Control of Green Mold and Sour Rot in Mandarins by Postharvest Application of Natamycin and an Allium Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates and Inoculum Preparation
2.2. Food Additives and Conventional Fungicides Used
2.3. Fruit
2.4. Fruit Fungal Inoculation
2.5. Sensitivity to Natamycin of Penicillium digitatum Isolates Susceptible (S22) and Resistant (R20) to Imazalil
2.6. Curative Activity of Natamycin and PTSO in Inoculated Mandarin Fruit
Controlled Conditions Treatments (Immersion)
2.7. Commercial Treatments
2.7.1. Natamycin (Commercial Drencher)
2.7.2. Proallium + Food Coat (Commercial and Experimental Packing Line)
2.8. Statistical Analysis
3. Results
3.1. Natamycin Sensitivity of Penicillium digitatum Isolates S22 and R20 (EC50 and MIC)
3.2. Controlled Conditions Treatments (Immersion)
3.2.1. Efficacy of Natamycin Against Sour Rot and Green Mold Decay
3.2.2. Efficacy of Proallium + Food Coat Against Sour Rot and Green Mold Decay
3.3. Commercial Conditions Trials
3.3.1. Evaluation of Natamycin Efficacy in a Commercial Drencher
3.3.2. Evaluation of Proallium + Food Coat in Experimental and Commercial Packing-Line
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldenberg, L.; Yaniv, Y.; Porat, R.; Carmi, N. Mandarin fruit quality: A review. J. Sci. Food Agric. 2018, 98, 18–26. [Google Scholar] [CrossRef] [PubMed]
- World Citrus Organization. World Citrus Organization Gathers for Annual Southern Hemisphere Forecast and the Election of WCO’s New Co-Chairs. Available online: https://worldcitrusorganisation.org/world-citrus-organisation-gathers-for-annual-southern-hemisphere-forecast-and-the-election-of-wcos-new-co-chairs/ (accessed on 18 October 2024).
- Carvajal, C.C. The Evolution of the Southern Hemisphere Citrus Market. Citrus Technical Forum 2023. Australia. 2023. Available online: https://citrusaustralia.com.au/wp-content/uploads/2023/03/Charif-Carvajal_The-Evoloution-of-the-Southern-Hemisphere-Citrus-Market.pdf (accessed on 26 March 2024).
- Hodgson, R.W. Horticultural varieties of citrus. In The Citrus Industry; Reuther, E., Calavan, C., Carman, G.E., Eds.; University of California: Berkeley, CA, USA, 1967; pp. 431–588. [Google Scholar]
- Roth, G. Citrus Fruit Decay in South Africa caused by Penicillium digitatum Sacc. J. Phytopathol. 1967, 58, 383–396. [Google Scholar] [CrossRef]
- Smilanick, J.L.; ManSour, M.F.; Gabler, F.M.; Goodwine, W.R. The effectiveness of pyrimethanil to inhibit germination of Penicillium digitatum and to control citrus Green mold after harvest. Posth. Biol. Technol. 2006, 42, 75–85. [Google Scholar] [CrossRef]
- Louw, J.P.; Korsten, L. Pathogenicity and host susceptibility of Penicillium spp. on citrus. Plant Dis. 2015, 99, 21–30. [Google Scholar] [CrossRef]
- Nazerian, E.; Alian, Y.M. Association of Geotrichum citri-aurantii with Citrus Fruits decay in Iran. Int. J. Agron. Plant Prod. 2013, 4, 1839–1843. [Google Scholar]
- Ortuño, A.; Díaz, L.; Alvarez, N.; Porras, I.; García-Lidón, A.; Del Río, J.A. Comparative study of flavonoid and scoparone accumulation in different Citrus species and their susceptibility to Penicillium digitatum. Food Chem. 2011, 125, 232–239. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Deng, L.; Ming, J.; Yao, S.; Zeng, K. Control of Sour rot in citrus fruit by three insect antimicrobial peptides. Posth. Biol. Technol. 2019, 149, 200–208. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Sorenson, D. Control of postharvest decay of citrus fruit with calcium polysulfide. Posth. Biol. Technol. 2001, 21, 157–168. [Google Scholar] [CrossRef]
