Research Progress and Hotspots Analysis of Apoplastic Barriers in the Roots of Plants Based on Bibliometrics from 2003 to 2023
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Sources
2.2. Analysis Methods
3. Results and Discussion
3.1. Bibliometric and Cooperation Network Analysis
3.2. Highly Cited Publications
3.3. Research Directions
3.4. Research Hotspots
4. Conclusions and Outlook
- (1)
- Physiological functions of apoplastic barriers in plant roots. CS and SL are the primary regulators of substance uptake and transport in the apoplastic pathway. Current research on the function of the apoplastic barriers has focused on ionic and water stresses, especially Na+ and Cd2+. However, the effects of organic pollutants, such as microplastics, nanoplastics, and pesticides, have been neglected. These environmental pollutants negatively affect plant growth and may cause harm to humans throughout the food chain. Future studies should further investigate the role of apoplastic barriers in blocking the transport of harmful substances under complex stresses and the effects of these stresses on the formation of apoplastic barriers.
- (2)
- Differences in the formation of apoplastic barriers with different root systems. Most of the current research on apoplastic barrier formation has focused on primary and seminal roots, especially root tips, while apoplastic barriers in lateral roots have been largely ignored. The relationship between root structure and function has significant variations due to the differences in root structure and the absorption and transport capacity of roots at different root levels. Moreover, the stem nodes also give rise to root systems for plants with rhizomes or stolons. Whether differences exist in the development of apoplastic barriers between root systems at different locations in the plant remains unexplored. In summary, we should gain a more in-depth understanding of the differences in apoplastic barriers formed by the root system at different levels and locations to fully understand the plasticity of plant apoplastic barriers.
- (3)
- Methods to promote apoplastic barrier formation. Exogenously added plant growth regulators (e.g., nano-silver, activated carbon, and novel phytohormones) have significant potential to improve plant productivity. A large number of studies have demonstrated the beneficial effects of these growth regulators on plants. However, little is known about their effects on apoplastic barriers. Cerium oxide nanoparticles retarded the formation of apoplastic barriers in the root system of Brassica napus, enabling the transport of more Na+ to the aboveground parts and reducing Na+ accumulation in the roots [56]. Rhizosphere microorganisms can promote the formation of apoplastic barriers. Exploring the role of different exogenous additives and rhizosphere microorganisms can provide methodological and theoretical support for improving crop resistance and varieties in agriculture.
- (4)
