Evaluating Self-Pollination Methods: Their Impact on Nut Set and Nutlet Abscission in Macadamia
Abstract
:1. Introduction
2. Results
2.1. Effects of Different Pollination Methods on Nut Set
2.2. Effects of Different Pollination Methods on Nutlet Abscission
3. Discussion
4. Materials and Methods
4.1. Study Site and Germplasm
4.2. Experimental Design
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Source of Variation | Wald Statistic | df | p-Value |
---|---|---|---|
Cultivar | 5.56 | 3 | 0.206 |
Method | 11.57 | 3 | 0.035 |
Cultivar × Method | 2.76 | 3 | 0.457 |
References
- Howell, E.; Russell, D.; Alam, M.; Topp, B. Variability of initial and final nut set in elite macadamia selections using different pollination methods. Acta Hortic. 2018, 1205, 617–622. [Google Scholar] [CrossRef]
- Trueman, S.J.; Penter, M.G.; Malagodi-Braga, K.S.; Nichols, J.; De Silva, A.L.; Ramos, A.T.M.; Moriya, L.M.; Ogbourne, S.M.; Hawkes, D.; Peters, T. High Outcrossing Levels among Global Macadamia Cultivars: Implications for Nut Quality, Orchard Designs and Pollinator Management. Horticulturae 2024, 10, 203. [Google Scholar] [CrossRef]
- Herbert, S.W.; Walton, D.A.; Wallace, H.M. Pollen-parent affects fruit, nut and kernel development of Macadamia. Sci. Hortic. 2019, 244, 406–412. [Google Scholar] [CrossRef]
- Eckert, C.G. Contributions of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant. Ecology 2000, 81, 532–542. [Google Scholar] [CrossRef]
- Urata, U. Pollination Requirements of Macadamia; Hawaii Agricultural Experiment Station: Kapaʻa, HI, USA; University of Hawaii: Honolulu, HI, USA, 1954. [Google Scholar]
- Trueman, S.J. The reproductive biology of macadamia. Sci. Hortic. 2013, 150, 354–359. [Google Scholar] [CrossRef]
- Ito, P.J. Effect of style removal on fruit set in macadamia. HortScience 1980, 15, 520–521. [Google Scholar] [CrossRef]
- Sakai, W.S.; Nagao, M.A. Fruit growth and abscission in Macadamia imtegrifolia. Physiol. Plant. 1985, 64, 455–460. [Google Scholar] [CrossRef]
- Jones, W.W.; Shaw, L. The process of oil formation and accumulation in the macadamia. Plant Physiol. 1943, 18, 1. [Google Scholar] [CrossRef]
- Stephenson, R.; Gallagher, E. Effects of temperature during latter stages of nut development on growth and quality of macadamia nuts. Sci. Hortic. 1986, 30, 219–225. [Google Scholar] [CrossRef]
- Meyers, N. Pollen Parent Effects on Macadamia Yield. Ph.D. Thesis, The University of Queensland, Brisbane, QLD, Australia, 1998. [Google Scholar]
- Wallace, H.M.; Vithanage, V.; Exley, E. The effect of supplementary pollination on nut set of Macadamia (Proteaceae). Ann. Bot. 1996, 78, 765–773. [Google Scholar] [CrossRef]
- Sukumaran, A.; Khanduri, V.P.; Sharma, C.M. Pollinator-mediated self-pollination and reproductive assurance in an isolated tree of Magnolia grandiflora L. Ecol. Process. 2020, 9, 45. [Google Scholar] [CrossRef]
- Trueman, S.J.; Kämper, W.; Nichols, J.; Ogbourne, S.M.; Hawkes, D.; Peters, T.; Hosseini Bai, S.; Wallace, H.M. Pollen limitation and xenia effects in a cultivated mass-flowering tree, Macadamia integrifolia (Proteaceae). Ann. Bot. 2022, 129, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Howlett, B.G.; Read, S.F.; Alavi, M.; Cutting, B.T.; Nelson, W.R.; Goodwin, R.M.; Cross, S.; Thorp, T.G.; Pattemore, D.E. Cross-pollination enhances macadamia yields, even with branch-level resource limitation. HortScience 2019, 54, 609–615. [Google Scholar] [CrossRef]
