Improved CSW-YOLO Model for Bitter Melon Phenotype Detection
Abstract
:1. Introduction
- (1)
- First, detailed shape classification and data annotation of bitter melon fruits were carried out to establish a comprehensive bitter melon image dataset.
- (2)
- On the basis of YOLOv8, the ConvNeXt V2 module was introduced to modify the backbone network, enhancing the model’s ability to capture features.
- (3)
- Added the SimAM attention mechanism, which refines features further by computing attention weights through neurons.
- (4)
- WIoUv3 was used as the bounding box loss function, improving the model’s localization performance and generalizability.
2. Materials and Methods
2.1. Data Collection and Dataset Construction
2.1.1. Data Collection
2.1.2. Dataset Construction
2.2. Improved Network Architecture
2.2.1. ConvNeXt V2 Module
2.2.2. SimAM Attention Mechanism
2.2.3. Loss Function
2.3. Evaluation Metrics
3. Experimental Setup and Results Analysis
3.1. Experimental Environment and Hyperparameter Settings
3.2. CAW-YOLO Model Testing
3.3. Ablation Study
3.4. Comparative Experiment
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.M.; Li, H.L.; Huang, Z.D.; Chen, L.; Xu, R.; Zhong, F.L. Comprehensive Evaluation of Agronomic Traits of Bitter Gourd Germplasm Resources under High Temperature Conditions in Summer. J. South. Agric. 2020, 51, 2488–2497. [Google Scholar]
- Muronga, M.; Quispe, C.; Tshikhudo, P.P.; Msagati, T.A.M.; Mudau, F.N.; Martorell, M.; Salehi, B.; Razis, A.F.A.; Sunusi, U.; Kamal, R.M.; et al. Three selected edible crops of the genus Momordica as potential sources of phytochemicals: Biochemical, nutritional, and medicinal values. J. Front. Pharmacol. 2021, 12, 625546. [Google Scholar] [CrossRef]
- Gayathry, K.S.; John, J.A. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. J. Food Prod. Process. Nutr. 2022, 4, 10. [Google Scholar] [CrossRef]
- Xue, S.D.; Xie, D.S.; Wan, X.T.; Lu, S.; Liu, Z.S.; Zhong, Y.J. Research progress in application of near infrared reflectance spectroscopy in vegetable quality detection. J. Guangdong Agric. Sci. 2021, 48, 142–150. [Google Scholar]
- Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. J. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision. J. Expert Syst. Appl. 2023, 211, 118573. [Google Scholar] [CrossRef]
- Gai, R.; Chen, N.; Yuan, H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model. J. Neural Comput. Appl. 2023, 35, 13895–13906. [Google Scholar] [CrossRef]
- Jia, X.Y.; Zhao, C.J.; Zhou, J.; Wang, Q.Y.; Liang, X.T.; He, X.; Huang, W.Q.; Zhang, C. Online detection of citrus surface defects using improved YOLOv7 modeling. J. Trans. Chin. Soc. Agric. Eng. 2023, 39, 145–151. [Google Scholar]
- Aich, S.; Stavness, I. Leaf counting with deep convolutional and deconvolutional networks. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 2080–2089. [Google Scholar] [CrossRef]
- Wang, S.F.; Meng, Z.L.; He, L.H.; Yang, J.F. Classification and Identification of Succulent Plants Based on WPA-SVM. J. Microcomput. Appl. 2020, 36, 29–32, 36. [Google Scholar]
- Zhao, Z.Y.; Yang, H.; Hu, Z.W.; Yu, H.P. Identification model of pests on Yuluxiang pear leaves based on TACNN. J. Comput. Eng. Appl. 2021, 57, 176–181. [Google Scholar]
- Tong, Z.; Xu, A.J. A tree segmentation method based on ResNet-UNet. J. Cent. South Univ. For. Technol. 2021, 41, 132–139. [Google Scholar]
- Lobo Torres, D.; Queiroz Feitosa, R.; Nigri Happ, P.; Cué La Rosa, L.E.; Marcato Junior, J.; Martins, J.; Olã Bressan, P.; Gonçalves, W.N.; Liesenberg, V. Applying fully convolutional architectures for semantic segmentation of a single tree species in urban environment on high resolution UAV optical imagery. J. Sens. 2020, 20, 563. [Google Scholar] [CrossRef] [PubMed]
