Community Assembly Mechanisms of Populus euphratica in Northwest China and Their Relationship with Environmental Factors
Abstract
:1. Introduction
2. Results
2.1. Taxonomic Composition of Plant Species and Phylogenetic Tree Construction
- (1)
- The first group comprised 11 plant species from Poaceae, Iridaceae, and Asparagaceae.
- (2)
- The second group included two species from Berberidaceae and Ranunculaceae.
- (3)
- The third group consisted of five species from Nitrariaceae, Thymelaeaceae, and Brassicaceae.
- (4)
- The fourth group was composed of 19 species from Zygophyllaceae, Salicaceae, Elaeagnaceae, Rosaceae, and Fabaceae.
- (5)
- The fifth group consisted of 44 species from Tamaricaceae, Plumbaginaceae, Polygonaceae, and Amaranthaceae.
- (6)
- The sixth group included 26 species from Asteraceae, Mazaceae, Plantaginaceae Heliotropiaceae, Apocynaceae, Gentianaceae, and Solanaceae.
2.2. Community Types and Their Species Composition
2.3. Plant Species Diversity in Different Community Types
2.4. PD and Phylogenetic Structure
2.4.1. PD of Different Community Types
2.4.2. Phylogenetic Structure of Different Community Types
2.5. Analysis of Factors Influencing P. euphratica Communities
2.5.1. Selection of Environmental Factors
2.5.2. Correlations Among Species Diversity, PD, and Environmental Factors
2.5.3. Climate and Soil Explanations for Species Diversity and PD
3. Discussion
3.1. Diversity Variation and Correlations Across Different Community Types
3.2. Phylogenetic Structure Reveals Aggregation Patterns in Different Community Types
3.3. Environmental Factors Influencing Species Diversity and PD in P. euphratica Communities
4. Materials and Methods
4.1. Study Site
4.2. Sample Plot Survey and Data Collection
4.3. Calculation of Species Diversity Indices
4.4. Construction of the Phylogenetic Tree and Calculation of Phylogenetic Indices
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive Biodiversity-Productivity Relationship Predominant in Global Forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef] [PubMed]
- Hisano, M.; Searle, E.B.; Chen, H.Y.H. Biodiversity as a Solution to Mitigate Climate Change Impacts on the Functioning of Forest Ecosystems. Biol. Rev. 2017, 93, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, J.; Peters, M.K.; Becker, J.N.; Behler, C.; Classen, A.; Ensslin, A.; Ferger, S.W.; Gebert, F.; Gerschlauer, F.; Helbig-Bonitz, M.; et al. Species Richness Is More Important for Ecosystem Functioning than Species Turnover along an Elevational Gradient. Nat. Ecol. Evol. 2021, 5, 1582–1593. [Google Scholar] [CrossRef] [PubMed]
- Weiskopf, S.R.; Lerman, S.B.; Isbell, F. Toni Lyn Morelli Biodiversity Promotes Urban Ecosystem Functioning. Ecography 2024, 2024, e07366. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.B.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest Biodiversity, Ecosystem Functioning and the Provision of Ecosystem Services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Xu, S.; Eisenhauer, N.; Ferlian, O.; Zhang, J.; Zhou, G.; Lu, X.; Liu, C.; Zhang, D. Species Richness Promotes Ecosystem Carbon Storage: Evidence from Biodiversity-Ecosystem Functioning Experiments. Proc. R. Soc. B 2020, 287, 20202063. [Google Scholar] [CrossRef]
