Variation in Chemical, Textural and Sensorial Traits Among Remontant Red Raspberry (Rubus idaeus L.) Cultivars Maintained in a Double-Cropping System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Individual Sugars, Organic Acids and Sweetness Indices
2.2. Fruit Color
2.3. Fruit Weight and Textural Characteristics
2.4. Sensory Analysis
2.5. Total Quality Index
3. Materials and Methods
3.1. Experimental Design and Plant Material
3.2. Determination of Individual Sugars and Organic Acids
3.3. Color Measurement
3.4. Determination of the Fruit Weight and Texture Analysis
3.5. Sensory Analysis Procedure
3.6. Sweetness Index (SI)
3.7. Total Quality Index (TQI)
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOStat. 2024. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 5 September 2024).
- Milivojević, J.; Nikolić, M.; Radivojević, D.; Poledica, M. Yield components and fruit quality of floricane fruiting raspberry cultivars grown in Serbia. Acta Hortic. 2012, 946, 95–99. [Google Scholar] [CrossRef]
- Hall, H.K.; Kempler, C. Raspberry breeding. Fruit. Veg. Cereal Sci. Biotechnol. 2011, 5, 44–62. [Google Scholar]
- Hanson, E.; Crain, B.; Moses, J. Cropping on Primocanes and Floricanes Increases Yields of Organic Raspberries in High Tunnels. HortScience 2019, 54, 459–462. [Google Scholar] [CrossRef]
- Hanson, E.; Crain, B.; Hanson, K. Response of potted red raspberry cultivars to double-cropping under high tunnels. HortScience 2019, 54, 1972–1975. [Google Scholar] [CrossRef]
- Palonen, P.; Laine, T.; Mouhu, K. Floricane yield and berry quality of seven primocane red raspberry (Rubus idaeus L.) cultivars. Sci. Hortic. 2021, 285, 110201. [Google Scholar] [CrossRef]
- Milivojević, J.; Nikolić, M.; Vukotić, M.; Radivojević, D. Field performance and fruit quality of primocane fruiting raspberry cultivars grown in Serbia. J. Agric. Food Environ. Sci. 2017, 71, 121–125. [Google Scholar]
- Linnemannstöns, L. Substrate cultivation of raspberry in Germany. Acta Hortic. 2020, 1277, 165–172. [Google Scholar] [CrossRef]
- Milivojevic, J.; Radivojevic, D.; Maksimovic, V.; Dragisic-Maksimovic, J. Variation in health promoting compounds of blueberry fruit associated with different nutrient management practices in a soilless growing system. J. Agric. Sci. 2020, 65, 175–185. [Google Scholar] [CrossRef]
- Mazur, S.P.; Nes, A.; Wold, A.B.; Remberg, S.F.; Aaby, K. Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem. 2014, 160, 233–240. [Google Scholar] [CrossRef]
- Durán-Soria, S.; Pott, D.; Will, F.; Mesa-Marín, J.; Lewandowski, M.; Celejewska, K.; Masny, A.; Żurawicz, E.; Jennings, N.; Sønsteby, A.; et al. Exploring genotype-by-environment interactions of chemical composition of raspberry by using a metabolomics approach. Metabolites 2021, 11, 490. [Google Scholar] [CrossRef]
- Garcia Hernandez, M.V. Comparative study between advanced selections of raspberries (Rubus idaeus L.) under different crop management systems considering the most important phenotypic components for yield and fruit quality. Master’s Thesis, Universitat Politècnica de València, Valencia, Spain, 2022. Available online: http://hdl.handle.net/10251/187936 (accessed on 30 August 2024).