- Song, H.B.; Wang, Y.N.; Wang, Y.F.; Lv, S.C.; Jiang, H. Camellia oleifera Fruit Detection in Natural Scene Based on YOLO v5s. J. Trans. Chin. Soc. Agric. Mach. 2022, 53, 234–242. [Google Scholar]
- Farjon, G.; Krikeb, O.; Hillel, A.B.; Alchanatis, V. Detection and counting of flowers on apple trees for better chemical thinning decisions. J. Precis. Agric. 2020, 21, 503–521. [Google Scholar] [CrossRef]
- Bai, Y.; Yu, J.; Yang, S.; Ning, J. An improved YOLO algorithm for detecting flowers and fruits on strawberry seedlings. J. Biosyst. Eng. 2024, 237, 1–12. [Google Scholar] [CrossRef]
- Sun, G.L.Y.; Zhang, J.Y.; Lian, J.B.; Ning, J.Y.; Liu, W.L.; Liu, Q.; Wang, G.Z.; Lu, S.Y.; Shi, P.H.; Lou, X.W. Research on Identification of Succulents Based on Lightweight Convolutional Neural Network. J. Chin. J. Sens. Actuators 2023, 36, 1916–1927. [Google Scholar]
- Lu, J.; Chen, P.; Yu, C.; Lan, Y.; Yu, L.; Yang, R.; Niu, H.; Chang, H.; Yuan, J.; Wang, L. Lightweight green citrus fruit detection method for practical environmental applications. J. Comput. Electron. Agric. 2023, 215, 108205. [Google Scholar] [CrossRef]
- Solimani, F.; Cardellicchio, A.; Dimauro, G.; Petrozza, A.; Summerer, S.; Cellini, F.; Renò, V. Optimizing tomato plant phenotyping detection: Boosting YOLOv8 architecture to tackle data complexity. J. Comput. Electron. Agric. 2024, 218, 108728. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Yang, G. Small unopened cotton boll counting by detection with MRF-YOLO in the wild. J. Comput. Electron. Agric. 2023, 204, 107576. [Google Scholar] [CrossRef]
- Niu, W.; Lei, X.; Li, H.; Wu, H.; Hu, F.; Wen, X.; Zheng, D.; Song, H. YOLOv8-ECFS: A lightweight model for weed species detection in soybean fields. J. Crop Prot. 2024, 184, 106847. [Google Scholar] [CrossRef]
- Choudhary, H.; Padmanabha, K.; Jat, G.S.; Behera, T.K. Challenges of Traditional Breeding in Watermelon. In The Watermelon Genome; Springer International Publishing: Cham, Switzerland, 2023; pp. 85–130. [Google Scholar]
- Yang, S.; Xiao, W.; Zhang, M.; Guo, S.; Zhao, J.; Shen, F. Image data augmentation for deep learning: A survey. arXiv 2022, arXiv:2204.08610. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Yi, W.; Zhang, X.; Dai, S.; Kuzmin, S.; Gerasimov, I.; Cheng, X. MV-SSRP: Machine Vision Approach for Stress–Strain Measurement in Rice Plants. J. Agron. 2024, 14, 1443. [Google Scholar] [CrossRef]
- Wagner, S.; Angerschmid, A.; Saranti, A.; Gollob, C.; Ritter, T.; Krassnitzer, R.; Tockner, A.; Witzmann, S.; Holzinger, A.; Stampfer, K.; et al. Automatic detection of color markings and numbers on trees in point clouds from Personal Laser Scanning (PLS) and Terrestrial Laser Scanning (TLS). J. Ecol. Inform. 2024, 82, 102709. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhou, H.Q.; Yan, J.X. Advances in computational optics based on deep learning. J. Chin. J. Lasers 2021, 48, 1918004. [Google Scholar]
- Xia, K.; Hu, J.; Wang, Z.; Wang, Z.J.; Huang, Z.; Liang, Z. Vision-Based Algorithm for Precise Traffic Sign and Lane Line Matching in Multi-Lane Scenarios. J. Electron. 2024, 13, 2773. [Google Scholar] [CrossRef]
- Zhao, J.D.; Zhen, G.Y.; Chu, C.Q. Unmanned Aerial Vehicle Image Target Detection Algorithm BasedonYOLOv8. J. Comput. Eng. 2024, 50, 113–120. [Google Scholar] [CrossRef]
- Woo, S.; Debnath, S.; Hu, R.; Chen, X.; Liu, Z.; Kweon, I.S.; Xie, S. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canda, 18–22 June 2023; pp. 16133–16142. [Google Scholar]