- Palou, L.; Valencia-Chamorro, S.A.; Pérez-Gago, M.B. Antifungal edible coatings for fresh citrus fruit: A review. Coatings 2015, 5, 962–986. [Google Scholar] [CrossRef]
- Zacarias, L.; Cronje, P.; Palou, L. Postharvest technology of citrus fruits. In The Genus Citrus; Talón, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 421–446. [Google Scholar]
- Moscoso-Ramirez, P.A.; Palou, L. Effect of ethylene degreening on the development of postharvest penicillium moulds and fruit quality of early season. Posth. Biol. Technol. 2014, 91, 1–8. [Google Scholar] [CrossRef]
- Kaplan, H.J.; Davé, B.A. The current status of imazalil: A postharvest fungicide for citrus. Proc. Fla. State Hort. Soc. 1979, 92, 37–43. [Google Scholar]
- Kanetis, L.; Förster, H.; Adaskaveg, J.E. Comparative efficacy of the new postharvest fungicides azoxystrobin, fludioxonil, and pyrimethanil for managing citrus green mould. Plant Dis. 2007, 91, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Panozzo, M.; Almirón, N.; Bello, F.; Vázquez, D. Caracterización de aislamientos de moho verde (Penicillium digitatum) resistentes al fungicida pirimetanil en la región citrícola del río Uruguay. Rev. Investig. Agrop. 2018, 44, 61–64. [Google Scholar]
- Holmes, G.J.; Eckert, J.W. Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology 1999, 89, 716–721. [Google Scholar] [PubMed]
- McKay, A.H.; Förster, H.; Adaskaveg, J.E. Toxicity and resistance potential of selected fungicides to galactomyces and penicillium spp. causing postharvest fruit decays of citrus and other crops. Plant Dis. 2012, 96, 87–96. [Google Scholar] [CrossRef]
- Pérez, E.; Besil, N.; Heinzen, H.; Lado, J. Pudrición amarga. Evaluación del Fruitgard PZ100 (p.a. Propiconazole) para el control de Geotrichum citri aurantii. 2015. Available online: http://www.ainfo.inia.uy/digital/bitstream/item/9908/1/SAD-752.-p.61-64.pdf (accessed on 24 August 2024).
- Brown, G.E. Efficacy of guazatine and iminoctadine for control of postharvest decays of oranges. Plant Dis. 1988, 72, 906–908. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2021/55—EUR-Lex 2021. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=uriserv%3AOJ.L_.2021.046.01.0005.01.SPA&toc=OJ%3AL%3A2021%3A046%3ATOC (accessed on 7 October 2023).
- Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Aoumar, A.A.B. In vitro and in vivo antifungal activities of organic and inorganic salts against citrus Sour rot agent Geotrichum candidum. Plant Pathol. J. 2011, 10, 138–145. [Google Scholar] [CrossRef]
- Eckert, J.W.; Eacks, J.L. Postharvest disorders disease of citrus fruit. In The Citrus Industry; Reuther, W., Calavan, E.C., Carman, G.E., Eds.; University of California, Division of Agricultural Natural Resources: Oakland, CA, USA, 1989; Volume 5, pp. 179–260. [Google Scholar]
- Te Welscher, Y.M.; ten Napel, H.H.; Balagu’e, M.M.; Souza, C.M.; Riezman, H.; de Kruijff, B.; Breukink, E. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J. Biol. Chem. 2008, 283, 6393–6401. [Google Scholar] [CrossRef]