- Milivojević, J.; Maksimović, V.; Nikolić, M.; Bogdanović, J.; Maletić, R.; Milatović, D. Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J. Food Qual. 2011, 34, 1–9. [Google Scholar] [CrossRef]
- Forney, C.F.; Jamieson, A.R.; Munro Pennell, K.D.; Jordan, M.A.; Fillmore, S.A.E. Relationships between fruit composition and storage life in air or controlled atmosphere of red raspberry. Postharvest. Biol. Technol. 2015, 110, 121–130. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Chemical fruit profiles of different raspberry cultivars grown in specific Norwegian agroclimatic conditions. Horticulturae 2022, 8, 765. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 2012, 77, C1064–C1070. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.M.S.; Singh, Z.; Kaur, J.; Hasan, M.U.; Woodward, A.; Afrifa-Yamoah, E. Trends in maintaining postharvest freshness and quality of Rubus berries. Comp. Rev. Food Sci. Food Safe 2023, 22, 4600–4643. [Google Scholar] [CrossRef] [PubMed]
- Lippi, N.; Senger, E.; Karhu, S.; Mezzetti, B.; Cianciabella, M.; Denoyes, B.; Sönmez, D.A.; Fidelis, M.; Gatti, E.; Höfer, M.; et al. Development and validation of a multilingual lexicon as a key tool for the sensory analyses and consumer tests of blueberry and raspberry fruit. Agriculture 2023, 13, 314. [Google Scholar] [CrossRef]
- Farneti, B.; Di Guardo, M.; Khomenko, I.; Cappellin, L.; Biasioli, F.; Velasco, R.; Costa, F. Genome-wide association study unravels the genetic control of the apple volatilome and its interplay with fruit texture. J. Exp. Bot. 2017, 68, 1467–1478. [Google Scholar] [CrossRef]
- Villamor, R.R.; Daniels, C.H.; Moore, P.P.; Ross, C.F. Preference mapping of frozen and fresh raspberries. J. Food Sci. 2013, 78, S911–S919. [Google Scholar] [CrossRef]
- Pritts, M. Primocane-fruiting raspberry production. HortScience 2008, 43, 1640–1641. [Google Scholar] [CrossRef]
- Stavang, J.A.; Freitag, S.; Foito, A.; Verrall, S.; Heide, O.M.; Stewart, D.; Sønsteby, A. Raspberry fruit quality changes during ripening and storage as assessed by colour, sensory evaluation and chemical analyses. Sci. Hortic. 2015, 195, 216–225. [Google Scholar] [CrossRef]
- Dincheva, I.; Badjakov, I.; Kondakova, V.; Batchvarova, R. Metabolic profiling of red raspberry (Rubus idaeus) during fruit development and ripening. Int. J. Agric. Sci. 2013, 3, 81–88. [Google Scholar]
- Titirică, I.; Roman, I.A.; Nicola, C.; Sturzeanu, M.; Iurea, E.; Botu, M.; Sestras, R.E.; Pop, R.; Militaru, M.; Ercisli, S.; et al. The main morphological characteristics and chemical components of fruits and the possibilities of their improvement in raspberry breeding. Horticulturae 2023, 9, 50. [Google Scholar] [CrossRef]
