The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Impact of Zn on the Water-Soluble Fraction of Nutrients
2.2. The Accumulation of Zn in Spinach Biomass and Its Effect on Yield
2.3. The Effect of Zn on Nutrient Composition in Spinach Aboveground Biomass
2.4. The Effect of Zn on Chlorophyll Fluorescence and Photosynthesis
2.5. The Effect of Zn on Oxalic Acid
2.6. The Impact of Zn in Spinach Aboveground Biomass on Human Health
3. Materials and Methods
3.1. Pot Experiment
3.2. Nutrients Determination
3.3. Chlorophyll Fluorescence and Photosynthetic Parameters Determination
3.4. Analyses of Infrared Spectra of Oxalic Acid
3.5. Factors Calculation
3.6. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamzah Saleem, M.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef] [PubMed]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Natasha, N.; Shahid, M.; Bibi, I.; Iqbal, J.; Khalid, S.; Murtaza, B.; Bakhat, H.F.; Farooq, A.B.U.; Amjad, M.; Hammad, H.M.; et al. Zinc in soil-plant-human system: A data-analysis review. Sci. Total Environ. 2022, 808, 152024. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Garg, N. Zinc toxicity in plants: A review. Planta 2021, 253, 129. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Kaur, H.; Kaur, H.; Srivastava, S. The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regul. 2023, 100, 219–236. [Google Scholar] [CrossRef]
- Mapodzeke, J.M.; Adil, M.F.; Sehar, S.; Karim, M.F.; Saddique, M.A.B.; Ouyang, Y.; Shamsi, I.H. Myriad of physio-genetic factors determining the fate of plant under zinc nutrient management. Environ. Exp. Bot. 2021, 189, 104559. [Google Scholar] [CrossRef]
- Alloway, B. Zinc in Soils and Crop Nutrition, 2nd ed.; International Zinc Association and International Fertilizer Industry Association: Paris, France, 2008. [Google Scholar]
- Ding, J.; Liu, L.; Wang, C.; Shi, L.; Xu, F.; Cai, H. High level of zinc triggers phosphorus starvation by inhibiting root-to-shoot translocation and preferential distribution of phosphorus in rice plants. Environ. Pollut. 2021, 277, 116778. [Google Scholar] [CrossRef]
- Andresen, E.; Peiter, E.; Küpper, H. Trace metal metabolism in plants. J. Exp. Bot. 2018, 69, 909–954. [Google Scholar] [CrossRef]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Wei, C.; Jiao, Q.; Agathokleous, E.; Liu, H.; Li, G.; Zhang, J.; Fahad, S.; Jiang, Y. Hormetic effects of zinc on growth and antioxidant defense system of wheat plants. Sci. Total Environ. 2022, 807, 50992. [Google Scholar] [CrossRef]
- Kaur, H.; Srivastava, S.; Goyal, N.; Walia, S. Behavior of zinc in soils and recent advances on strategies for ameliorating zinc phyto-toxicity. Environ. Exp. Bot. 2024, 220, 105676. [Google Scholar] [CrossRef]
- Alia, N.; Sardar, K.; Said, M.; Salma, K.; Sadia, A.; Sadaf, S.; Toqeer, A.; Miklas, S. Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. Int. J. Environ. Res. Public Health 2015, 12, 7400–7416. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, R.; Favas, P.J.C.; Pratas, J.; Varun, M.; Paul, M.S. Metal(loid) induced toxicity and defense mechanisms in Spinacia oleracea L.: Ecological hazard and prospects for phytoremediation. Ecotoxicol. Environ. Saf. 2019, 183, 109570. [Google Scholar] [CrossRef] [PubMed]