- Langdon, K.S.; King, G.J.; Nock, C.J. DNA paternity testing indicates unexpectedly high levels of self-fertilisation in macadamia. Tree Genet. Genomes 2019, 15, 29. [Google Scholar] [CrossRef]
- Deng, L.; Wang, T.; Hu, J.; Yang, X.; Yao, Y.; Jin, Z.; Huang, Z.; Sun, G.; Xiong, B.; Liao, L. Effects of pollen sources on fruit set and fruit characteristics of ‘Fengtangli’plum (Prunus salicina Lindl.) based on microscopic and transcriptomic analysis. Int. J. Mol. Sci. 2022, 23, 12959. [Google Scholar] [CrossRef]
- Srivastav, A.M.; Singh, A.; Dubey, A.; Bhagat, S. Effect of self-, open-and cross-pollination with Sensation on fruit set in mango cultivar. Indian J. Hortic. 2014, 71, 412–414. [Google Scholar]
- De Silva, A.L.; Kämper, W.; Ogbourne, S.M.; Nichols, J.; Royle, J.W.; Peters, T.; Hawkes, D.; Hosseini Bai, S.; Wallace, H.M.; Trueman, S.J. MassARRAY and SABER Analyses of SNPs in Embryo DNA Reveal the Abscission of Self-Fertilised Progeny during Fruit Development of Macadamia (Macadamia integrifolia Maiden & Betche). Int. J. Mol. Sci. 2024, 25, 6419. [Google Scholar] [CrossRef]
- Yildiz, F.; Aslay, M.; Kaya, O. Pollination Strategies and Reproductive Biology of Fritillaria imperialis L.(Liliaceae): Insights from Erzincan, Türkiye. Diversity 2024, 16, 455. [Google Scholar] [CrossRef]
- Denadi, N.; Yolou, M.; Dadonougbo, A.E.; Zoundjihékpon, J.; Dansi, A.; Gandonou, C.; Quinet, M. Yam (Dioscorea rotundata Poir.) displays prezygotic and postzygotic barriers to prevent autogamy in monoecious cultivars. Agronomy 2022, 12, 872. [Google Scholar] [CrossRef]
- Eradasappa, E.; Mohana, G. Investigations on self-compatibility and extent of self and cross-pollination in cashew. J. Plant. Crops 2019, 47, 72–81. [Google Scholar]
- Raju, A.S.; Rao, P.S.; Kumar, R.; Mohan, S.R. Pollination biology of the crypto-viviparous Avicennia species (Avicenniaceae). J. Threat. Taxa 2012, 4, 3377–3389. [Google Scholar] [CrossRef]
- Sáez, A.; Arbona, G.; Juan, A.; Anna, T. Pollinators’ contribution to seed yield in two self-fertile almond varieties role of bees for self-fertile almonds. Apidologie 2024, 55, 19. [Google Scholar] [CrossRef]
- Ahmad, M.H.; Rao, M.J.; Hu, J.; Xu, Q.; Liu, C.; Cao, Z.; Larkin, R.M.; Deng, X.; Bosch, M.; Chai, L. Systems and breakdown of self-incompatibility. Crit. Rev. Plant Sci. 2022, 41, 209–239. [Google Scholar] [CrossRef]
- Srivastava, K.; Ahmed, N.; Kumar, D.; Das, B.; Singh, S.; Rather, J.; Bhat, S. Influence of diverse pollen source on compatibility reaction and subsequent effect on quality attributes of sweet cherry. Afr. J. Agric. Res. 2013, 8, 262–268. [Google Scholar]
- Nunn, J.; De Faveri, J.; O’Connor, K.; Alam, M.; Hardner, C.; Akinsanmi, O.; Topp, B. Genome-Wide Association Study for Abscission Failure of Fruit Pericarps (Stick-Tights) in Wild Macadamia Germplasm. Agronomy 2022, 12, 1913. [Google Scholar] [CrossRef]
- Wallace, H.M. Bees and Pollination of Macadamia; Technical paper; The Australian Macadamia Society: Lismore, NSW, Australia, 1999; pp. 71–73. [Google Scholar]
- Aizen, M.A.; Harder, L.D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 2009, 19, 915–918. [Google Scholar] [CrossRef]
- Zattara, E.E.; Aizen, M.A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 2021, 4, 114–123. [Google Scholar] [CrossRef]
- Reilly, J.; Artz, D.; Biddinger, D.; Bobiwash, K.; Boyle, N.; Brittain, C.; Brokaw, J.; Campbell, J.; Daniels, J.; Elle, E. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B 2020, 287, 20200922. [Google Scholar] [CrossRef]
