Effects of Drought on the Water Use Strategies of Pure and Mixed Shrubs in the Mu Us Sandy Land
Abstract
:1. Introduction
2. Results
2.1. Meteorological Factors and Isotopic Composition of Rainwater
2.2. Isotopic Composition of Rainwater, Soil Water, and Plant Xylem Water
2.3. Changes in Soil Moisture, Hydrogen, and Oxygen Isotopes During the Rainy and Dry Seasons
2.4. Water Utilization Relationship Between Pure and Mixed Forests During the Rainy and Dry Seasons
3. Materials and Methods
3.1. Study Area
3.2. Sample Collection and Processing
3.3. Stable Isotope Analysis and Plant Water Source Identification
3.4. Data Analyses
4. Discussion
4.1. Hydrogen and Oxygen Isotope Variations Under Multifactorial Influences
4.2. Vegetation Water Utilization Strategies Under Coupled Two-Factor Disturbances
4.3. Revelation of Vegetation Water Utilization Strategies Under Integrated Consideration of Water Conditions and Configuration Patterns
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrer, M.; Castagneri, D.; Popa, I.; Pividori, M.; Lingua, E. Tree spatial patterns and stand attributes in temperate forests: The importance of plot size, sampling design, and null model. For. Ecol. Manag. 2018, 407, 125–134. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, F.; Shi, Q.; Li, M.; Dai, Y.; Zhang, Z.; Zhu, C. Responses of arid plant species diversity and composition to environmental factors. J. For. Res. 2023, 34, 1723–1734. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Liang, P.; Yang, X. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors. Catena 2016, 145, 321–333. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, J.; Velicogna, I.; Liang, C.; Li, Z. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 2021, 4, 56–62. [Google Scholar] [CrossRef]
- Grossiord, C.; Sevanto, S.; Dawson, T.E.; Adams, H.D.; Collins, A.D.; Dickman, L.T.; Newman, B.D.; Stockton, E.A.; McDowell, N.G. Warming combined with more extreme precipitation regimes modifies the water sources used by trees. New Phytol. 2017, 213, 584–596. [Google Scholar] [CrossRef]
- Yin, D.; Gou, X.; Liu, J.; Zhang, D.; Wang, K.; Yang, H. Increasing deep soil water uptake during drought does not indicate higher drought resistance. J. Hydrol. 2024, 630, 130694. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Knighton, J.; Evaristo, J.; Wassen, M. Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem. Agric. For. Meteorol. 2021, 300, 108323. [Google Scholar] [CrossRef]
- Behzad, H.M.; Arif, M.; Duan, S.; Kavousi, A.; Cao, M.; Liu, J.; Jiang, Y. Seasonal variations in water uptake and transpiration for plants in a karst critical zone in China. Sci. Total Environ. 2023, 860, 160424. [Google Scholar] [CrossRef]
- Liu, W.; Chen, H.; Zou, Q.; Nie, Y. Divergent root water uptake depth and coordinated hydraulic traits among typical karst plantations of subtropical China: Implication for plant water adaptation under precipitation changes. Agric. Water. Manag. 2021, 249, 106798. [Google Scholar] [CrossRef]
- Shi, P.; Gai, H.; Liu, W.; Li, Z. Links of apple tree water uptake strategies with precipitation and soil water dynamics in the deep loess deposits. J. Hydrol. 2023, 623, 129829. [Google Scholar] [CrossRef]