- van der Plas, F.; Manning, P.; Soliveres, S.; Allan, E.; Scherer-Lorenzen, M.; Verheyen, K.; Wirth, C.; Zavala, M.A.; Ampoorter, E.; Baeten, L.; et al. Biotic Homogenization Can Decrease Landscape-Scale Forest Multifunctionality. Proc. Natl. Acad. Sci. USA 2016, 113, 3557–3562. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, M.; Tobin, P.C.; McGuire, A.D.; Reich, P.B. Biodiversity Influences Plant Productivity Through Niche-Efficiency. Proc. Natl. Acad. Sci. USA 2015, 112, 5738–5743. [Google Scholar] [CrossRef]
- Lembrechts, J.J.; De Boeck, H.J.; Liao, J.; Milbau, A.; Nijs, I. Effects of Species Evenness Can Be Derived from Species Richness—Ecosystem Functioning Relationships. Oikos 2017, 127, 337–344. [Google Scholar] [CrossRef]
- González-Orozco, C.E.; Parra-Quijano, M. Comparing Species and Evolutionary Diversity Metrics to Inform Conservation. Divers. Distrib. 2022, 29, 224–231. [Google Scholar] [CrossRef]
- Chai, Y.F.; Yue, M. Research Advances in Plant Community Assembly Mechanisms. Acta Ecol. Sin. 2015, 36, 4557–4572. [Google Scholar]
- Tietje, M.; Antonelli, A.; Forest, F.; Govaerts, R.; Smith, S.A.; Sun, M.; Baker, W.J.; Eiserhardt, W.L. Global Hotspots of Plant Phylogenetic Diversity. New Phytol. 2023, 240, 1636–1646. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Li, T.; Bao, Y.; Zhang, J.; Zhao, Y.; Ye, J.; Zhang, Y.; Wu, W.; Tang, J.; Li, Z. Correlations and Dominant Climatic Factors among Diversity Patterns of Plant Families, Genera, and Species. Front. Ecol. Evol. 2022, 10, 1010067. [Google Scholar] [CrossRef]
- Qian, H.; Kessler, M.; Zhang, J.; Jin, Y.; Soltis, D.E.; Qian, S.; Zhou, Y.; Soltis, P.S. Angiosperm Phylogenetic Diversity Is Lower in Africa than South America. Sci. Adv. 2023, 9, eadj1022. [Google Scholar] [CrossRef] [PubMed]
- Weiher, E.; Clarke, G.D.P.; Keddy, P.A. Community Assembly Rules, Morphological Dispersion, and the Coexistence of Plant Species. Oikos 1998, 81, 309–322. [Google Scholar] [CrossRef]
- Webb, C.O.; Ackerly, D.D.; McPeek, M.A.; Donoghue, M.J. Phylogenies and Community Ecology. Annu. Rev. Ecol. Syst. 2002, 33, 475–505. [Google Scholar] [CrossRef]
- Hubbell, S.P. The Unified Neutral Theory of Biodiversity and Biogeography; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Chase, J.M. Drought Mediates the Importance of Stochastic Community Assembly. Proc. Natl. Acad. Sci. USA 2007, 104, 17430–17434. [Google Scholar] [CrossRef]
- Chase, J.M.; Myers, J.A. Disentangling the Importance of Ecological Niches from Stochastic Processes across Scales. Philos. Trans. R. Soc. B 2011, 366, 2351–2363. [Google Scholar] [CrossRef]
- Webb, C.O. Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. Am. Nat. 2000, 156, 145–155. [Google Scholar] [CrossRef]
- Silva, I.A.; Batalha, M.A. Phylogenetic Overdispersion of Plant Species in Southern Brazilian Savannas. Braz. J. Biol. 2009, 69, 843–849. [Google Scholar] [CrossRef]
- Macheroum, A.; Kadik, L.; Neffar, S.; Chenchouni, H. Environmental Drivers of Taxonomic and Phylogenetic Diversity Patterns of Plant Communities in Semi-Arid Steppe Rangelands of North Africa. Ecol. Indic. 2021, 132, 108279. [Google Scholar] [CrossRef]
- Hussein, E.A.; Abd El-Ghani, M.M.; Hamdy, R.S.; Shalabi, L.F. Do Anthropogenic Activities Affect Floristic Diversity and Vegetation Structure More than Natural Soil Properties in Hyper-Arid Desert Environments? Diversity 2021, 13, 157. [Google Scholar] [CrossRef]