- Aguilar, F.; Charrondiere, U.R.; Dusemund, B.; Galtier, P.; Gilbert, J.; Gott, D.M.; Grilli, S.; Guertler, R.; Koenig, J.; Lambr’e, C.; et al. Scientific opinion on the use of natamycin (E235) as a food additive. EFSA J. 2009, 1412, 1–25. [Google Scholar]
- Adaskaveg, J.E.; Foster, H.; Chen, D. Positioning natamycin as a post-harvest fungicide for citrus. Citrograph 2019, 10, 62–65. [Google Scholar]
- Chen, D.; Förster, H.; Adaskaveg, J.E. Baseline Sensitivities of Major Citrus, Pome, and Stone Fruits Postharvest Pathogens to Natamycin and Estimation of the Resistance Potential in P. digitatum. Plant Dis. 2021, 105, 2114–2121. [Google Scholar] [CrossRef] [PubMed]
- Fernández, G.; Sbres, M.; Lado, J.; Pérez-Faggiani, E. Postharvest Sour rot control in lemon fruit by natamycin an Allium extract. Int. J. Food Microbiol. 2022, 368, 109605. [Google Scholar] [CrossRef] [PubMed]
- Mitidieri, M.S.; Constantini, B.; Frangi, H. Evaluación de alternativas al propiconazole para el control de podredumbre amarga y moho verde en naranja de ombligo (Citrus sinensis). Rev. Frutic. 2021, 84, 48–57. [Google Scholar]
- Perez-Faggiani, E. Propiconazole. Estudios para el control de la podredumbre amarga en cítricos. In Libro de Resúmenes I Congreso Argentino de Biología y Tecnología Poscosecha—IX Jornadas Argentinas de Biología y Tecnología Poscosecha, 25 al 27 de octubre; Concordia: Entre Ríos, Argentina, 2017; ISBN 978-950-698-415-1. Available online: https://archivo.fcal.uner.edu.ar/files/congresoposcosecha/Libro_de_resumenes_final.pdf (accessed on 2 December 2024).
- Vázquez, D.; Panozzo, M.; Almirón, N.; Bello, F.; Burdyn, L.; Garrán, S. Characterization of sensitivity of grove and packing house isolates of Penicillium digitatum to pyrimethanil. Posth. Biol. Technol. 2014, 98, 1–6. [Google Scholar] [CrossRef]
- Eckert, J.W.; Brown, G.E. Evaluation of postharvest fungicide treatments for Citrus fruits. In Methods for Evaluating Pesticides for Control of Plant Pathogens; Hickey, K.D., Ed.; APS Press: St. Paul, MN, USA, 1986; pp. 92–97. [Google Scholar]
- Smilanick, J.L.; ManSour, M.F.; Gabler, F.M.; Sorenson, D. Control of citrus postharvest Green mould and Sour rot by potassium sorbate combined with heat and fungicides. Posth. Biol. Technol. 2008, 47, 226–238. [Google Scholar] [CrossRef]
- Hadacek, F.; Greger, H. Testing of Antifungal Natural Products: Methodologies, Comparability of Results and Assay Choice. Phytochem. Anal. 2000, 11, 137–147. [Google Scholar] [CrossRef]
- Chen, D.; Förster, H.; Adaskaveg, J.E. Natamycin, a Biofungicide for Managing Major Postharvest Fruit Decays of Citrus. Plant Dis. 2021, 105, 1408–1414. [Google Scholar] [CrossRef]
- Delves-Broughton, J.; Thomas, L.V.; Doan, C.H.; Davidson, M. Natamycin. In Antimicrobials in Food, 3rd ed.; Davidson, P.M., Sofos, J.N., Branen, A.L., Eds.; CRS Press: Boca Raton, FL, USA, 2005; pp. 275–287. [Google Scholar]
- Chen, D.; Förster, H.; Adaskaveg, J.E. Piramicin: A new postharvest fungicide for selected citrus, store, and pome fruits. Phytopathological 2016, 106, S4.2. [Google Scholar]
- Heinrich, M.; Jalil, B.; Abdel-Tawab, M.; Echeverria, J.; Kulić, Ž.; McGaw, L.J.; Pezzuto, J.M.; Potterat, O.; Wang, J.B. Best Practice in the chemical characterization of extracts used in pharmacological and toxicological research. Front. Pharmacol. 2022, 13, 953205. [Google Scholar] [CrossRef]