- Yang, F.; Feng, Z.; Wang, H.; Dai, X.; Fu, X. Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-annual variation in tree growth in four subtropical plantations. Agric. For. Meteorol. 2017, 234, 106–114. [Google Scholar] [CrossRef]
- Hardanto, A.; Röll, A.; Hölscher, D. Tree soil water uptake and transpiration in mono-cultural and jungle rubber stands of Sumatra. For. Ecol. Manag. 2017, 397, 67–77. [Google Scholar] [CrossRef]
- Forrester, D.I.; Bauhus, J. A review of processes behind diversity—Productivity relationships in forests. Curr. For. Rep. 2016, 2, 45–61. [Google Scholar] [CrossRef]
- Yang, Y.J.; Bi, M.H.; Nie, Z.F.; Jiang, H.; Liu, X.D.; Fang, X.W.; Brodribb, T.J. Evolution of stomatal closure to optimize water-use efficiency in response to dehydration in ferns and seed plants. New Phytol. 2021, 230, 2001–2010. [Google Scholar] [CrossRef]
- Pretzsch, H.; del Río, M.; Ammer, C.; Avdagic, A.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; Dirnberger, G.; Drössler, L.; et al. Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 2015, 134, 927–947. [Google Scholar] [CrossRef]
- Ruiz-Benito, P.; Gómez-Aparicio, L.; Paquette, A.; Messier, C.; Kattge, J.; Zavala, M.A. Diversity increases carbon storage and tree productivity in Spanish forests. Glob. Ecol. Biogeogr. 2014, 23, 311–322. [Google Scholar] [CrossRef]
- Schwarz, J.A.; Bauhus, J. Benefits of mixtures on growth performance of silver fir (Abies alba) and European beech (Fagus sylvatica) increase with tree size without reducing drought tolerance. Front. For. Glob. Change 2019, 2, 79. [Google Scholar] [CrossRef]
- Lebourgeois, F.; Gomez, N.; Pinto, P.; Mérian, P. Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For. Ecol. Manag. 2013, 303, 61–71. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Q.; Wei, Z.; Yu, X.; Jia, G.; Jiang, J. Partitioning tree water usage into storage and transpiration in a mixed forest. Forest Ecosyst. 2021, 8, 72. [Google Scholar] [CrossRef]
- Han, L.; Liu, L.; Peng, L.; Wang, N.; Zhou, P. Mixing of tree species with the same water use strategy might lead to deep soil water deficit. For. Ecol. Manag. 2023, 534, 120876. [Google Scholar] [CrossRef]
- Magh, R.K.; Eiferle, C.; Burzlaff, T.; Dannenmann, M.; Rennenberg, H.; Dubbert, M. Competition for water rather than facilitation in mixed beech-fir forests after drying-wetting cycle. J. Hydrol. 2020, 587, 124944. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Wu, H.; Wang, P.; Wang, Y.; Wu, X.; Li, W.; Huang, Y. Differences in water-use strategies along an aridity gradient between two coexisting desert shrubs (Reaumuria soongorica and Nitraria sphaerocarpa): Isotopic approaches with physiological evidence. Plant Soil 2017, 419, 169–187. [Google Scholar] [CrossRef]
- Wang, J.; Fu, B.; Wang, L.; Lu, N.; Li, J. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agric. For. Meteorol. 2020, 288, 108020. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, X.; Chen, Y. Sap flow characteristics and physiological adjustments of two dominant tree species in pure and mixed plantations in the semi-arid Loess Plateau of China. J. Arid Land 2018, 10, 833–849. [Google Scholar] [CrossRef]