- Dicenta, F.; Ortega, E.; Canovas, J.; Egea, J. Self-pollination vs. cross-pollination in almond: Pollen tube growth, fruit set and fruit characteristics. Plant Breed. 2002, 121, 163–167. [Google Scholar] [CrossRef]
- Gradziel, T.M. Transfer of Self-Fruitfulness to Cultivated Almond from Peach and Wild Almond. Horticulturae 2022, 8, 965. [Google Scholar] [CrossRef]
- Chavez, D.J.; Lyrene, P.M. Effects of self-pollination and cross-pollination of Vaccinium darrowii (Ericaceae) and other low-chill blueberries. HortScience 2009, 44, 1538–1541. [Google Scholar] [CrossRef]
- Broothaerts, W.; Keulemans, J.; Van Nerum, I. Self-fertile apple resulting from S-RNase gene silencing. Plant Cell Rep. 2004, 22, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Pérez, V.; Herrero, M.; Hormaza, J. Self-fertility and preferential cross-fertilization in mango (Mangifera indica). Sci. Hortic. 2016, 213, 373–378. [Google Scholar] [CrossRef]
- Topp, B.; O’Hare, P.; Russell, D.; Daley, R. Controlled pollination developing better macadamia cultivars. Aust. Macadamia Soc. News Bull. 2011, 39, 62–63. [Google Scholar]
- WillyWeather. WillyWeather—Australian Weather Forecast; WillyWeather: Sydney, NSW, Australia, 2024. [Google Scholar]
- Howlett, B.G.; Nelson, W.R.; Pattemore, D.E.; Gee, M. Pollination of macadamia: Review and opportunities for improving yields. Sci. Hortic. 2015, 197, 411–419. [Google Scholar] [CrossRef]
- Payne, R.; Welham, S.; Harding, S. A Guide to REML in GenStat; VSN International: Hemel Hempstead, UK, 2011. [Google Scholar]
Traits | Source of Variation | Wald Statistic | df | p-Value |
---|---|---|---|---|
INS | Cultivar | 42.86 | 1 | <0.001 |
Method | 16.45 | 2 | 0.019 | |
Cultivar × Method | 9.21 | 2 | 0.061 | |
FNS | Cultivar | 14.34 | 1 | 0.009 |
Method | 3.25 | 2 | 0.273 | |
Cultivar × Method | 0.21 | 2 | 0.902 |
Source of Variation | Wald Statistic | df | p-Value |
---|---|---|---|
Cultivar | 5024 | 1 | 0.062 |
Method | 3.95 | 2 | 0.222 |
Cultivar × Method | 1.73 | 2 | 0.482 |
Fertility | Cultivars | Replication | References |
---|---|---|---|
Self-Fertile | HAES 741 | 2 | [1] |
HAES 791 | 2 | [16] | |
Self-Infertile | HAES 344 | 2 | [1] |
A16 | 2 | [16] |
Month | T.max (°C) | T.min (°C) | Rain (mm) | Humidity (%) |
---|---|---|---|---|
September | 26.2 | 10.8 | 104.2 | 74.7 |
October | 33.8 | 10.5 | 168.5 | 77.8 |
November | 34.2 | 8.4 | 58.0 | 66.4 |
December | 35.7 | 15.3 | 76.3 | 74.7 |
January | 34.7 | 15.6 | 126.1 | 76.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, P.; Cowan, M.; De Faveri, J.; Alam, M.; Topp, B. Evaluating Self-Pollination Methods: Their Impact on Nut Set and Nutlet Abscission in Macadamia. Plants 2024, 13, 3456. https://doi.org/10.3390/plants13243456
Kaur P, Cowan M, De Faveri J, Alam M, Topp B. Evaluating Self-Pollination Methods: Their Impact on Nut Set and Nutlet Abscission in Macadamia. Plants. 2024; 13(24):3456. https://doi.org/10.3390/plants13243456
Chicago/Turabian StyleKaur, Palakdeep, Max Cowan, Joanne De Faveri, Mobashwer Alam, and Bruce Topp. 2024. "Evaluating Self-Pollination Methods: Their Impact on Nut Set and Nutlet Abscission in Macadamia" Plants 13, no. 24: 3456. https://doi.org/10.3390/plants13243456
APA StyleKaur, P., Cowan, M., De Faveri, J., Alam, M., & Topp, B. (2024). Evaluating Self-Pollination Methods: Their Impact on Nut Set and Nutlet Abscission in Macadamia. Plants, 13(24), 3456. https://doi.org/10.3390/plants13243456