- Chen, Y.; Xu, H.; Chang, P.; Huang, Y.; Zhong, F.; Jia, Q.; Chen, L.; Zhong, H.; Liu, S. CES-YOLOv8: Strawberry Maturity Detection Based on the Improved YOLOv8. J. Agron. 2024, 14, 1353. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Zhang, F.; Wei, Z.; Huang, Y.; Chen, C.; Zheng, Y.; Wei, Q.; Sun, H.; Chen, F. Research on detection of potato varieties based on spectral imaging analytical algorithm. J. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 311, 123966. [Google Scholar] [CrossRef]
- Lei, K.; Tan, Z.; Wang, X.; Zhou, Z. Semi-Symmetrical, Fully Convolutional Masked Autoencoder for TBM Muck Image Segmentation. J. Symmetry 2024, 16, 222. [Google Scholar] [CrossRef]
- Pacal, I. MaxCerVixT: A novel lightweight vision transformer-based Approach for precise cervical cancer detection. J. Knowl.-Based Syst. 2024, 289, 111482. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, Y.; Lin, B.; Li, P. Research on marine flexible biological target detection based on improved YOLOv8 algorithm. J. PeerJ Comput. Sci. 2024, 10, e2271. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, H.; Liu, Z.; Cai, K.; Liu, Y.; Zuo, X. MHLDet: A Multi-Scale and High-Precision Lightweight Object Detector Based on Large Receptive Field and Attention Mechanism for Remote Sensing Images. J. Remote Sens. 2023, 15, 4625. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, R.Y.; Li, L.; Xie, X. Simam: A simple, parameter-free attention module for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 11863–11874. [Google Scholar]
- Liu, Q.; Huang, W.; Duan, X.; Wei, J.; Hu, T.; Yu, J.; Huang, J. DSW-YOLOv8n: A new underwater target detection algorithm based on improved YOLOv8n. J. Electron. 2023, 12, 3892. [Google Scholar] [CrossRef]
- Li, X.; Liang, Y. Fire-RPG: An Urban Fire Detection Network Providing Warnings in Advance. J. Fire 2024, 7, 214. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism. arXiv 2023, arXiv:2301.10051. [Google Scholar]
- Wang, S.; Yao, L.; Xu, L.; Hu, D.; Zhou, J.; Chen, Y. An Improved YOLOv7-Tiny Method for the Segmentation of Images of Vegetable Fields. J. Agric. 2024, 14, 856. [Google Scholar] [CrossRef]
- Niu, S.; Xu, X.; Liang, A.; Yun, Y.; Li, L.; Hao, F. Research on a Lightweight Method for Maize Seed Quality Detection Based on Improved YOLOv8. J. IEEE Access 2024, 12, 32927. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.K.; Lin, Z.Y.; Zhou, Z.X.; Xu, S. Steel Surface Defect Detection Algorithm Based on Improved YOLOv8n[J/OL]. Electronic Measurement Technology. pp. 1–9. Available online: http://kns.cnki.net/kcms/detail/11.2175.TN.20240927.1434.158.html (accessed on 22 October 2024).
- Zhang, C.Y.; Zhang, S.; Hu, Y.M.; Zhang, Y.; Xiong, R.Y. Dynamic Focusing Multidimensional Attention Remote Sensing Weak Target Detection[J/OL]. Radio Communications Technology. pp. 1–17. Available online: http://kns.cnki.net/kcms/detail/13.1099.tn.20240822.1338.002.html (accessed on 22 October 2024).
- Kumar, S.; Abdelhamid, A.A.; Tarek, Z. Visualizing the Unseen: Exploring GRAD-CAM for Interpreting Convolutional Image Classifiers. J. Full Length Artic. 2023, 4, 34–42. [Google Scholar] [CrossRef]
- Hussain, T.; Shouno, H. Explainable Deep Learning Approach for Multi-Class Brain Magnetic Resonance Imaging Tumor Classification and Localization Using Gradient-Weighted Class Activation Mapping. J. Inf. 2023, 14, 642. [Google Scholar] [CrossRef]
- Zuo, Z.; Gao, S.; Peng, H.; Xue, Y.; Hao, L.; Ma, G.; Mao, H. Lightweight Detection of Broccoli Heads in Complex Field Environments Based on LBDC-YOLO. J. Agron. 2024, 14, 2359. [Google Scholar] [CrossRef]
- Koh, J.C.O.; Spangenberg, G.; Kant, S. Automated machine learning for high-throughput image-based plant phenotyping. J. Remote Sens. 2021, 13, 858. [Google Scholar] [CrossRef]
- Tripodi, P.; Nicastro, N.; Pane, C.; Cammarano, D. Digital applications and artificial intelligence in agriculture toward next-generation plant phenotyping. J. Crop Pasture Sci. 2022, 74. [Google Scholar] [CrossRef]