- Yang, B.; Wen, X.; Sun, X. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agric. For. Meteorol. 2015, 201, 218–228. [Google Scholar] [CrossRef]
- Yan, F.; Wu, B.; Wang, Y. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China. Agric. For. Meteorol. 2015, 200, 119–128. [Google Scholar] [CrossRef]
- Bao, S.D. Measurement of soil nutrients. In Soil and Agriculture Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2010; pp. 25–144. [Google Scholar]
- Yang, J.; Paytan, A.; Yang, Y.; Wei, S.; Liu, B.; Cui, H.; Chen, Y.; Zhao, Y. Organic carbon and reduced inorganic sulfur accumulation in subtropical saltmarsh sediments along a dynamic coast, Yancheng, China. J. Mar. Syst. 2020, 211, 103415. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, G.; Pan, Y.; Yang, X.; Shen, Y. Water use patterns differed notably with season and slope aspect for Caragana korshinskii on the Loess Plateau of China. Catena 2021, 198, 105028. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Zhao, S.; Ma, H.; Qi, G.; Guo, S. The depth of water taken up by walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang Mountains. Forests 2019, 10, 121. [Google Scholar] [CrossRef]
- Hao, X.M.; Chen, Y.N.; Guo, B.; Ma, J.X. Hydraulic redistribution of soil water in Populus euphratica Oliv. in a central Asian desert riparian forest. Ecohydrology 2013, 6, 974–983. [Google Scholar] [CrossRef]
- Rothfuss, Y.; Javaux, M. Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods. Biogeosciences. 2017, 14, 2199–2224. [Google Scholar] [CrossRef]
- Ying, M.; Somg, X. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments. Sci. Total Environ. 2016, 550, 471–483. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Dawson, T.E. Water uptake by plants: Perspectives from stable isotope composition. Plant Cell Environ. 1992, 15, 1073–1082. [Google Scholar] [CrossRef]
- Huang, T.; Pang, Z.; Yuan, L. Nitrate in groundwater and the unsaturated zone in (semi) arid northern China: Baseline and factors controlling its transport and fate. Environ. Earth Sci. 2013, 70, 145–156. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; He, M.; Tong, Y.; Zhou, J.; Guo, X.; Liu, J.; Zhang, X. Transference of Robinia pseudoacacia water-use patterns from deep to shallow soil layers during the transition period between the dry and rainy seasons in a water-limited region. For. Ecol. Manag. 2020, 457, 117727. [Google Scholar] [CrossRef]
- Dawson, T.E.; Ehleringer, J.R. Streamside trees that do not usestream water. Nature 1991, 350, 335–337. [Google Scholar] [CrossRef]
- Amin, A.; Zuecco, G.; Geris, J.; Schwendenmann, L.; McDonnell, J.J.; Borga, M.; Penna, D. Depth distribution of soil water sourced by plants at the global scale: A new direct inference approach. Ecohydrology 2020, 13, 2177. [Google Scholar] [CrossRef]
- Wang, J.; Fu, B.; Lu, N.; Zhang, L. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Sci. Total Environ. 2017, 609, 27–37. [Google Scholar] [CrossRef]
- Parnell, A.C.; Phillips, D.L.; Bearhop, S.; Semmens, B.X.; Ward, E.J.; Moore, J.W.; Jackson, A.L.; Grey, J.; Kelly, D.J.; Inger, R. Bayesian stable isotope mixing models. Environmetrics 2013, 24, 387–399. [Google Scholar] [CrossRef]