- Application of molecular biology techniques. The study of apoplastic barriers has entered an entirely new phase with the development of molecular biology techniques such as genomics (macrogenomics, transcriptomics, proteomics, and metabolomics) and transgenics. Molecular biological techniques enable the exploration of critical genes and proteins regulating apoplastic barrier formation. On the contrary, the overexpression of related genes through transgenic technology can improve stress resistance and the quality of crops. The study of apoplastic barriers will inevitably use the latest research techniques to explore the intricate molecular mechanisms governing the developmental patterns of apoplastic barriers, as well as their intricate relationships with plant growth and resistance to stresses.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramakrishna, P.; Barberon, M. Polarized Transport across Root Epithelia. Curr. Opin. Plant. Biol. 2019, 52, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Barberon, M. The endodermis as a checkpoint for nutrients. New Phytol. 2017, 213, 1604–1610. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Feng, T.; Liu, C.B.; Huang, H.D.; Wang, Y.L.; Fu, X.J.; Han, M.L.; Zhang, X.H.; Huang, X.; Wu, J.C.; et al. The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. Nat. Plants 2023, 9, 1968–1977. [Google Scholar] [CrossRef] [PubMed]
- Graça, J. Suberin: The biopolyester at the frontier of plants. Front. Chem. 2015, 3, 11. [Google Scholar] [CrossRef]
- Naseer, S.; Lee, Y.; Lapierre, C.; Franke, R.; Nawrath, C.; Geldner, N. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc. Natl. Acad. Sci. USA 2012, 109, 10101–10106. [Google Scholar] [CrossRef]
- Man, Y.; Zhao, Y.Y.; Ye, R.; Lin, J.X.; Jing, Y.P. In vivo cytological and chemical analysis of Casparian strips using stimulated Raman scattering microscopy. J. Plant Physiol. 2018, 220, 136–144. [Google Scholar] [CrossRef]
- Song, C.W.; Shen, W.W.; Du, L.; Wen, J.L.; Lin, J.X.; Li, R.L. Development and chemical characterization of Casparian strips in the roots of Chinese fir (Cunninghamia lanceolata). Trees-Struct. Funct. 2019, 33, 827–836. [Google Scholar] [CrossRef]
- Reyt, G.; Ramakrishna, P.; Salas-González, I.; Fujita, S.; Love, A.; Tiemessen, D.; Lapierre, C.; Morreel, K.; Calvo-Polanco, M.; Flis, P.; et al. Two chemically distinct root lignin barriers control solute and water balance. Nat. Commun. 2021, 12, 15. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Zhou, H.; Shao, L.L.; Wang, H.R.; Zhang, Y.B.; Zhu, T.; Ma, L.T.; Ding, Q.; Ma, L.J. Root characteristics critical for cadmium tolerance and reduced accumulation in wheat (Triticum aestivum L.). J. Environ. Manag. 2022, 305, 11. [Google Scholar] [CrossRef]
- Tao, Q.; Jupa, R.; Luo, J.P.; Lux, A.; Kovac, J.; Wen, Y.; Zhou, Y.M.; Jan, J.; Liang, Y.C.; Li, T.Q. The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii. J. Exp. Bot. 2017, 68, 739–751. [Google Scholar] [CrossRef]
- Krishnamurthy, P.; Ranathunge, K.; Franke, R.; Prakash, H.S.; Schreiber, L.; Mathew, M.K. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 2009, 230, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Liu, R.N.; Flowers, T.J.; Song, J. Casparian bands and suberin lamellae: Key targets for breeding salt tolerant crops? Environ. Exp. Bot. 2021, 191, 7. [Google Scholar] [CrossRef]
- Ogorek, L.L.P.; Jiménez, J.D.; Visser, E.J.W.; Takahashi, H.; Nakazono, M.; Shabala, S.; Pedersen, O. Outer apoplastic barriers in roots: Prospects for abiotic stress tolerance. Funct. Plant Biol. 2024, 51, 11. [Google Scholar] [CrossRef]