- Muñoz-Almagro, N.; Ruiz-Torralba, A.; Méndez-Albiñana, P.; Guerra-Hernández, E.; García-Villanova, B.; Moreno, R.; Villamiel, M.; Montilla, A. Berry fruits as source of pectin: Conventional and non-conventional extraction techniques. Int. J. Biol. Macromol. 2021, 186, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Mariette, A.; Kang, H.S.; Heazlewood, J.L.; Persson, S.; Ebert, B.; Lampugnani, E.R. Not just a simple sugar: Arabinose metabolism and function in plants. Plant Cell Physiol. 2021, 62, 1791–1812. [Google Scholar] [CrossRef] [PubMed]
- Ponder, A.; Hallmann, E. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. J. Food Compos. Anal. 2020, 87, 103429. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, G.; Sun, L.; Song, X.; Bao, Y.; Luo, T.; Wang, J. Comprehensive evaluation of 24 red raspberry varieties in northeast China based on nutrition and taste. Foods 2022, 11, 3232. [Google Scholar] [CrossRef]
- Aaby, K.; Skaret, J.; Røen, D.; Sønsteby, A. Sensory and instrumental analysis of eight genotypes of red raspberry (Rubus idaeus L.) fruits. J. Berry Res. 2019, 9, 483–498. [Google Scholar] [CrossRef]
- Giongo, L.; Ajelli, M.; Poncetta, P.; Ramos-García, M.; Sambo, P.; Farneti, B. Raspberry texture mechanical profiling during fruit ripening and storage. Postharvest. Biol. Technol. 2019, 149, 177–186. [Google Scholar] [CrossRef]
- Valentinuzzi, F.; Pii, Y.; Mimmo, T.; Savini, G.; Curzel, S.; Cesco, S. Fertilization strategies as a tool to modify the organoleptic properties of raspberry (Rubus idaeus L.) fruits. Sci. Hortic. 2018, 240, 205–2012. [Google Scholar] [CrossRef]
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- Djekic, I.; Lorenzo, J.M.; Munekata, P.E.S.; Gagaoua, M.; Tomasevic, I. Review on characteristics of trained sensory panels in food science. J. Texture Stud. 2021, 52, 501–509. [Google Scholar] [CrossRef]
- Tomic, N.; Djekic, I.; Zambon, A.; Spilimbergo, S.; Bourdoux, S.; Holtze, E.; Hofland, G.; Sut, S.; Dall’Acqua, S.; Smigic, N.; et al. Challenging chemical and quality changes of supercritical Co2 dried apple during long-term storage. LWT 2019, 110, 132–141. [Google Scholar] [CrossRef]
- Keutgen, A.; Pawelzik, E. Modifications of taste-relevant compounds in strawberry fruit under NaCl salinity. Food Chem. 2007, 105, 1487–1494. [Google Scholar] [CrossRef]
- Finotti, E.; Bersani, A.M.; Bersani, E. Total quality indexes for extra-virgin olive oils. J. Food Qual. 2007, 30, 911–931. [Google Scholar] [CrossRef]