- Stock, B.C.; Semmens, B.X. MixSIAR GUI User Manual, Version 3.1. 2013. Available online: https://github.com/brianstock/MixSIAR (accessed on 10 July 2023).
- Landwehr, J.M.; Coplen, T.B. Line-conditioned excess: A new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. In International Conference on Isotopes in Environmental Studies; IAEA Vienna: Wien, Vienna, 2006; Volume 118, pp. 132–135. [Google Scholar]
- Sprenger, M.; Tetzlaff, D.; Soulsby, C. Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone. Hydrol. Earth Syst. Sci. 2017, 21, 3839–3858. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, W.; Zhan, H.; Jiang, Q.; Shi, M.; Wang, Y.; Li, X.; Xin, Z. On change of soil moisture distribution with vegetation reconstruction in Mu Us sandy land of China, with newly designed lysimeter. Front. Plant Sci. 2021, 12, 609529. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Miguez-Macho, G.; Jobbágy, E.G.; Jackson, R.B.; Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA 2017, 114, 10572–10577. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xie, C.; Liu, X.; Wang, N.; Yu, Z.; Dong, X.; Wang, L. Water sources of major plant species along a strong climatic gradient in the inland Heihe River Basin. Plant Soil 2020, 455, 439–466. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.Y.; Jiang, Z.; Chen, H.; Zhang, C.; Xiao, X. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai–Tibet Plateau, China. Sci. Total Environ. 2016, 542, 182–191. [Google Scholar] [CrossRef]
- Sprenger, M.; Leistert, H.; Gimbel, K.; Weiler, M. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes. Rev. Geophys. 2016, 54, 674–704. [Google Scholar] [CrossRef]
- Qian, J.; Zheng, H.; Wang, P.; Liao, X.; Wang, C.; Hou, J.; Ao, Y.; Shen, M.; Liu, J.; Li, K. Assessing the ecohydrological separation hypothesis and seasonal variations in water use by Ginkgo biloba L. in a subtropical riparian area. J. Hydrol. 2017, 553, 486–500. [Google Scholar] [CrossRef]
- Dai, Y.; Zheng, X.J.; Tang, L.S.; Li, Y. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert. Plant Soil 2015, 389, 73–87. [Google Scholar] [CrossRef]
- Basset, C.; Abou Najm, M.; Ghezzehei, T.; Hao, X.; Daccache, A. How does soil structure affect water infiltration? A meta-data systematic review. Soil. Tillage Res. 2023, 226, 105577. [Google Scholar] [CrossRef]
- Lin, B.R. Hydrogen and Oxygen Isotope Fractionation of Soil Water and Water Adsorption Characteristics of Artemisia ordosica and Salix psammophila in Mu Us Sandy Land. Master’s Thesis, Chang’an University, Xi’an, China, 2022. [Google Scholar] [CrossRef]
- Song, L.; Zhu, J.; Li, M.; Zhang, J. Water use patterns of Pinus sylvestris var. mongolica trees of different ages in a semiarid sandy lands of Northeast China. Environ. Exp. Bot. 2016, 129, 94–107. [Google Scholar] [CrossRef]
- McDonnell, J.J. The two water worlds hypothesis: Ecohydrological separation of water between streams and trees? Wiley Interdiscip. Rev. Water 2014, 1, 323–329. [Google Scholar] [CrossRef]
