatiotemporal changes and driving factors of reference evapotranspiration and crop evapotranspiration for cotton production in China from 1960 to 2019. Front. Environ. Sci. 2023, 11, 1251789. [Google Scholar] [CrossRef]
- Benouniche, M.; Errahj, M.; Kuper, M. The Seductive Power of an Innovation: Enrolling Non-conventional Actors in a Drip Irrigation Community in Morocco. J. Agric. Educ. Ext. 2016, 22, 61–79. [Google Scholar] [CrossRef]
- He, P.; Zhang, F.; Fan, J.; Hou, X.; Liu, X.; Zhang, Y.; Xue, Z. Effects of soil water Regulation on growth, quality and water use of cotton under drip irrigation in Southern Xinjiang. Agric. Res. Arid Areas 2020, 38, 39–46. [Google Scholar]
- Zhao, B.; Wang, Z.; Li, W. Effects of drip irrigation pattern and quota on soil water and salt distribution and cotton growth in winter irrigated cotton field in Northern Xinjiang. Trans. Chin. Soc. Agric. Eng. 2016, 32, 139–148. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, L.H.; Sun, S.M.; Chen, X.L.; Ji, L.Y.L.; Hu, S.J. Indexes of salt tolerance of cotton in Akesu River Irrigation District. Sci. Agric. Sin. 2011, 44, 2051–2059. [Google Scholar]
- Zhang, H.; Yang, P.; Wang, C.; Li, X. Effect of Winter Irrigation Amount on Soil Moisture and Salt Distribution in Arid Area. J. Irrig. Drain. 2016, 35, 42–46. [Google Scholar]
- Hu, Q.; Cao, H.; He, Z.; Ding, B.; Zhang, Y. Combined Effect of Drip Irrigation Amount and Straw Mulch on Growth and Yield of Cotton in Salinized Soils in Northern Xinjiang. J. Irrig. Drain. 2022, 41, 27–33. [Google Scholar] [CrossRef]
- Liu, X.; Yan, F.; Wu, L.; Zhang, F.; Yin, F.; Abdelghany, A.E.; Fan, J.; Xiao, C.; Li, J.; Li, Z. Leaching amount and timing modified the ionic composition of saline-alkaline soil and increased seed cotton yield under mulched drip irrigation. Field Crops Res. 2023, 299, 108988. [Google Scholar] [CrossRef]
- Song, X.; Cao, H.; He, Z.; Ding, B.; Yao, N. Applicability of the Aquacrop model in optimization of irrigation and salt leaching schedule during the reproductive period of cotton in Northern Xinjiang of China. Trans. Chin. Soc. Agric. Eng. 2023, 39, 111–122. [Google Scholar] [CrossRef]
- Yan, Y. Cotton water requirements and water saving benefit under mulched drip irrigation in Tarim Irrigated area. Res. Soil Water Conserv. 2016, 23, 123–128. [Google Scholar]
- Xu, C.; Lu, C.; Wang, J. Impact of Meteorological factors on wheat growth period and irrigation water requirement—A case study of the Beijing-Tianjin-Hebei region in China. bioRxiv 2021. bioRxiv:425202. [Google Scholar]
- Luo, N.; Bake, B. Spatio-temporal variation of water requirement and meteorological impact factors of cotton in North Xinjiang, China. Chin. J. Appl. Ecol. 2017, 28, 3305–3313. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Yang, J.; Wang, Y. Potential evapotranspiration and its attribution over the past 50 years in the arid region of Northwest China. Hydrol. Process. 2014, 28, 1025–1031. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, H.; Li, B.; Li, Z.; Xu, C. Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quat. Int. 2014, 336, 35–43. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, W.; Shao, Q.; Xing, W.; Ding, Y.; Fu, J. The response of reference evapotranspiration to climate change in Xinjiang, China: Historical changes, driving forces, and future projections. Int. J. Climatol. 2019, 40, 235–254. [Google Scholar] [CrossRef]
- Zhou, H.; Shen, M.; Chen, J.; Xia, J.; Hong, S. Trends of natural runoffs in the Tarim River Basin during the last 60 years. Arid Land Geogr. 2018, 41, 221–229. [Google Scholar] [CrossRef]