- Djekic, I.; Tomic, N.; Bourdoux, S.; Spilimbergo, S.; Smigic, N.; Udovicki, B.; Hofland, G.; Devlieghere, F.; Rajkovic, A. Comparison of three types of drying (supercritical CO2, air and freeze) on the quality of dried apple—Quality index approach. LWT 2018, 94, 64–72. [Google Scholar] [CrossRef]
Individual Sugars/Polyols | Glucose (g 100 g−1 FW) | Fructose (g 100 g−1 FW) | Sucrose (g 100 g−1 FW) | Myoinositol (g 100 g−1 FW) | Arabinose (g 100 g−1 FW) |
---|---|---|---|---|---|
Cultivar | |||||
Dafne | 1.67 ± 0.25 *** | 2.28 ± 0.32 ** | 2.62 ± 0.68 * | 0.21 ± 0.04 ns | 0.33 ± 0.08 ns |
Kokanee | 2.50 ± 0.10 ns | 3.07 ± 0.13 ns | 2.68 ± 0.23 * | 0.21 ± 0.03 ns | 0.30 ± 0.03 ns |
Paris | 2.77 ± 0.19 ns | 3.42 ± 0.23 ns | 2.73 ± 0.13 * | 0.18 ± 0.02 ** | 0.29 ± 0.06 ns |
Versailles | 2.69 ± 0.33 ns | 3.72 ± 0.49 * | 1.66 ± 0.45 ns | 0.28 ± 0.04 ns | 0.174 ± 0.04 ns |
Primalba | 2.17 ± 0.22 ** | 2.57 ± 0.26 ns | 3.03 ± 0.37 ** | 0.33 ± 0.05 ns | 0.16 ± 0.01 * |
Enrosadira | 2.77 ± 0.21 | 3.07 ± 0.23 | 1.91 ± 0.26 | 0.27 ± 0.03 | 0.27 ± 0.04 |
p value | <0.001 | <0.001 | 0.001 | 0.001 | 0.007 |
LSD005 | 0.427 | 0.514 | 0.634 | 0.067 | 0.098 |
Cropping | |||||
Primocane | 2.67 ± 0.11 | 3.37 ± 0.17 | 2.69 ± 0.24 | 0.30 ± 0.02 | 0.19 ± 0.02 |
Floricane | 2.18 ± 0.17 | 2.67 ± 0.19 | 2.19 ± 0.24 | 0.19 ± 0.02 | 0.32 ± 0.03 |
p value | <0.001 | <0.001 | 0.009 | <0.001 | <0.001 |
Interaction | |||||
Dafne × P | 2.20 ± 0.11 cd | 2.98 ± 0.15 c | 4.09 ± 0.40 a | 0.29 ± 0.03 bc | 0.16 ± 0.04 ef |
Dafne × F | 1.14 ± 0.08 e | 1.58 ± 0.11 e | 1.16 ± 0.09 e | 0.12 ± 0.03 e | 0.49 ± 0.08 a |
Kokanee × P | 2.48 ± 0.05 bc | 3.10 ± 0.07 bc | 2.23 ± 0.16 cd | 0.24 ± 0.03 cd | 0.26 ± 0.03 cde |
Kokanee × F | 2.51 ± 0.21 bc | 3.05 ± 0.28 c | 3.13 ± 0.22 bc | 0.17 ± 0.03 de | 0.34 ± 0.05 bc |
Paris × P | 2.47 ± 0.09 bc | 3.06 ± 0.15 bc | 2.61 ± 0.08 bc | 0.2 ± 0.03 cde | 0.19 ± 0.06 def |
Paris × F | 3.07 ± 0.28 ab | 3.77 ± 0.34 b | 2.85 ± 0.24 bc | 0.16 ± 0.02 de | 0.40 ± 0.07 ab |
Versailles × P | 3.40 ± 0.08 a | 4.76 ± 0.10 a | 2.60 ± 0.20 bc | 0.35 ± 0.03 ab | 0.08 ± 0.01 f |
Versailles × F | 1.98 ± 0.22 cd | 2.67 ± 0.34 cd | 0.72 ± 0.27 e | 0.21 ± 0.03 cde | 0.27 ± 0.01 bcde |
Primalba × P | 2.50 ± 0.30 bc | 2.99 ± 0.35 c | 3.23 ± 0.71 bc | 0.43 ± 0.05 a | 0.16 ± 0.02 ef |
Primalba × F | 1.84 ± 0.21 d | 2.15 ± 0.20 de | 2.84 ± 0.36 bc | 0.24 ± 0.01 cd | 0.17 ± 0.00 ef |
Enrosadira × P | 2.98 ± 0.29 ab | 3.31 ± 0.33 bc | 1.39 ± 0.27 de | 0.27 ± 0.06 bc | 0.32 ± 0.05 bcd |
Enrosadira × F | 2.57 ± 0.30 bc | 2.82 ± 0.32 cd | 2.43 ± 0.06 bc | 0.27 ± 0.01 bc | 0.22 ± 0.07 cde |