- Suprapta, D.N.; Arai, K.; Iwai, H. Distribution of Geotrichum candidum citrus race in citrus groves and non-citrus fields in Japan. Mycoscience 1995, 36, 277–282. [Google Scholar] [CrossRef]
- Baudoin, A.B.A.M.; Eckert, J.W. Influence of preformed characteristics of lemon peel on susceptibility to Geotrichum candidum. Physiol. Plant Pathol. 1985, 26, 151–163. [Google Scholar] [CrossRef]
Isolate Code | Species | Characteristic |
---|---|---|
G0 | Geotrichum citri-aurantii | Susceptible to propiconazole [31] |
S22 | Penicillium digitatum | Susceptible to imazalil [20] |
R20 | Penicillium digitatum | Resistant to imazalil [20] |
A17 | Penicillium digitatum | Resistant to imazalil and pyrimethanil [32] |
Trial | Mandarin Cultivar | Natamicyn (µg mL−1) | Pathogen |
---|---|---|---|
1 | Nules Clementine (Citrus clementina hort. Ex Tanaka) | 500, 1000 | G. citri-aurantii |
2 | Nova (Citrus reticulata (Blanco)) | 1500, 2000, 2500 | G. citri-aurantii |
3 | Tango (Citrus reticulata (Blanco)) | 1500, 2000, 2500 | G. citri-aurantii |
4 | Orri (Citrus reticulata (Blanco) | 1000, 1500, 2500 | P. digitatum |
Packing-Line Sequential Treatments | |||
---|---|---|---|
Treatment | Washed | Fungicide, | Coating |
Proallium | Neutral soap (10%) | Proallium Brill 1 (12–16 µg mL−1 PTSO) | Wax + imazalil (2%) |
Control+ | Neutral soap (10%) | Water | Wax + imazalil (2%) |
Control− | SOPP (10%) | Propiconazole (98 µg mL−1) | Wax + imazalil (2%) |
Nules Clementine | Nova | Afourer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sour Rot | Green Mold | Sour Rot | Green Mold | Sour Rot | ||||||
Treatment | Inc. (%) | Red2. (%) | Inc. (%) | Red. (%) | Inc. (%) | Red. (%) | Inc. (%) | Red. (%) | Inc. (%) | Red. (%) |
Control | 88.2 a | - | 88.3 a | - | 45.4 a | - | 100 a | - | 53.07 a | |
Proallium Brill (PTSO 12–16 µg mL−1) | 71.3 b | 19.1 | 61 b | 30.9 | 26.8 b | 40.9 | 66.7 b | 33.3 | 33.92 b | 36.1 |
Control | 88.3 a | - | 100 a | - | 61.1 a | - | 68.9 a | - | 53.07 a | |
Proallium Brill (PTSO 24–32 µg mL−1) | 52.1 b | 41.0 | 29.8 b | 70.2 | 43.5 b | 28.8 | 8.9 b | 87.1 | 27.30 b | 48.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faggiani, E.P.; Fernandez, G.; Cocco, M.; Sbres, M.; Blanco, O.; Lado, J. Control of Green Mold and Sour Rot in Mandarins by Postharvest Application of Natamycin and an Allium Extract. Plants 2024, 13, 3428. https://doi.org/10.3390/plants13233428
Faggiani EP, Fernandez G, Cocco M, Sbres M, Blanco O, Lado J. Control of Green Mold and Sour Rot in Mandarins by Postharvest Application of Natamycin and an Allium Extract. Plants. 2024; 13(23):3428. https://doi.org/10.3390/plants13233428
Chicago/Turabian StyleFaggiani, Elena Pérez, Gerónimo Fernandez, Mariángeles Cocco, Mauricio Sbres, Oribe Blanco, and Joanna Lado. 2024. "Control of Green Mold and Sour Rot in Mandarins by Postharvest Application of Natamycin and an Allium Extract" Plants 13, no. 23: 3428. https://doi.org/10.3390/plants13233428
APA StyleFaggiani, E. P., Fernandez, G., Cocco, M., Sbres, M., Blanco, O., & Lado, J. (2024). Control of Green Mold and Sour Rot in Mandarins by Postharvest Application of Natamycin and an Allium Extract. Plants, 13(23), 3428. https://doi.org/10.3390/plants13233428