- Eslami, Z.; Ebrahimi, M.; Kiany, M.; Sadeghi, S. Ecological Drivers of Odonata Beta Diversity in Arid and Semi-Arid Regions of the Central Plateau of Iran. Insect Conserv. Divers. 2020, 14, 40–51. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Y.; Yao, S.; Akram, M.A.; Hu, W.; Dong, L.; Li, H.; Wei, M.; Gong, H.; Xie, S.; et al. Impact of Climate Change on Plant Species Richness across Drylands in China: From Past to Present and into the Future. Ecol. Indic. 2021, 132, 108288. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.; Cui, J.; Han, Y.; Li, H.; Miao, B.; Tang, Y.; Li, Z.; Zhang, J.; Wang, L.; et al. Precipitation Variation: A Key Factor Regulating Plant Diversity in Semi-Arid Livestock Grazing Lands. Front. Plant Sci. 2024, 15, 1294895. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, B. Testing Relationship between Plant Productivity and Diversity in a Desertified Steppe in Northwest China. PeerJ 2019, 7, e7239. [Google Scholar] [CrossRef]
- Xu, J.; Dang, H.; Hu, D.; Zhang, P.; Liu, X. Patterns of Diversity and Community Assembly and Their Environmental Explanation across Different Types of Shrublands in the Western Loess Plateau. Forests 2024, 15, 222. [Google Scholar] [CrossRef]
- Wang, S. The Status, Conservation and Recovery of Global Resources of Populus euphradica. World For. Res. 1996, 6, 38–45. [Google Scholar]
- Zhang, N.; Li, B.; Xu, T.; Wang, J. Spatiotemporal Variations of Drought Index in Populus euphratica Global Distri Bution Area during the Past 50 Years (1960–2012). J. Arid Land Res. 2017, 31, 121–126. [Google Scholar]
- Zhu, C.; Abula, A.; Li, W.; Zhou, H. Ecosystem Restoration of Populus euphratica Forest under the Ecological Water Conveyance in the Lower Reaches of Tarim River. Arid Land Geogr. 2021, 44, 629–636. [Google Scholar]
- Guo, Q.; Liu, J.; Yu, L.; Korpelainen, H.; Li, C. Different Sexual Impacts of Dioecious Populus euphratica on Microbial Communities and Nitrogen Cycle Processes in Natural Forests. For. Ecol. Manag. 2021, 496, 119403. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Chen, Y.N.; Sushkova, S.; Chapligin, V.A.; Mandzhieva, S. A Review on Salinity Adaptation Mechanism and Characteristics of Populus euphratica, a Boon for Arid Ecosystems. Acta Ecol. Sin. 2016, 36, 497–503. [Google Scholar] [CrossRef]
- Chen, J.; Xia, X.; Yin, W. Expression Profiling and Functional Characterization of a DREB2-Type Gene from Populus euphratica. Biochem. Biophys. Res. Commun. 2009, 378, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, H.; Wang, Y.; Zhao, X.; Gao, S. Evaluation on Response of Populus euphratica Population Growth and Plant Diversity to Flooding Irrigation in Lower Reaches of Yarkant River Basin. J. Ecol. Rural Environ. 2024, 35, 859–866. [Google Scholar]
- Wang, L.; Luo, L.; Liu, P.; Hu, D. Biodiversity of Populus euphratica Communities under Water Disturbance in Middle and Lower Reaches of the Tarim River. Acta Ecol. Sin. 2016, 39, 1275–1281. [Google Scholar]
- Zhou, W.; Yang, X.; Hao, P.; Liu, Q.; Cao, D.; Baribault, T.; Li, J. Plant Diversity and Its Maintenance in Populus euphratica Riparian Forests in the Ejina Oasis, China. For. Stud. China 2010, 12, 55–61. [Google Scholar] [CrossRef]
- Han, L.; Chen, J.; Wang, J.; Wang, H.; Lü, R.; Kang, J. Species Composition, Community Structure, and Floristic Characteristics of Desert Riparian Forest Community Along the Mainstream of Tarim River. Plant Sci. J. 2019, 37, 324–336. [Google Scholar]
- Zhao, X.; Xu, H.; Zhang, P.; Yang, Y.; Xu, Q.; Wang, C. How to Realize the Sustainable Distribution of Desert Riparian Forest? Ecohydrology 2023, 16, e2549. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Zhu, C.; Li, B.; Fang, G.; Li, Y.; Fu, A. Climate Change May Accelerate the Decline of Desert Riparian Forest in the Lower Tarim River, Northwestern China: Evidence from Tree-Rings of Populus euphratica. Ecol. Indic. 2020, 111, 105997. [Google Scholar] [CrossRef]