- Geris, J.; Tetzlaff, D.; McDonnell, J.J.; Soulsby, C. Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments. Sci. Total Environ. 2017, 595, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Huang, L.; Jia, X.; Tang, X.; Zhang, Y.; Pan, Y. Water sources used by artificial Salix psammophila in stands of different ages based on stable isotope analysis in northeastern Mu Us Sandy Land. Catena 2023, 226, 107087. [Google Scholar] [CrossRef]
- Bowen, G.J.; Putman, A.; Brooks, J.R.; Bowling, D.R.; Oerter, E.J.; Good, S.P. Inferring the source of evaporated waters using stable H and O isotopes. Oecologia 2018, 187, 1025–1039. [Google Scholar] [CrossRef]
- Lyu, S.; Wang, J.; Song, X.; Wen, X. The relationship of δD and δ18O in surface soil water and its implications for soil evaporation along grass transects of Tibet, Loess, and Inner Mongolia Plateau. J. Hydrol. 2021, 600, 126533. [Google Scholar] [CrossRef]
- Brinkmann, N.; Seeger, S.; Weiler, M.; Buchmann, N.; Eugster, W.; Kahmen, A. Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by Fagus sylvatica and Picea abies in a temperate forest. New Phytol. 2018, 219, 1300–1313. [Google Scholar] [CrossRef]
- Tron, S.; Bodner, G.; Laio, F.; Ridolfi, L.; Leitner, D. Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecol. Model. 2015, 312, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Nakhforoosh, A.; Grausgruber, H.; Kaul, H.-P.; Bodner, G. Wheat root diversity and root functional characterization. Plant Soil 2014, 380, 211–229. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, H.; Peng, Z.; Dai, J.; Zhao, F.; Chen, Z. Root system plays an important role in responses of plant to drought in the steppe of China. Land Degrad. Dev. 2021, 32, 3498–3506. [Google Scholar] [CrossRef]
- Rothfuss, Y.; Merz, S.; Vanderborght, J.; Hermes, N.; Weuthen, A.; Pohlmeier, A.; Vereecken, H.; Brüggemann, N. Long-term and high-frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column. Hydrol. Earth Syst. Sci. 2015, 19, 4067–4080. [Google Scholar] [CrossRef]
- Qiu, D.; Zhu, G.; Lin, X.; Jiao, Y.; Lu, S.; Liu, J.; Liu, J.; Zhang, W.; Ye, L.; Li, R.; et al. Dissipation and movement of soil water in artificial forest in arid oasis areas: Cognition based on stable isotopes. Catena 2023, 228, 107178. [Google Scholar] [CrossRef]
- Zhan, L.; Chen, J.; Li, L.; Xin, P. Plant water use strategies indicated by isotopic signatures of leaf water: Observations in southern and northern China. Agric. For. Meteorol. 2019, 276, 107624. [Google Scholar] [CrossRef]
- Qiu, D.; Zhu, G.; Bhat, M.A.; Wang, L.; Liu, Y.; Sang, L.; Lin, X.; Zhang, W.; Sun, N. Water use strategy of Nitraria tangutorum shrubs in ecological water delivery area of the lower inland river: Based on stable isotope data. J. Hydrol. 2023, 624, 129918. [Google Scholar] [CrossRef]
- Yang, M.; Gao, X.; Wang, S.; Zhao, X. Quantifying the importance of deep root water uptake for apple trees’ hydrological and physiological performance in drylands. J. Hydrol. 2022, 606, 127471. [Google Scholar] [CrossRef]
- Poca, M.; Coomans, O.; Urcelay, C.; Zeballos, S.R.; Bodé, S.; Boeckx, P. Isotope fractionation during root water uptake by Acacia caven is enhanced by arbuscular mycorrhizas. Plant Soil 2019, 441, 485–497. [Google Scholar] [CrossRef]