- Pieruschka, R.; Schurr, U. Plant phenotyping: Past, present, and future. J. Plant Phenomics 2019, 2019, 7507131. [Google Scholar] [CrossRef]
- Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. J. Inf. Process. Agric. 2020, 7, 1–19. [Google Scholar] [CrossRef]
ID | Labels Name | Descriptions | Sample Size |
---|---|---|---|
1 | R_Top_P_Tail | The top is rounded, the tail is pointed | 264 |
2 | R_Top_R_Tail | The top is rounded, the tail is blunt | 241 |
3 | R_Top_B_Tail | The top is rounded, the tail is round | 482 |
4 | R_Top_F_Tail | The top is rounded, the tail is flat | 263 |
5 | F_Top_P_Tail | The top is flat, the tail is pointed | 224 |
6 | F_Top_R_Tail | The top is flat, the tail is blunt | 241 |
7 | F_Top_B_Tail | The top is flat, the tail is round | 411 |
8 | F_Top_F_Tail | The top is flat, the tail is flat | 221 |
9 | P_Top_P_Tail | The top is pointed, the tail is pointed | 212 |
10 | P_Top_R_Tai | The top is pointed, the tail is blunt | 249 |
11 | P_Top_B_Tail | The top is pointed, the tail is round | 285 |
12 | P_Top_F_Tail | The top is pointed, the tail is flat | 127 |
Models | Precision | Recall | mAP50 | F1 |
---|---|---|---|---|
YOLOv8n | 86.10% | 80.20% | 85.60% | 83.05% |
yolov9 | 78.5% | 62.9% | 69.4% | 69.84% |
yolov10n | 79.1% | 65.8% | 71.5% | 71.84% |
yolov11n | 65.7% | 64.2% | 70.2% | 64.94% |
ID | Backbone | Attention | Loss | Precision | Recall | mAP50 | F1_Score |
---|---|---|---|---|---|---|---|
1 | - | - | - | 86.1% | 80.2% | 85.6% | 83.05% |
2 | - | - | wiouv3 | 88.7% | 85.5% | 93.8% | 87.07% |
3 | - | SimAM | - | 89.9% | 77.3% | 93.6% | 83.13% |
4 | ConvNeXt V2 | - | - | 93.5% | 84.2% | 97.2% | 88.61% |
5 | - | SimAM | wiouv3 | 89.7% | 82.2% | 91.0% | 85.79% |
6 | ConvNeXt V2 | - | wiouv3 | 93.8% | 92.1% | 97.1% | 92.94% |
7 | ConvNeXt V2 | SimAM | - | 94.0% | 83.3% | 96.3% | 88.33% |
8 | ConvNeXt V2 | SimAM | wiouv3 | 94.6% | 80.6% | 96.7% | 87.04% |
Models | Precision | Recall | mAP50 | F1 | FPS | Model Size/M |
---|---|---|---|---|---|---|
YOLOv7 | 88.8% | 68.3% | 80.9% | 77.21% | 72.57 | 71.4 |
YOLOv7-Tiny | 49.6% | 67.1% | 56.2% | 57.04% | 82.30 | 11.7 |
YOLOv5 | 75.7% | 88.7% | 87.7% | 81.69% | 217.39 | 3.76 |
YOLOv5s | 87.1% | 65.5% | 75.7% | 74.77% | 217.39 | 13.8 |
YOLOv3-Tiny | 78.6% | 64.0% | 78.8% | 70.55% | 357.14 | 17.5 |
Faster-RCNN | 75.8% | 87.6% | 91.3% | 81.30% | 18.53 | 108 |
YOLOv8n | 86.1% | 80.2% | 85.6% | 83.05% | 144.93 | 5.96 |
YOLOv9m | 74.7% | 77.8% | 80.7% | 76.21% | 122.26 | 32.4 |
YOLOv10s | 60.9% | 80.0% | 75.2% | 69.16% | 258.19 | 15.8 |
YOLOv11s | 75.5% | 62.5% | 79.9% | 68.39% | 255.31 | 18.3 |
CSW-YOLO | 94.6% | 80.6% | 96.7% | 87.04% | 135.14 | 20.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Zhang, X.; Shen, W.; Lin, Z.; Liu, S.; Jia, Q.; Li, H.; Zheng, J.; Zhong, F. Improved CSW-YOLO Model for Bitter Melon Phenotype Detection. Plants 2024, 13, 3329. https://doi.org/10.3390/plants13233329
Xu H, Zhang X, Shen W, Lin Z, Liu S, Jia Q, Li H, Zheng J, Zhong F. Improved CSW-YOLO Model for Bitter Melon Phenotype Detection. Plants. 2024; 13(23):3329. https://doi.org/10.3390/plants13233329
Chicago/Turabian StyleXu, Haobin, Xianhua Zhang, Weilin Shen, Zhiqiang Lin, Shuang Liu, Qi Jia, Honglong Li, Jingyuan Zheng, and Fenglin Zhong. 2024. "Improved CSW-YOLO Model for Bitter Melon Phenotype Detection" Plants 13, no. 23: 3329. https://doi.org/10.3390/plants13233329
APA StyleXu, H., Zhang, X., Shen, W., Lin, Z., Liu, S., Jia, Q., Li, H., Zheng, J., & Zhong, F. (2024). Improved CSW-YOLO Model for Bitter Melon Phenotype Detection. Plants, 13(23), 3329. https://doi.org/10.3390/plants13233329