- Uddin, N.; Li, X.; Ullah, M.W.; Sethupathy, S.; Ma, K.Y.; Zahoor; Elboughdiri, N.; Khan, K.A.; Zhu, D.C. Lignin developmental patterns and Casparian strip as apoplastic barriers: A review. Int. J. Biol. Macromol. 2024, 260, 15. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.L.; Liu, T.; Wang, Z.; Chen, X.P. Plant root suberin: A layer of defence against biotic and abiotic stresses. Front. Plant Sci. 2022, 13, 6. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Bai, J.H.; Zhang, L.; Liu, H.Z.; Wang, W.; Liu, Z.; Zhang, G.L. Advances in studies on the plant rhizosphere microorganisms in wetlands: A visualization analysis based on CiteSpace. Chemosphere 2023, 317, 9. [Google Scholar] [CrossRef]
- Chen, C.M. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.B.; Yang, Y.S.; Li, S.; Wang, T.X.; Oleksak, P.; Chrienova, Z.; Wu, Q.H.; Nepovimova, E.; Zhang, X.J.; et al. Phytoremediation of heavy metal pollution: Hotspots and future prospects. Ecotoxicol. Environ. Saf. 2022, 234, 9. [Google Scholar] [CrossRef]
- Woolston, C. Scientists count the career costs of COVID. Nature 2021, 599, 331–334. [Google Scholar] [CrossRef]
- Zhang, B.L.; Xin, B.N.; Sun, X.Q.; Chao, D.; Zheng, H.W.; Peng, L.Y.; Chen, X.X.; Zhang, L.; Yu, J.Y.; Ma, D.; et al. Small peptide signaling via OsCIF1/2 mediates Casparian strip formation at the root endodermal and nonendodermal cell layers in rice. Plant Cell 2024, 36, 383–403. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.S.; Xue, R.P.; Liu, M.Y.; Wang, L.Q.; Zhang, W. Research progress and hotspot analysis of rhizosphere microorganisms based on bibliometrics from 2012 to 2021. Front. Microbiol. 2023, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- He, Y.Q.; Lan, Y.H.; Zhang, H.; Ye, S.M. Research characteristics and hotspots of the relationship between soil microorganisms and vegetation: A bibliometric analysis. Ecol. Indic. 2022, 141, 15. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Tamai, K.; Konishi, S.; Fujiwara, T.; Katsuhara, M.; Yano, M. An efflux transporter of silicon in rice. Nature 2007, 448, 209–212. [Google Scholar] [CrossRef]
- Doblas, V.G.; Smakowska-Luzan, E.; Fujita, S.; Alassimone, J.; Barberon, M.; Madalinski, M.; Belkhadir, Y.; Geldner, N. Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor. Science 2017, 355, 280–283. [Google Scholar] [CrossRef]
- Nakayama, T.; Shinohara, H.; Tanaka, M.; Baba, K.; Ogawa-Ohnishi, M.; Matsubayashi, Y. A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science 2017, 355, 284–286. [Google Scholar] [CrossRef]
- Ursache, R.; Teixeira, C.D.V.; Tendon, V.D.; Gully, K.; De Bellis, D.; Schmid-Siegert, E.; Andersen, T.G.; Shekhar, V.; Calderon, S.; Pradervand, S.; et al. GDSL-domain proteins have key roles in suberin polymerization and degradation. Nat. Plants 2021, 7, 353–364. [Google Scholar] [CrossRef]
- Kamiya, T.; Borghi, M.; Wang, P.; Danku, J.M.C.; Kalmbach, L.; Hosmani, P.S.; Naseer, S.; Fujiwara, T.; Geldner, N.; Salt, D.E. The MYB36 transcription factor orchestrates Casparian strip formation. Proc. Natl. Acad. Sci. USA 2015, 112, 10533–10538. [Google Scholar] [CrossRef]
- Shukla, V.; Han, J.P.; Cléard, F.; Lefebvre-Legendre, L.; Gully, K.; Flis, P.; Berhin, A.; Andersen, T.G.; Salt, D.E.; Nawrath, C.; et al. Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors. Proc. Natl. Acad. Sci. USA. 2021, 118, 11. [Google Scholar] [CrossRef]
- Byrt, C.S.; Munns, R.; Burton, R.A.; Gilliham, M.; Wege, S. Root cell wall solutions for crop plants in saline soils. Plant Sci. 2018, 269, 47–55. [Google Scholar] [CrossRef]