- Liu, L.; Qiao, Y.; She, W.; Miao, C.; Qin, S.; Hu, Z.; Zhang, Y. Interspecific competition alters water use patterns of coexisting plants in a desert ecosystem. Plant Soil 2024, 495, 583–599. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Q.; Liu, S.; Gu, B.; Gao, D.; Wang, T.; Sui, M.; Zuo, H.; Jiang, J. Unraveling the effects of plant and soil properties on tree water absorption in pure and mixed forests across subtropical China. Agric. For. Meteorol. 2024, 353, 110078. [Google Scholar] [CrossRef]
- Priyadarshini, K.V.R.; Prins, H.H.; de Bie, S.; Heitkönig, I.M.; Woodborne, S.; Gort, G.; Kirkman, K.; Ludwig, F.; Dawson, T.E.; de Kroon, H. Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree–grass interactions. Ecohydrology 2016, 9, 218–228. [Google Scholar] [CrossRef]
- Wu, Y.; Han, L.; Liu, K.; Hu, X.; Fu, Z.; Chen, L. Water source of Robinia pseudoacacia and Platycladus orientalis plantations under different moisture conditions in the Loess Plateau of Western Shanxi, China. Chin. J. Appl. Ecol. 2023, 34, 588–596. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, G.; Li, X.Y.; Wang, Y.; He, B.; Jiang, Z.; Zhang, S.; Sun, W. Identifying water sources used by alpine riparian plants in a restoration zone on the Qinghai-Tibet Plateau: Evidence from stable isotopes. Sci. Total Environ. 2019, 697, 134092. [Google Scholar] [CrossRef]
- Liu, L.X. Study on Root Vertical Distribution of Three Kinds of Shrubs in Mu Us Sandy Land. Master’s Thesis, Inner Mongolia University, Hohhot, China, 2015. [Google Scholar] [CrossRef]
- Vanhellemont, M.; Sousa-Silva, R.; Maes, S.L.; Van den Bulcke, J.; Hertzog, L.; De Groote, S.R.E.; Van Acker, J.; Bonte, D.; Martel, A.; Lens, L.; et al. Distinct growth responses to drought for oak and beech in temperate mixed forests. Sci. Total Environ. 2019, 650, 3017–3026. [Google Scholar] [CrossRef] [PubMed]
- Kühnhammer, K.; van Haren, J.; Kübert, A.; Bailey, K.; Dubbert, M.; Hu, J.; Ladd, N.; Meredith, L.K.; Werner, C.; Beyer, M. Deep roots mitigate drought impacts on tropical trees despite limited quantitative contribution to transpiration. Sci. Total Environ. 2023, 893, 164763. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Wu, G.L.; Huang, Z.; Liu, Y. Fine roots determine soil infiltration potential than soil water content in semi-arid grassland soils. J. Hydrol. 2019, 578, 124023. [Google Scholar] [CrossRef]
- Jotisankasa, A.; Sirirattanachat, T. Effects of grass roots on soil-water retention curve and permeability function. Can. Geotech. J. 2017, 54, 1612–1622. [Google Scholar] [CrossRef]
Configuration Mode | Ll | S | A (m) | Sd (hm2) | Th (m) | C (m) | Bd (cm) | |
---|---|---|---|---|---|---|---|---|
Ao (pure) | 38°53′18.36″ E 109°11′48.58″ N | 2° | 1275 | 3767 | 0.62 ± 0.14 | 0.86 ± 0.32 | 0.21 ± 0.41 | |
Sp (pure) | 38°59′15.84″ E 109°21′24.56″ N | 5° | 1278 | 733 | 2.27 ± 0.31 | 2.06 ± 0.47 | 0.09 ± 0.02 | |
Ao × Sp (mixed) | 38°59′10.41″ E 109°21′31.21″ N | 4° | 1281 | 2300 (1:8) | Mixed Ao | 0.78 ± 0.13 | 1.18 ± 0.27 | 0.06 ± 0.03 |
Mixed Sp | 3.17 ± 0.80 | 3.23 ± 1.03 | 0.11 ± 0.03 | |||||