- Amna, S.; Qamar, S.; Naqvi, A.A.T.; Al-Huqail, A.A.; Qureshi, M.I. Role of sulfur in combating arsenic stress through upregulation of important proteins, and in-silico analysis to study the interaction between phosphate transporter (PHO1), arsenic and phosphate in spinach. Plant Physiol. Biochem. 2020, 157, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Natasha; Shahid, M.; Farooq, A.B.U.; Rabbani, F.; Khalid, S.; Dumat, C. Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere 2020, 245, 125605. [Google Scholar] [CrossRef]
- Natasha; Shahid, M.; Khalid, S.; Saleem, M. Unrevealing arsenic and lead toxicity and antioxidant response in spinach: A human health perspective. Environ. Geochem. Health 2022, 44, 487–496. [Google Scholar] [CrossRef]
- Zemanová, V.; Pavlíková, D.; Hnilička, F.; Pavlík, M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants 2021, 10, 2009. [Google Scholar] [CrossRef]
- Barben, S.A.; Hopkins, B.G.; Jolley, V.D.; Webb, B.L.; Nichols, B.A.; Buxton, E.A. Zinc, manganese and phosphorous interrelationships and their effects on iron and copper in chelator-buffered solution grown Russet Burbank potato. J. Plant Nutr. 2011, 34, 1144–1163. [Google Scholar] [CrossRef]
- Moreno-Lora, A.; Delgado, A. Factors determining Zn availability and uptake by plants in soils developed under Mediterranean climate. Geoderma 2020, 376, 114509. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Ren, H.; Wang, X.; Mi, F. Zinc toxicity response in Ceratoides arborescens and identification of CaMTP, a novel zinc transporter. Front. Plant Sci. 2022, 13, 976311. [Google Scholar] [CrossRef]
- Ajeesh Krishna, T.P.; Maharajan, T.; Victor Roch, G.; Ignacimuthu, S.; Antony Ceasar, S. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front. Plant Sci. 2020, 11, 662. [Google Scholar] [CrossRef]
- Nath, S.; Dey, S.; Kundu, R.; Paul, S. Phosphate and zinc interaction in soil and plants: A reciprocal cross-talk. Plant Growth Regul. 2024, 104, 591–615. [Google Scholar] [CrossRef]
- Fan, X.; Zhou, X.; Chen, H.; Tang, M.; Xie, X. Cross-talks between macro- and micronutrient uptake and signaling in plants. Front. Plant Sci. 2021, 12, 663477. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Baretta, D.; Becegato, V.A.; Almeida, V.D.; Paulino, A.T. Copper/zinc bioaccumulation and the effect of phytotoxicity on the growth of lettuce (Lactuca sativa L.) in non-contaminated, metal-contaminated and swine manure-enriched soils. Water Air Soil Pollut. 2017, 228, 152. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Wolf, W.M. The influence of copper and zinc on photosynthesis and phenolic levels in basil (Ocimum basilicum L.), borage (Borago officinalis L.), common nettle (Urtica dioica L.) and peppermint (Mentha piperita L.). Int. J. Mol. Sci. 2024, 25, 3612. [Google Scholar] [CrossRef]
- Mondal, S.; Hazra, G.C.; Mani, P.K. Effect of phosphorus and zinc application on zinc transformation and phyto-availability of zinc fraction in rice soil. J. Plant Nutr. 2024, 47, 3793–3805. [Google Scholar] [CrossRef]