- Pedersen, O.; Sauter, M.; Colmer, T.D.; Nakazono, M. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytol. 2021, 229, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Plett, D.C.; Ranathunge, K.; Melino, V.J.; Kuya, N.; Uga, Y.; Kronzucker, H.J. The intersection of nitrogen nutrition and water use in plants: New paths toward improved crop productivity. J. Exp. Bot. 2020, 71, 4452–4468. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Wei, X.C.; Yang, Z.; Yuan, F.; Han, G.L.; Guo, J.R.; Wang, B.S. SbCASP-LP1C1 improves salt exclusion by enhancing the root apoplastic barrier. Plant Mol. Biol. 2023, 111, 73–88. [Google Scholar] [CrossRef]
- Tao, Q.; Jupa, R.; Liul, Y.K.; Luo, J.P.; Li, J.X.; Kovac, J.; Li, B.; Li, Q.Q.; Wu, K.R.; Liang, Y.C.; et al. Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii. Plant Cell Environ. 2019, 42, 1425–1440. [Google Scholar] [CrossRef]
- Liu, X.; Wang, P.; An, Y.P.; Wang, C.M.; Hao, Y.B.; Zhou, Y.; Zhou, Q.P.; Wang, P. Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass Elymus sibiricus. Front. Plant Sci. 2022, 13, 18. [Google Scholar] [CrossRef]
- Wei, X.C.; Yang, Z.; Han, G.L.; Zhao, X.; Yin, S.S.; Yuan, F.; Wang, B.S. The developmental dynamics of the sweet sorghum root transcriptome elucidate the differentiation of apoplastic barriers. Plant Signal. Behav. 2020, 15, 14. [Google Scholar] [CrossRef]
- Naidoo, G.; Naidoo, K. Ultrastructural effects of polycyclic aromatic hydrocarbons in the mangroves Avicennia marina and Rhizophora mucronata. Flora 2017, 235, 1–9. [Google Scholar] [CrossRef]
- Ursache, R.; Andersen, T.G.; Marhavy, P.; Geldner, N. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J. 2018, 93, 399–412. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cao, Y.B.; Liang, X.Y.; Zhuang, J.H.; Wang, X.F.; Qin, F.; Jiang, C.F. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat. Commun. 2022, 13, 14. [Google Scholar] [CrossRef]
- Chen, A.L.; Liu, T.; Deng, Y.; Xiao, R.; Zhang, T.; Wang, Y.; Yang, Y.H.; Lakshmanan, P.; Shi, X.J.; Zhang, F.S.; et al. Nitrate_dependent suberization regulates cadmium uptake and accumulation in maize. Sci. Total Environ. 2023, 878, 10. [Google Scholar] [CrossRef]
- Kreszies, T.; Shellakkutti, N.; Osthoff, A.; Yu, P.; Baldauf, J.A.; Zeisler-Diehl, V.V.; Ranathunge, K.; Hochholdinger, F.; Schreiber, L. Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: Analysis of chemical, transcriptomic and physiological responses. New Phytol. 2019, 221, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Yin, L.Y.; Guo, Y.B.; Han, T.Y.; Wang, Y.J.; Liu, G.C.; Maqbool, F.; Xu, L.N.; Zhao, J. Insight into the absorption and migration of polystyrene nanoplastics in Eichhornia crassipes and related photosynthetic responses. Sci. Total Environ. 2023, 892, 8. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.; Li, M.; Xu, Q.; Kovác, J.; Yuan, S.; Li, B.; Li, Q.Q.; Huang, R.; Gao, X.S.; Wang, C.Q. Radial transport difference mediated by root endodermal barriers contributes to differential cadmium accumulation between japonica and indica subspecies of rice (Oryza sativa L.). J. Hazard. Mater. 2022, 425, 12. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Ye, G.; Shen, Z.Y.; Li, J.J.; Hao, D.L.; Kong, W.Y.; Wang, H.R.; Zhang, L.; Chen, J.B.; Guo, H.L. Na plus and K plus homeostasis in different organs of contrasting Zoysia japonica accessions under salt stress. Environ. Exp. Bot. 2023, 214, 12. [Google Scholar] [CrossRef]
- Liu, Y.K.; Tao, Q.; Guo, X.Y.; Luo, J.P.; Li, J.X.; Liang, Y.C.; Li, T.Q. Low calcium-induced delay in development of root apoplastic barriers enhances Cd uptake and accumulation in Sedum alfredi. Sci. Total Environ. 2020, 723, 10. [Google Scholar] [CrossRef]