- Zhang, H.R.; Tang, M.P. Classification and Succession Analysis of Mixed Forest in Jingouling Forest Farm Using the TWINSPAN Method. J. Nanjing For. Univ. 2009, 52, 37–42. [Google Scholar]
- Bibi, A. TWINSPAN Classification of Vegetation from South West Aspect of Lower Tanawal, Abbottabad Pakistan. Braz. J. Sci. 2022, 1, 38–45. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Qian, K.; Ye, M. Response of Plant Species Diversity to Flood Irrigation in the Tarim River Basin, Northwest China. Sustainability 2023, 15, 1243. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, C.; Li, J.; Li, Y.; Lv, G.; Liu, T. Effect of Groundwater Depth on Riparian Plant Diversity along Riverside-Desert Gradients in the Tarim River. J. Plant Ecol. 2019, 12, 564–573. [Google Scholar] [CrossRef]
- Li, S.; Su, P.; Zhang, H.; Zhou, Z.; Xie, T.; Shi, R.; Gou, W. Distribution Patterns of Desert Plant Diversity and Relationship to Soil Properties in the Heihe River Basin, China. Ecosphere 2018, 9, e02355. [Google Scholar] [CrossRef]
- Barfknecht, D.F.; Gibson, D.J. Are Metapopulation Species Drivers of Metacommunity Structure in Sandstone Outcrop Communities? J. Veg. Sci. 2022, 34, e13167. [Google Scholar] [CrossRef]
- Ben Saadi, C.; Cayuela, L.; Bañares, G.; Aledo, J.; Matas-Granados, L.; Salinas, N.; Cuadros, M.; Macía, M.J. Latitudinal Patterns and Environmental Drivers of Taxonomic, Functional, and Phylogenetic Diversity of Woody Plants in Western Amazonian Terra Firme Forests. Front. Plant Sci. 2022, 13, 978299. [Google Scholar] [CrossRef]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; de Luca, E.; et al. Biodiversity Increases the Resistance of Ecosystem Productivity to Climate Extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef]
- Teixeira, L.H.; Mazzochini, G.G.; Kollmann, J.; Ganade, G. Phylogenetic Distance Controls Plant Growth During Early Restoration of a Semi-Arid Riparian Forest. Ecol. Solut. Evid. 2022, 3, e12184. [Google Scholar] [CrossRef]
- Ma, K.; Huang, J.; Yu, S.; Chen, L. Plant Community Diversity in Dongling Mountain, Beijing, China: Ⅱ. Species Richness, Evenness and Species Diversities. Acta Ecol. Sin. 1995, 15, 268–277. [Google Scholar]
- Zhao, K.; Zeng, Y.; Wang, Y.; Yang, X.; Wang, P.; Liang, Y.; He, J. Mechanisms for the Construction of Plant Communities in the Gurbantunggut Desert, China. Ecol. Indic. 2023, 154, 110615. [Google Scholar] [CrossRef]
- Meng, Q.X. Distribution Patterns and Its Response to Environmental Factors of Plant Communities in Taihang Mountains; Shanxi University: Taiyuan, China, 2020. [Google Scholar]
- Stadler, J.; Klotz, S.; Brandl, R.; Knapp, S. Species Richness and Phylogenetic Structure in Plant Communities: 20 Years of Succession. Web Ecol. 2017, 17, 37–46. [Google Scholar] [CrossRef]
- Zhang, H.; Zha, T.; Ji, X.; Yu, Y.; Rodrigo-Comino, J. Assessing Community Distribution Characteristics and Succession Stages on Mountainous Areas Hosting Coming Winter Olympics Games. J. Mt. Sci. 2021, 18, 2870–2887. [Google Scholar] [CrossRef]
- Lv, T.; Wang, N.; Xie, L.; Chen, S.; Zhao, R.; Feng, Y.; Li, Y.; Ding, H.; Fang, Y. Environmental Heterogeneity Affecting Community Assembly Patterns and Phylogenetic Diversity of Three Forest Communities at Mt. Huangshan, China. Forests 2022, 13, 133. [Google Scholar] [CrossRef]