- Boudali, G.; Ghnaya, T.; Ben-Abdallah, S.; Chalh, A.; Sebei, A.; Ouirghi, Z.; Chaffei-Haouari, C. Zincum Metallicum, a homeopathic drug, alleviates Zn-induced toxic effects and promotes plant growth and antioxidant capacity in Lepidium sativum L. Environ. Sci. Pollut. Res. 2022, 29, 33872–33884. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 5th ed.; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Qin, L.; Wang, M.; Zhao, S.; Li, S.; Lei, X.; Wang, L.; Chen, S. Effect of soil leaching on the toxicity thresholds (ECx) of Zn in soils with different properties. Ecotoxicol. Environ. Saf. 2021, 228, 112999. [Google Scholar] [CrossRef]
- Zhao, S.; Qin, L.; Wang, L.; Sun, X.Y.; Yu, L.; Wang, M.; Chen, S.B. Ecological risk thresholds for Zn in Chinese soils. Sci. Total Environ. 2022, 833, 155182. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Barman, H.; Das, S.K.; Roy, A. Zinc in soil environment for plant health and management strategy. Univers. J. Agric. Res. 2018, 6, 149–154. [Google Scholar] [CrossRef]
- Kiliç, H.E.; Tunca, H.; Sevindik, T.O.; Doğru, A. Assessment of the effects of zinc on the growth and antioxidant enzymes in Scenedesmus ellipsoideus Chodat. Oceanol. Hydrobiol. Stud. 2019, 48, 270–278. [Google Scholar] [CrossRef]
- Singh, K.; Gupta, S.; Singh, A.P. Review: Nutrient-nutrient interactions governing underground plant adaptation strategies in a heterogeneous environment. Plant Sci. 2024, 342, 112024. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, S.H.; Wang, P.F.; Hou, J.; Zhang, W.J.; Li, W.; Lin, Z.P. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 2009, 75, 1468–1476. [Google Scholar] [CrossRef] [PubMed]
- Caldelas, C.; Araus, J.L.; Febrero, A.; Bort, J. Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol. Plant. 2012, 34, 1217–1228. [Google Scholar] [CrossRef]
- Kumari, V.V.; Banerjee, P.; Verma, V.C.; Sukumaran, S.; Chandran, M.A.S.; Gopinath, K.A.; Venkatesh, G.; Yadav, S.K.; Singh, V.K.; Awasthi, N.K. Plant nutrition: An effective way to alleviate abiotic stress in agricultural crops. Int. J. Mol. Sci. 2022, 23, 8519. [Google Scholar] [CrossRef]
- Bashir, H.; Ahmad, J.; Bagheri, R.; Nauman, M.; Qureshi, M.I. Limited sulfur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress. Environ. Exp. Bot. 2013, 94, 19–32. [Google Scholar] [CrossRef]
- Xu, Q.S.; Chu, W.Y.; Qiu, H.; Fu, Y.Y.; Cai, S.J.; Sha, S. Responses of Hydrilla verticillata (L.f.) Royle to zinc: In situ localization, subcellular distribution and physiological and ultrastructural modifications. Plant Physiol. Biochem. 2013, 69, 43–48. [Google Scholar] [CrossRef]
- Repkina, N.; Nilova, I.; Kaznina, N. Effect of zinc excess in substrate on physiological responses of Sinapis alba L. Plants 2023, 12, 211. [Google Scholar] [CrossRef]
- Mateos-Naranjo, E.; Pérez-Romero, J.A.; Redondo-Gómez, S.; Mesa-Marín, J.; Castellanos, E.M.; Davy, A.J. Salinity alleviates zinc toxicity in the saltmarsh zinc-accumulator Juncus acutus. Ecotoxicol. Environ. Saf. 2018, 163, 478–485. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Husted, S. The biochemical properties of manganese in plants. Plants 2019, 8, 381. [Google Scholar] [CrossRef]
- Salgado, N.; Silva, M.A.; Figueira, M.E.; Costa, H.S.; Albuquerque, T.G. Oxalate in Foods: Extraction conditions, analytical methods, occurrence, and health implications. Foods 2023, 12, 3201. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, A.H.; He, C.; Wang, J.H.; Wang, Y.A. Response of organic acids to zinc homeostasis in zinc-deficient and zinc-toxic apple rootstock roots. Pedosphere 2012, 22, 803–814. [Google Scholar] [CrossRef]