- Yang, Y.J.; Guo, Y.H.; Zhong, J.; Zhang, T.X.; Li, D.W.; Ba, T.T.; Xu, T.; Chang, L.N.; Zhang, Q.X.; Sun, M. Root Physiological Traits and Transcriptome Analyses Reveal that Root Zone Water Retention Confers Drought Tolerance to Opisthopappus taihangensis. Sci. Rep. 2020, 10, 14. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Chen, H.; Du, Q.; Wang, Z.; Gong, X.; Sun, Q.; Li, W. Nitrogen supply affects ion homeostasis by modifying root Casparian strip formation through the miR528-LAC3 module in maize. Plant Commun. 2023, 4, 100553. [Google Scholar] [CrossRef]
- Barberon, M.; Vermeer, J.E.M.; De Bellis, D.; Wang, P.; Naseer, S.; Andersen, T.G.; Humbel, B.M.; Nawrath, C.; Takano, J.; Salt, D.E.; et al. Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal Differentiation. Cell 2016, 164, 447–459. [Google Scholar] [CrossRef]
- Ranathunge, K.; Schreiber, L.; Bi, Y.M.; Rothstein, S.J. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta 2016, 243, 231–249. [Google Scholar] [CrossRef]
- Wang, L.Z.; Wu, K.Y.; Liu, Z.Q.; Li, Z.F.; Shen, J.; Wu, Z.H.; Liu, H.; You, L.X.; Yang, G.D.; Rensing, C.; et al. Selenite reduced uptake/translocation of cadmium via regulation of assembles and interactions of pectins, hemicelluloses, lignins, callose and Casparian strips in rice roots. J. Hazard. Mater. 2023, 448, 14. [Google Scholar] [CrossRef]
- Salas-González, I.; Reyt, G.; Flis, P.; Custódio, V.; Gopaulchan, D.; Bakhoum, N.; Dew, T.P.; Suresh, K.; Franke, R.B.; Dangl, J.L.; et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 2021, 371, eabd0695. [Google Scholar] [CrossRef] [PubMed]
- Akhtyamova, Z.; Martynenko, E.; Arkhipova, T.; Seldimirova, O.; Galin, I.; Belimov, A.; Vysotskaya, L.; Kudoyarova, G. Influence of Plant Growth-Promoting Rhizobacteria on the Formation of Apoplastic Barriers and Uptake of Water and Potassium by Wheat Plants. Microorganisms 2023, 11, 1227. [Google Scholar] [CrossRef] [PubMed]
- Quiroga, G.; Erice, G.; Aroca, R.; Chaumont, F.; Ruiz-Lozano, J. Contribution of the arbuscular mycorrhizal symbiosis to the regulation of radial root water transport in maize plants under water deficit. Environ. Exp. Bot. 2019, 167, 10. [Google Scholar] [CrossRef]
- Knipfer, T.; Danjou, M.; Vionne, C.; Fricke, W. Salt stress reduces root water uptake in barley (Hordeum vulgare L.) through modification of the transcellular transport path. Plant Cell Environ. 2021, 44, 458–475. [Google Scholar] [CrossRef] [PubMed]
- En, Y.; Yamaji, N.; Ma, J.F. Linking root morphology and anatomy with transporters for mineral element uptake in plants. Plant Soil 2023, 484, 1–12. [Google Scholar] [CrossRef]
- Rossi, L.; Zhang, W.L.; Ma, X.M. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environ. Pollut. 2017, 229, 132–138. [Google Scholar] [CrossRef]
Rank | Publication Sources | Number of Articles | Percentage (%) |
---|---|---|---|
1 | Journal of Experimental Botany | 39 | 6.07 |
2 | Frontiers in plant science | 32 | 4.98 |
3 | Plant physiology | 31 | 4.83 |
4 | New phytologist | 23 | 3.58 |
5 | Annals of botany | 22 | 3.43 |
6 | Plant, Cell & Environment | 15 | 2.34 |
6 | Plant Journal | 15 | 2.34 |
8 | Proceedings of the National Academy of Sciences of the United States of America | 14 | 2.18 |
9 | Plant and soi | 13 | 2.02 |
10 | Environmental and Experimental Botany | 11 | 1.71 |