- Zheng, Y.; Dong, L.; Li, Z.; Zhang, J.; Li, Z.; Miao, B.; Jia, C.; Liang, C.; Wang, L.; Li, F.Y. Phylogenetic Structure and Formation Mechanism of Shrub Communities in Arid and Semiarid Areas of the Mongolian Plateau. Ecol. Evol. 2019, 9, 13320–13331. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Ding, H.; Wang, N.; Xie, L.; Chen, S.; Wang, D.; Fang, Y. The Roles of Environmental Filtering and Competitive Exclusion in the Plant Community Assembly at Mt. Huangshan Are Forest-Type-Dependent. Glob. Ecol. Conserv. 2024, 51, e02906. [Google Scholar] [CrossRef]
- Mayfield, M.M.; Levine, J.M. Opposing Effects of Competitive Exclusion on the Phylogenetic Structure of Communities. Ecol. Lett. 2010, 13, 1085–1093. [Google Scholar] [CrossRef]
- Odriozola, I.; García-Baquero, G.; Etxeberría, A.; Aldezábal, A. Patterns of Species Relatedness Created by Competitive Exclusion Depend on Species Niche Differences: Evidence from Iberian Atlantic Grasslands. Perspect. Plant Ecol. Evol. Syst. 2017, 28, 36–46. [Google Scholar] [CrossRef]
- Li, S.; Cadotte, M.W.; Meiners, S.J.; Hua, Z.; Jiang, L.; Shu, W. Species Colonisation, Not Competitive Exclusion, Drives Community Overdispersion over Long-Term Succession. Ecol. Lett. 2015, 18, 964–973. [Google Scholar] [CrossRef]
- Hou, E.; Luo, Y.; Kuang, Y.; Chen, C.; Lu, X.; Jiang, L.; Luo, X.; Wen, D. Global Meta-Analysis Shows Pervasive Phosphorus Limitation of Aboveground Plant Production in Natural Terrestrial Ecosystems. Nat. Commun. 2020, 11, 637. [Google Scholar] [CrossRef]
- Esfahani, M.N.; Sonnewald, U. Unlocking Dynamic Root Phenotypes for Simultaneous Enhancement of Water and Phosphorus Uptake. Plant Physiol. Biochem. 2024, 207, 108386. [Google Scholar] [CrossRef]
- Singh, B.P.; Cowie, A.L.; Chan, K.Y. Soil Health and Climate Change; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 9783642202551. [Google Scholar]
- Xiao, L.; Min, X.; Liu, G.; Li, P.; Xue, S. Effect of Plant—Plant Interactions and Drought Stress on the Response of Soil Nutrient Contents, Enzyme Activities and Microbial Metabolic Limitations. Appl. Soil Ecol. 2023, 181, 104666. [Google Scholar] [CrossRef]
- Dingaan, M.N.V.; Tsubo, M.; Walker, S.; Newby, T. Soil Chemical Properties and Plant Species Diversity along a Rainfall Gradient in Semi-Arid Grassland of South Africa. Plant Ecol. Evol. 2017, 150, 35–44. [Google Scholar] [CrossRef]
- Egilla, J.N.; Davies, F.T., Jr.; Drew, M.C. Effect of Potassium on Drought Resistance of Hibiscus Rosa-Sinensis Cv. Leprechaun: Plant Growth, Leaf Macro- and Micronutrient Content and Root Longevity. Plant Soil. 2001, 229, 213–224. [Google Scholar] [CrossRef]
- López-Rubio, R.; Pescador, D.S.; Escudero, A.; Sánchez, A. Rainy Years Counteract Negative Effects of Drought on Taxonomic, Functional and Phylogenetic Diversity: Resilience in Annual Plant Communities. J. Ecol. 2022, 110, 2308–2320. [Google Scholar] [CrossRef]
- He, Y.; Yu, M.; Ding, G.; Wang, C.; Zhang, F. Precipitation Amount and Event Intervals Interact to Change Plant Diversity during Dry Years in a Desert Shrubland. Ecol. Indic. 2022, 145, 109701. [Google Scholar] [CrossRef]
- Mulinge, J. Effects of Environmental Change on Species Diversity. Int. J. Biol. 2023, 3, 43–53. [Google Scholar] [CrossRef]
- Pettorelli, N. Climate Change as a Main Driver of Ecological Research. J. Appl. Ecol. 2012, 49, 542–545. [Google Scholar] [CrossRef]
- Geng, Q.; Wu, P.; Zhao, X. Spatial and Temporal Trends in Climatic Variables in Arid Areas of Northwest China. Int. J. Climatol. 2016, 36, 4118–4129. [Google Scholar] [CrossRef]