- Tao, H.; Gemmer, M.; Bai, Y.; Su, B.; Mao, W. Trends of streamflow in the Tarim River Basin during the past 50 years: Human impact or climate change? J. Hydrol. 2011, 400, 1–9. [Google Scholar] [CrossRef]
- Gao, X.; Ye, B.; Zhang, S.; Qiao, C.; Zhang, X. Glacier runoff variation and its influence on river runoff during 1961–2006 in the Tarim River Basin, China. Sci. China Earth Sci. 2010, 53, 880–891. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Kousari, M.R.; Zarch, M.A.A.; Ahani, H.; Hakimelahi, H. A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005. Clim. Chang. 2013, 120, 277–298. [Google Scholar] [CrossRef]
- Zhao, Q.; Ye, B.; Ding, Y.; Zhang, S.; Yi, S.; Wang, J.; Shangguan, D.; Zhao, C.; Han, H. Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China. Environ. Earth Sci. 2012, 68, 87–101. [Google Scholar] [CrossRef]
- Cao, D.; Yi, X.; Chen, X.; Xian, J.; Hu, Q. Water Requirement of Non-Staple Crops in the Yellow River Delta Based on Climate Change. Chin. J. Soil Sci. 2022, 53, 795–804. [Google Scholar] [CrossRef]
- Qi, J.; Batrrr, B.; Kalibir, M. Climate Response of Water Demand Variation in Spring Wheat at Different Growth Stages in Northern Xinjiang. J. Triticeae Crops 2021, 41, 362–369. [Google Scholar]
- Ren, L.; Ji, J.; Lu, Z.; Wang, K. Spatiotemporal characteristics and abrupt changes of wind speeds in the Guangdong–Hong Kong–Macau Greater Bay Area. Energy Rep. 2022, 8, 3465–3482. [Google Scholar] [CrossRef]
- Yang, C.D.; Xu, M.; Kang, S.C.; Fu, C.S.; Zhang, W.; Hu, D.-D. Streamflow abrupt change and the driving factors in glacierized basins of Tarim Basin, Northwest China. Adv. Clim. Chang. Res. 2024, 15, 75–89. [Google Scholar] [CrossRef]
- Diao, W.; Zhao, Y.; Dong, Y.; Zhai, J.; Wang, Q.; Gui, Y. Spatiotemporal Variability of Surface Wind Speed during 1961–2017 in the Jing-Jin-Ji Region, China. J. Meteorol. Res. 2020, 34, 621–632. [Google Scholar] [CrossRef]
- Kenett, D.Y.; Huang, X.; Vodenska, I.; Havlin, S.; Stanley, H.E. Partial correlation analysis: Applications for financial markets. Quant. Financ. 2015, 15, 569–578. [Google Scholar] [CrossRef]
- Poli, D.; Pastore, V.P.; Martinoia, S.; Massobrio, P. Partial correlation analysis for functional connectivity studies in cortical networks. BMC Neurosci. 2014, 15, P99. [Google Scholar] [CrossRef]
Variable | Time Period | Tmean | Pre | RH | WS | SH |
---|---|---|---|---|---|---|
Dcr | 1961–1990 | 0.17 | −0.32 | −0.36 | 0.92 ** | 0.68 ** |
1991–2017 | 0.76 ** | −0.41 | −0.77 ** | 0.49 * | 0.82 ** | |
IR | 1961–1990 | 0.20 | −0.74 ** | −0.40 * | 0.83 ** | 0.65 ** |
1991–2017 | 0.75 ** | −0.92 ** | −0.77 ** | 0.19 | 0.85 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Wu, H.; Chen, X. Impacts of Climate Changes on Spatiotemporal Variation of Cotton Water Requirement and Irrigation in Tarim Basin, Central Asia. Plants 2024, 13, 3234. https://doi.org/10.3390/plants13223234
Xu M, Wu H, Chen X. Impacts of Climate Changes on Spatiotemporal Variation of Cotton Water Requirement and Irrigation in Tarim Basin, Central Asia. Plants. 2024; 13(22):3234. https://doi.org/10.3390/plants13223234
Chicago/Turabian StyleXu, Min, Hao Wu, and Xiaoping Chen. 2024. "Impacts of Climate Changes on Spatiotemporal Variation of Cotton Water Requirement and Irrigation in Tarim Basin, Central Asia" Plants 13, no. 22: 3234. https://doi.org/10.3390/plants13223234
APA StyleXu, M., Wu, H., & Chen, X. (2024). Impacts of Climate Changes on Spatiotemporal Variation of Cotton Water Requirement and Irrigation in Tarim Basin, Central Asia. Plants, 13(22), 3234. https://doi.org/10.3390/plants13223234