10 | Plant cell | 11 | 1.71 |
Rank | Country | Number of Articles | Percentage (%) |
---|---|---|---|
1 | China | 178 | 27.73 |
2 | Germany | 102 | 15.89 |
3 | The United States | 96 | 14.95 |
4 | Japan | 84 | 13.08 |
5 | Switzerland | 58 | 9.03 |
6 | Australia | 47 | 7.32 |
7 | France | 41 | 6.39 |
8 | Slovakia | 37 | 5.77 |
9 | England | 35 | 5.45 |
10 | Canada | 32 | 4.98 |
Rank | Institution | Number of Articles | Percentage (%) |
---|---|---|---|
1 | University of Bonn | 41 | 6.39 |
2 | Chinese Academy of Sciences | 38 | 5.92 |
3 | University of Lausanne | 36 | 5.61 |
4 | Comenius University in Bratislava | 30 | 4.67 |
5 | National Research Institute for Agriculture, Food and Environment | 27 | 4.21 |
6 | University of Western Australia | 25 | 3.89 |
7 | Centre National de la Recherche Scientifique | 24 | 3.74 |
8 | Slovak Academy of Sciences | 18 | 2.80 |
8 | University of Nottingham | 18 | 2.80 |
10 | Nagoya University | 15 | 2.34 |
Rank | Author | Number of Articles | Percentage (%) |
---|---|---|---|
1 | Niko Geldner | 39 | 6.07 |
2 | Lukas Schreiber | 23 | 3.58 |
3 | Marie Barberon | 17 | 2.65 |
4 | Kosala Ranathunge | 15 | 2.34 |
4 | David E. Salt | 15 | 2.34 |
6 | Alexander Lux | 11 | 1.71 |
7 | Chaodong Yang | 9 | 1.40 |
8 | Carol A. Peterson | 8 | 1.25 |
8 | Mikio Nakazono | 8 | 1.25 |
8 | Rochus Benni Franke | 8 | 1.25 |
8 | Hao Cheng | 8 | 1.25 |
Rank | Publication Sources | Number of Publication | Percentage (%) |
---|---|---|---|
1 | Plant cell | 4 | 14.81 |
2 | Proceedings of the National Academy of Sciences of the United States of America | 3 | 11.11 |
2 | New phytologist | 3 | 11.11 |
3 | Science | 2 | 7.40 |
3 | Journal of Experimental Botany | 2 | 7.40 |
3 | Annual review of phytopathology | 2 | 7.40 |
4 | Nature Plants | 1 | 3.70 |
4 | Nature Communications | 1 | 3.70 |
4 | Plant Science | 1 | 3.70 |
4 | Phytochemistry | 1 | 3.70 |
4 | Plants-basel | 1 | 3.70 |
4 | Nanotoxicology | 1 | 3.70 |
4 | Current Opinion in Plant Biology | 1 | 3.70 |
4 | Plant Cell Reports | 1 | 3.70 |
4 | Plant Physiology | 1 | 3.70 |
4 | Frontiers in plant science | 1 | 3.70 |
4 | Plant Communications | 1 | 3.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, C.; Li, R.; Tan, Z.; Zhang, J.; Sun, Y.; Han, J.; Deng, X.; Wang, F.; Yang, Q.; Wang, J.; et al. Research Progress and Hotspots Analysis of Apoplastic Barriers in the Roots of Plants Based on Bibliometrics from 2003 to 2023. Plants 2024, 13, 3285. https://doi.org/10.3390/plants13233285
Qin C, Li R, Tan Z, Zhang J, Sun Y, Han J, Deng X, Wang F, Yang Q, Wang J, et al. Research Progress and Hotspots Analysis of Apoplastic Barriers in the Roots of Plants Based on Bibliometrics from 2003 to 2023. Plants. 2024; 13(23):3285. https://doi.org/10.3390/plants13233285
Chicago/Turabian StyleQin, Chongyuan, Ruoqi Li, Zhuoran Tan, Jingnan Zhang, Yuyang Sun, Jinji Han, Xiaoxia Deng, Fei Wang, Qingjie Yang, Jinghong Wang, and et al. 2024. "Research Progress and Hotspots Analysis of Apoplastic Barriers in the Roots of Plants Based on Bibliometrics from 2003 to 2023" Plants 13, no. 23: 3285. https://doi.org/10.3390/plants13233285
APA StyleQin, C., Li, R., Tan, Z., Zhang, J., Sun, Y., Han, J., Deng, X., Wang, F., Yang, Q., Wang, J., & Lin, J. (2024). Research Progress and Hotspots Analysis of Apoplastic Barriers in the Roots of Plants Based on Bibliometrics from 2003 to 2023. Plants, 13(23), 3285. https://doi.org/10.3390/plants13233285