- Lei, F.; Wang, M.; Zhang, B. Response of Net Primary Productivity of Pinus sylvestris var. mongolica Plantation to Climate Change in Northwest China. For. By-Pro. Spec. China 2023, 5, 27–29. [Google Scholar]
- Cheng, S.; Zhang, K.; Xing, X.; Dong, A. Climatic Change of Sunshine Duration in Northwest China During the Last 47 Years. J. Nat. Resour. 2010, 25, 1142–1152. [Google Scholar]
- Wang, Y.; Jiang, Z.; Zhou, D.; Gong, Z. Evaluation and Analysis of Observed Soil Temperature Data over Northwest China. Open Geosci. 2022, 14, 1562–1576. [Google Scholar] [CrossRef]
- Chi, H.; Wu, Y.; Zheng, H.; Zhang, B.; Sun, Z.; Yan, J.; Ren, Y.; Guo, L. Spatial Patterns of Climate Change and Associated Climate Hazards in Northwest China. Sci. Rep. 2023, 13, 10418. [Google Scholar] [CrossRef] [PubMed]
- Jiao, A.; Wang, W.; Ling, H.; Deng, X.; Yan, J.; Chen, F. Effect Evaluation of Ecological Water Conveyance in Tarim River Basin, China. Front. Environ. Sci. 2022, 10, 1019695. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The Measurement of Diversity in Different Types of Biological Collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Margalef, R. Diversidad de Especies En Las Comunidades Naturales. Public. Inst. Biol. Appl. 1951, 9, 5–27. [Google Scholar]
- Jin, Y.; Qian, H.V. PhyloMaker: An R Package That Can Generate Very Large Phylogenies for Vascular Plants. Ecography 2019, 42, 1353–1359. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation Evaluation and Phylogenetic Diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Chen, B.; Lan, J.; Xie, Z.; Li, Y.; Li, J.; Li, M.; Wei, C.; Xing, C.; Liu, J.; He, Z. Taxonomic and Phylogenetic Diversity of Plants in a Castanopsis Kawakamii Natural Forest. Biodivers. Sci. 2021, 29, 439–448. [Google Scholar] [CrossRef]
- Marcoulides, K.M.; Raykov, T. Evaluation of Variance Inflation Factors in Regression Models Using Latent Variable Modeling Methods. Educ. Psychol. Meas. 2018, 79, 874–882. [Google Scholar] [CrossRef] [PubMed]
Cluster | Mean of NRI/NTI | Standard Deviation | t | p | |
---|---|---|---|---|---|
NRI | Group 1 | −0.8908 | 0.5747 | −5.589 | 0.000 |
Group 2 | −0.5503 | 0.5690 | −5.639 | 0.000 | |
Group 3 | −1.2270 | 0.2686 | −9.138 | 0.003 | |
Group 4 | 0.2355 | 2.0923 | 0.298 | 0.776 | |
NTI | Group 1 | 0.2874 | 0.8420 | 1.231 | 0.242 |
Group 2 | −0.4505 | 0.9606 | −2.735 | 0.010 | |
Group 3 | −1.6500 | 1.4278 | −2.311 | 0.104 | |
Group 4 | −0.8541 | 1.6748 | −1.349 | 0.226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Wang, J.; Liu, H.; Zhai, J.; Li, Z. Community Assembly Mechanisms of Populus euphratica in Northwest China and Their Relationship with Environmental Factors. Plants 2024, 13, 3283. https://doi.org/10.3390/plants13233283
Zhu L, Wang J, Liu H, Zhai J, Li Z. Community Assembly Mechanisms of Populus euphratica in Northwest China and Their Relationship with Environmental Factors. Plants. 2024; 13(23):3283. https://doi.org/10.3390/plants13233283
Chicago/Turabian StyleZhu, Lijun, Jie Wang, Houji Liu, Juntuan Zhai, and Zhijun Li. 2024. "Community Assembly Mechanisms of Populus euphratica in Northwest China and Their Relationship with Environmental Factors" Plants 13, no. 23: 3283. https://doi.org/10.3390/plants13233283
APA StyleZhu, L., Wang, J., Liu, H., Zhai, J., & Li, Z. (2024). Community Assembly Mechanisms of Populus euphratica in Northwest China and Their Relationship with Environmental Factors. Plants, 13(23), 3283. https://doi.org/10.3390/plants13233283