p value | 0.001 | <0.001 | <0.001 | 0.043 | 0.002 |
Organic Acids | Citric (mg g−1 FW) | Malic (mg g−1 FW) | Tartaric (mg g−1 FW) | Shikimic (µg g−1 FW) | Fumaric (µg g−1 FW) | Total Acids (mg g−1 FW) |
---|---|---|---|---|---|---|
Cultivar | ||||||
Dafne | 8.33 ± 0.30 ns | 1.14 ± 0.05 ns | 0.08 ± 0.01 | 7.05 ± 0.63 *** | 6.94 ± 0.33 ns | 9.56 ± 0.30 ns |
Kokanee | 7.20 ± 0.39 ns | 1.02 ± 0.04 ns | 0.06 ± 0.01 | 16.07 ± 2.42 *** | 7.76 ± 0.87 ns | 8.31 ± 0.41 ns |
Paris | 9.74 ± 0.24 * | 1.42 ± 0.10 ** | 0.08 ± 0.01 | 6.80 ± 1.47 *** | 3.58 ± 0.33 *** | 11.25 ± 0.31 * |
Versailles | 8.15 ± 0.52 ns | 1.19 ± 0.06 ns | 0.08 ± 0.01 | 15.02 ± 2.62 *** | 4.55 ± 0.39 ** | 9.44 ± 0.59 ns |
Primalba | 8.93 ± 0.63 ns | 1.22 ± 0.06 ns | 0.09 ± 0.01 | 12.25 ± 1.26 ns | 7.85 ± 0.66 ns | 10.26 ± 0.69 ns |
Enrosadira | 8.09 ± 0.42 | 1.17 ± 0.04 | 0.10 ± 0.01 | 11.00 ± 1.02 | 7.13 ± 1.23 | 9.38 ± 0.43 |
p value | 0.012 | 0.005 | 0.132 | <0.001 | <0.001 | 0.008 |
LSD0.05 | 1.286 | 0.185 | - | 1.554 | 1.457 | 1.432 |
Cropping | ||||||
Primocane | 8.4 ± 0.31 | 1.22 ± 0.05 | 0.08 ± 0.01 | 14.72 ± 1.22 | 6.12 ± 0.55 | 9.72 ± 0.35 |
Floricane | 8.42 ± 0.30 | 1.17 ± 0.04 | 0.09 ± 0.01 | 8.00 ± 0.65 | 6.48 ± 0.56 | 9.68 ± 0.32 |
p value | 0.967 | 0.317 | 0.118 | <0.001 | 0.378 | 0.948 |
Interaction | ||||||
Dafne × P | 8.18 ± 0.33 | 1.16 ± 0.03 | 0.10 ± 0.01 ab | 8.32 ± 0.50 d | 7.44 ± 0.40 bc | 9.45 ± 0.31 |
Dafne × F | 8.48 ± 0.55 | 1.11 ± 0.10 | 0.07 ± 0.02 bcd | 5.79 ± 0.35 e | 6.43 ± 0.37 cd | 9.67 ± 0.58 |
Kokanee × P | 6.50 ± 0.25 | 1.04 ± 0.05 | 0.04 ± 0.01 d | 21.30 ± 1.00 a | 9.38 ± 0.77 ab | 7.61 ± 0.29 |
Kokanee × F | 7.91 ± 0.44 | 1.00 ± 0.07 | 0.08 ± 0.01 abc | 10.83 ± 0.87 c | 6.14 ± 0.76 cd | 9.00 ± 0.51 |
Paris × P | 9.79 ± 0.27 | 1.56 ± 0.17 | 0.05 ± 0.01 cd | 10.06 ± 0.28 cd | 3.27 ± 0.36 e | 11.42 ± 0.43 |
Paris × F | 9.68 ± 0.45 | 1.29 ± 0.07 | 0.10 ± 0.01 ab | 3.54 ± 0.36 f | 3.90 ± 0.56 e | 11.08 ± 0.52 |
Versailles × P | 8.21 ± 1.08 | 1.23 ± 0.13 | 0.06 ± 0.01 bcd | 20.59 ± 1.65 a | 4.49 ± 0.69 de | 9.52 ± 1.22 |
Versailles × F | 8.10 ± 0.43 | 1.15 ± 0.04 | 0.10 ± 0.02 ab | 9.44 ± 0.61 cd | 4.60 ± 0.52 de | 9.36 ± 0.48 |
Primalba × P | 8.90 ± 0.50 | 1.22 ± 0.04 | 0.10 ± 0.00 ab | 14.90 ± 0.44 b | 7.51 ± 0.52 abc | 10.24 ± 0.46 |
Primalba × F | 8.97 ± 1.33 | 1.21 ± 0.14 | 0.09 ± 0.02 abc | 9.61 ± 0.86 cd | 8.20 ± 1.34 abc | 10.29 ± 1.48 |
Enrosadira × P | 8.83 ± 0.45 | 1.10 ± 0.07 | 0.11 ± 0.01 a | 13.17 ± 0.28 b | 4.62 ± 0.51 de | 10.06 ± 0.52 |
Enrosadira × F | 7.35 ± 0.39 | 1.23 ± 0.02 | 0.09 ± 0.02 abc | 8.82 ± 0.59 cd | 9.64 ± 1.01 a | 8.70 ± 0.43 |