Ao × Ck (mixed) | 39°1′42.29″ E 109°23′10.06″ N | 2° | 1283 | 2500 (1:7) | Mixed Ao | 0.70 ± 0.16 | 1.16 ± 0.46 | 0.08 ± 0.04 |
Mixed Ck | 2.12 ± 0.44 | 2.80 ± 0.52 | 0.11 ± 0.04 |
Configuration Mode | Soil Layer (cm) | SOC (g·kg−1) | TN (g·kg−1) | Soil Mechanical Composition (v%) | BD (g·cm−3) | FC (v%) | WC (v%) | ||
---|---|---|---|---|---|---|---|---|---|
Clay | Particle | Sand | |||||||
Ao (pure) | 0–20 | 5.67 ± 0.25 Ab | 0.53 ± 0.01 Aa | 5.02 ± 0.31 Aa | 61.33 ± 4.04 Aa | 33.65 ± 4.31 Cc | 1.53 ± 0.33 Aab | 5.15 ± 0.11 Ac | 4.56 ± 0.45 Aa |
20–60 | 3.19 ± 0.67 Ba | 0.26 ± 0.002 Ba | 2.63 ± 0.49 Ba | 15.74 ± 2.77 Ba | 81.64 ± 3.25 Bb | 1.53 ± 0.01 Aa | 2.58 ± 0.10 Bc | 1.55 ± 0.19 Bb | |
60–120 | 1.18 ± 0.13 Cab | 0.14 ± 0.01 Cb | 1.58 ± 0.05 Ca | 7.78 ± 0.22 Cb | 90.64 ± 0.27 Ab | 1.55 ± 0.06 Aa | 2.10 ± 0.12 Cc | 1.62 ± 0.08 Bb | |
Sp (pure) | 0–20 | 3.01 ± 0.45 Ac | 0.34 ± 0.01 Ab | 1.88 ± 0.35 Ab | 13.12 ± 2.44 Ab | 85.00 ± 2.79 Bb | 1.54 ± 0.05 Aab | 3.72 ± 0.23 Ad | 0.99 ± 0.08 Bc |
20–60 | 1.84 ± 0.47 Bb | 0.15 ± 0.01 Cb | 1.15 ± 0.06 Bb | 6.52 ± 0.38 Bb | 92.32 ± 0.43 Aa | 1.56 ± 0.05 Aa | 2.48 ± 0.32 Bc | 0.74 ± 0.08 Bc | |
60–120 | 1.57 ± 0.36 Ba | 0.23 ± 0.0005 Ba | 1.52 ± 0.14 ABa | 15.48 ± 1.42 Aa | 83.00 ± 1.56 Bc | 1.58 ± 0.09 Aa | 2.11 ± 0.19 Bc | 3.56 ± 0.72 Aa | |
Ao × Sp (mixed) | 0–20 | 6.33 ± 0.40 Aa | 0.19 ± 0.003 Ac | 1.29 ± 0.03 Ac | 6.07 ± 0.11 Ac | 92.65 ± 0.13 Ba | 1.49 ± 0.08 Bb | 7.40 ± 0.34 Ab | 2.00 ± 0.15 Ab |
20–60 | 1.67 ± 0.63 Bb | 0.12 ± 0.003 Bc | 0.95 ± 0.11 Bb | 4.17 ± 0.48 Bb | 94.88 ± 0.59 Aa | 1.56 ± 0.02 ABa | 5.78 ± 0.15 Bb | 1.28 ± 0.29 Bb | |
60–120 | 1.51 ± 0.04 Ba | 0.09 ± 0.01 Cc | 1.04 ± 0.13 Bb | 4.31 ± 0.48 Bc | 94.66 ± 0.61 Aa | 1.62 ± 0.06 Aa | 4.33 ± 0.15 Cb | 1.13 ± 0.12 Bb | |
Ao × Ck (mixed) | 0–20 | 1.47 ± 0.23 Ad | 0.13 ± 0.007 Bd | 1.36 ± 0.16 Ac | 6.30 ± 0.78 Ac | 92.35 ± 0.93 Ba | 1.62 ± 0.01 Aa | 9.37 ± 0.50 Aa | 1.98 ± 0.31 ABb |
20–60 | 1.56 ± 0.54 Ab | 0.15 ± 0.01 Ab | 1.19 ± 0.12 ABb | 5.20 ± 0.47 Ab | 93.61 ± 0.59 Ba | 1.58 ± 0.09 Aa | 9.07 ± 0.58 Aa | 2.53 ± 0.19 Aa | |
60–120 | 0.83 ± 0.18 Ab | 0.04 ± 0.01 Cd | 0.95 ± 0.09 Bb | 3.95 ± 0.28 Bc | 95.10 ± 0.37 Aa | 1.60 ± 0.05 Aa | 6.86 ± 0.51 Ba | 1.49 ± 0.35 Bb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Q.; Dang, X.; Meng, Z.; Liu, Y.; Lou, J.; Yan, Y.; Zhang, X. Effects of Drought on the Water Use Strategies of Pure and Mixed Shrubs in the Mu Us Sandy Land. Plants 2024, 13, 3261. https://doi.org/10.3390/plants13233261
Gao Q, Dang X, Meng Z, Liu Y, Lou J, Yan Y, Zhang X. Effects of Drought on the Water Use Strategies of Pure and Mixed Shrubs in the Mu Us Sandy Land. Plants. 2024; 13(23):3261. https://doi.org/10.3390/plants13233261
Chicago/Turabian StyleGao, Qin, Xiaohong Dang, Zhongju Meng, Yang Liu, Jiale Lou, Yu Yan, and Xing Zhang. 2024. "Effects of Drought on the Water Use Strategies of Pure and Mixed Shrubs in the Mu Us Sandy Land" Plants 13, no. 23: 3261. https://doi.org/10.3390/plants13233261
APA StyleGao, Q., Dang, X., Meng, Z., Liu, Y., Lou, J., Yan, Y., & Zhang, X. (2024). Effects of Drought on the Water Use Strategies of Pure and Mixed Shrubs in the Mu Us Sandy Land. Plants, 13(23), 3261. https://doi.org/10.3390/plants13233261