- Pavlíková, D.; Zemanová, V.; Pavlík, M. Health risk and quality assessment of vegetables cultivated on soils from a heavily polluted old mining area. Toxics 2023, 11, 583. [Google Scholar] [CrossRef] [PubMed]
- Zemanová, V.; Lhotská, M.; Novák, M.; Hnilička, F.; Popov, M.; Pavlíková, D. Multicontamination toxicity evaluation in the model plant Lactuca sativa L. Plants 2024, 13, 1356. [Google Scholar] [CrossRef]
- Pavlíková, D.; Pavlík, M.; Vašíčková, S.; Száková, J.; Vokáč, K.; Balík, J.; Tlustoš, P. Development of a procedure for the sequential extraction of substances binding trace elements in plant biomass. Anal. Bioanal. Chem. 2005, 381, 863–872. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Boersch, J.; Frohne, T.; Du Laing, G.; Rinklebe, J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017, 186, 192–200. [Google Scholar] [CrossRef]
- Němcová, V.; Buchtová, I. Situation and Outlook Report—Vegetable; The Ministry of Agriculture of the Czech Republic: Prague, Czech Republic, 2022; p. 73. [Google Scholar]
- USEPA. Exposure Factors Handbook, Final; U.S. Environment Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- de Souza, R.E.; Fontes, M.P.F.; Tucci, C.A.F.; Lima, H.N.; Ferreira, M.D. Health risk assessment and quality reference values of potentially toxic elements in soils of the Southwestern Amazonas State—Brazil. Sci. Total Environ. 2024, 912, 168937. [Google Scholar] [CrossRef]
Nutrient (mg kg−1 DW) | Control | Zn75 | Zn150 | Zn300 |
---|---|---|---|---|
Ca | 11,724.6 ± 1703.2 b | 7968.0 ± 2047.9 a | 7649.2 ± 479.5 a | 7766.0 ± 1305.7 a |
Cu | 4.0 ± 0.3 b | 3.2 ± 0.4 a | 2.9 ± 0.4 a | 3.3 ± 0.2 a |
Fe | 87.2 ± 23.4 b | 76.0 ± 7.3 ab | 69.6 ± 3.4 ab | 64.0 ± 10.6 a |
K | 88,218.5 ± 4868.0 a | 91,327.2 ± 4946.6 ab | 89,264.3 ± 3084.2 ab | 95,042.4 ± 3817.4 b |
Mg | 10,982.9 ± 1706.7 a | 10,136.2 ± 1530.4 a | 9043.5 ± 767.8 a | 9137.2 ± 1483.1 a |
Mn | 1400.6 ± 351.2 ab | 1281.1 ± 394.6 a | 1313.0 ± 154.3 a | 1835.4 ± 231.9 b |
Na | 1002.5 ± 80.5 a | 817.7 ± 66.0 a | 1054.5 ± 100.5 a | 958.7 ± 155.3 a |
P | 18,455.5 ± 1182.6 a | 19,528.2 ± 2803.4 a | 20,712.3 ± 1131.2 a | 21,590.0 ± 3230.9 a |
S | 3947.9 ± 79.2 a | 4254.9 ± 364.4 ab | 4429.7 ± 300.2 b | 4077.6 ± 187.1 ab |
Treatments | THQ–Adults | THQ–Children |
---|---|---|
Control | 0.024 ± 0.001a | 0.065 ± 0.004a |
Zn75 | 0.035 ± 0.004b | 0.095 ± 0.011b |
Zn150 | 0.055 ± 0.002c | 0.147 ± 0.004c |
Zn300 | 0.087 ± 0.009d | 0.234 ± 0.024d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zemanová, V.; Pavlíková, D.; Novák, M.; Hnilička, F. The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic. Plants 2024, 13, 3363. https://doi.org/10.3390/plants13233363
Zemanová V, Pavlíková D, Novák M, Hnilička F. The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic. Plants. 2024; 13(23):3363. https://doi.org/10.3390/plants13233363
Chicago/Turabian StyleZemanová, Veronika, Daniela Pavlíková, Milan Novák, and František Hnilička. 2024. "The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic" Plants 13, no. 23: 3363. https://doi.org/10.3390/plants13233363
APA StyleZemanová, V., Pavlíková, D., Novák, M., & Hnilička, F. (2024). The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic. Plants, 13(23), 3363. https://doi.org/10.3390/plants13233363