p value | 0.385 | 0.400 | 0.031 | <0.001 | <0.001 | 0.537 |
Interaction | L | a | b | C | h |
---|---|---|---|---|---|
Dafne × P | 22.95 ± 0.63 f | 14.38 ± 0.62 de | 5.78 ± 0.40 | 15.51 ± 0.73 | 21.78 ± 0.46 |
Dafne × F | 31.74 ± 0.90 c | 19.03 ± 0.13 bc | 7.79 ± 0.08 | 20.54 ± 0.17 | 22.17 ± 0.26 |
Kokanee × P | 24.98 ± 0.34 de | 15.4 ± 0.64 de | 5.64 ± 0.57 | 16.43 ± 0.79 | 20.01 ± 1.00 |
Kokanee × F | 35.45 ± 0.49 a | 19.90 ± 0.66 ab | 6.22 ± 0.71 | 20.88 ± 0.85 | 17.28 ± 1.29 |
Paris × P | 25.55 ± 0.86 de | 15.78 ± 1.67 de | 6.00 ± 0.69 | 16.89 ± 1.78 | 20.93 ± 0.85 |
Paris × F | 33.23 ± 0.60 bc | 15.67 ± 0.44 de | 5.17 ± 0.33 | 16.53 ± 0.51 | 18.45 ± 0.82 |
Versailles × P | 25.05 ± 0.82 de | 13.92 ± 0.70 e | 3.84 ± 0.71 | 14.48 ± 0.82 | 15.09 ± 2.20 |
Versailles × F | 35.01 ± 0.84 ab | 17.45 ± 1.64 bc | 5.77 ± 0.88 | 18.32 ± 1.86 | 18.12 ± 0.92 |
Primalba × P | 25.54 ± 0.70 de | 19.52 ± 0.41 ab | 8.39 ± 0.51 | 21.26 ± 0.57 | 23.13 ± 0.93 |
Primalba × F | 26.41 ± 0.10 d | 22.22 ± 0.60 a | 9.21 ± 0.69 | 24.08 ± 0.80 | 22.32 ± 1.14 |
Enrosadira × P | 23.62 ± 0.54 ef | 16.72 ± 1.45 cd | 6.19 ± 0.70 | 17.83 ± 1.60 | 20.11 ± 0.68 |
Enrosadira × F | 25.27 ± 0.71 de | 16.11 ± 0.77 de | 6.48 ± 0.21 | 17.37 ± 0.78 | 21.95 ± 0.28 |
p value | <0.001 | 0.032 | 0.186 | 0.054 | 0.056 |
Fruit Weight (g) | Hardness 1 (N) | Hardness 2 (N) | Cohesiveness | Springiness (mm) | |
---|---|---|---|---|---|
Cultivar | |||||
Dafne | 6.11 ± 0.34 ns | 0.87 ± 0.10 ** | 0.30 ± 0.06 ns | 0.15 ± 0.02 ** | 4.61 ± 0.29 |
Kokanee | 4.14 ± 0.27 *** | 0.74 ± 0.04 ns | 0.35 ± 0.04 ns | 0.17 ± 0.01 ns | 4.66 ± 0.24 |
Paris | 5.00 ± 0.07 *** | 0.69 ± 0.07 ns | 0.36 ± 0.05 ns | 0.22 ± 0.03 ns | 5.15 ± 0.78 |
Versailles | 5.59 ± 0.41 ns | 1.08 ± 0.11 *** | 0.42 ± 0.07 * | 0.15 ± 0.01 ** | 5.01 ± 0.27 |
Primalba | 5.31 ± 0.23 ** | 0.64 ± 0.10 ns | 0.20 ± 0.03 ns | 0.14 ± 0.01 ** | 3.76 ± 0.20 |
Enrosadira | 5.97 ± 0.22 | 0.59 ± 0.08 | 0.30 ± 0.03 | 0.21 ± 0.02 | 4.18 ± 0.19 |
p value | <0.001 | <0.001 | 0.008 | 0.002 | 0.089 |
LSD0.05 | 0.418 | 0.190 | 0.107 | 0.046 | - |
Cropping | |||||
Primocane | 5.71 ± 0.19 | 0.65 ± 0.05 | 0.28 ± 0.02 | 0.18 ± 0.02 | 4.77 ± 0.3 |
Floricane | 5.00 ± 0.21 | 0.88 ± 0.05 | 0.36 ± 0.03 | 0.16 ± 0.01 | 4.35 ± 0.13 |
p value | <0.001 | <0.001 | 0.009 | 0.068 | 0.153 |
Interaction | |||||
Dafne × P | 6.83 ± 0.19 a | 0.65 ± 0.07 | 0.18 ± 0.03 d | 0.13 ± 0.02 de | 4.20 ± 0.34 |
Dafne × F | 5.38 ± 0.09 bcd | 1.08 ± 0.05 | 0.41 ± 0.05 abc | 0.16 ± 0.03 cde | 5.02 ± 0.37 |
Kokanee × P | 4.63 ± 0.34 e | 0.76 ± 0.09 | 0.40 ± 0.06 abc | 0.18 ± 0.02 bcd | 4.97 ± 0.25 |
Kokanee × F | 3.65 ± 0.04 f | 0.72 ± 0.01 | 0.31 ± 0.02 cd | 0.16 ± 0.01 cde | 4.35 ± 0.34 |
Paris × P | 5.13 ± 0.07 cde | 0.60 ± 0.10 | 0.27 ± 0.04 cd | 0.24 ± 0.06 ab | 6.09 ± 1.46 |
Paris × F | 4.86 ± 0.05 de | 0.79 ± 0.06 | 0.46 ± 0.02 ab | 0.21 ± 0.03 abc | 4.20 ± 0.10 |
Versailles × P | 6.37 ± 0.28 a | 1.01 ± 0.12 | 0.32 ± 0.05 bcd | 0.14 ± 0.003 de | 5.45 ± 0.30 |
Versailles × F | 4.82 ± 0.4 de | 1.15 ± 0.19 | 0.52 ± 0.11 a | 0.16 ± 0.01 cde | 4.57 ± 0.28 |
Primalba × P | 5.77 ± 0.18 b | 0.42 ± 0.04 | 0.19 ± 0.02 d | 0.17 ± 0.01 ab | 3.45 ± 0.10 |
Primalba × F | 4.86 ± 0.17 de | 0.86 ± 0.04 | 0.21 ± 0.05 d | 0.10 ± 0.00 abc | 4.06 ± 0.33 |
Enrosadira × P | 5.5 ± 0.15 bc | 0.48 ± 0.03 | 0.33 ± 0.04 bcd | 0.26 ± 0.01 a | 4.46 ± 0.19 |
Enrosadira × F | 6.45 ± 0.06 a | 0.70 ± 0.13 | 0.27 ± 0.05 cd | 0.16 ± 0.01 cde | 3.89 ± 0.24 |
p value | <0.001 | 0.124 | 0.012 | 0.047 | 0.108 |
Leaf Parameters/Cropping | Primocane Cropping | Floricane Cropping | ||
---|---|---|---|---|
August | September | June | July | |
Temperature (°C) | 31.72 | 30.89 | 28.20 | 33.35 |
Relative Humidity (%) | 63.52 | 66.93 | 63.88 | 60.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spasojević, S.; Maksimović, V.; Milosavljević, D.; Djekić, I.; Radivojević, D.; Sredojević, A.; Milivojević, J. Variation in Chemical, Textural and Sensorial Traits Among Remontant Red Raspberry (Rubus idaeus L.) Cultivars Maintained in a Double-Cropping System. Plants 2024, 13, 3382. https://doi.org/10.3390/plants13233382
Spasojević S, Maksimović V, Milosavljević D, Djekić I, Radivojević D, Sredojević A, Milivojević J. Variation in Chemical, Textural and Sensorial Traits Among Remontant Red Raspberry (Rubus idaeus L.) Cultivars Maintained in a Double-Cropping System. Plants. 2024; 13(23):3382. https://doi.org/10.3390/plants13233382
Chicago/Turabian StyleSpasojević, Slavica, Vuk Maksimović, Dragica Milosavljević, Ilija Djekić, Dragan Radivojević, Ana Sredojević, and Jasminka Milivojević. 2024. "Variation in Chemical, Textural and Sensorial Traits Among Remontant Red Raspberry (Rubus idaeus L.) Cultivars Maintained in a Double-Cropping System" Plants 13, no. 23: 3382. https://doi.org/10.3390/plants13233382
APA StyleSpasojević, S., Maksimović, V., Milosavljević, D., Djekić, I., Radivojević, D., Sredojević, A., & Milivojević, J. (2024). Variation in Chemical, Textural and Sensorial Traits Among Remontant Red Raspberry (Rubus idaeus L.) Cultivars Maintained in a Double-Cropping System. Plants, 13(23), 3382. https://doi.org/10.3390/plants13233382