Chickpea: Its Origin, Distribution, Nutrition, Benefits, Breeding, and Symbiotic Relationship with Mesorhizobium Species
Abstract
:1. Rationale of Chickpea
1.1. The Origin of Chickpea, Types, and Distribution
1.2. Nutritional Quality of Chickpea Seeds
1.2.1. Classification of Carbohydrates
1.2.2. Dietary Fiber and Protein Content
1.2.3. Fatty Acid Profile
1.2.4. Minerals and Vitamins
1.3. Health Benefits of Chickpea
1.3.1. Diabetes and Blood Pressure
1.3.2. Reduce the Risk of Cancer
1.3.3. Control of Weight
1.3.4. Gut Health
1.4. Breeding of Chickpea
2. Chickpea Rhizobia and the Inoculation Effects on Chickpea Production
2.1. Diversity, Geographic Distribution, and Natural Succession of Chickpea Rhizobia
2.2. Effects of Chickpea Rhizobial Inoculation on Chickpea
2.2.1. Effect of Rhizobial Inoculation on the Composition and Diversity of the Rhizosphere Microorganisms of Chickpea
2.2.2. Effect of Rhizobial Inoculation on Plant Growth
2.2.3. Nutrient Content, Uptake, and Protein
2.2.4. Selection of the Best Strain for the Inoculation of Chickpea in China
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, F.; Diwakar, B. (Eds.) Chickpea Botany and Production Practices; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 1995; p. 1. [Google Scholar]
- Ladizinsky, G. A new Cicer from Turkey. In Notes from the Royal Botanic Garden; Royal Botanic Garden: Edinburgh, UK, 1975; Volume 34, pp. 201–202. [Google Scholar]
- Iqbal, A.; Ateeq, N.; Khalil, I.A.; Perveen, S.; Saleemullah, S. Physicochemical characteristics and amino acid profile of chickpea cultivars grown in Pakistan. J. Foodserv. 2010, 17, 94–101. [Google Scholar] [CrossRef]
- Van der Maesen, L.J.G. Origin, history and taxonomy of chickpea. In The Chickpea; Saxena, M.C., Singh, K.B., Eds.; CAB International: Wallingford, UK, 1987; pp. 11–34. [Google Scholar]
- Moreno, M.T.; Cubero, J.I. Variation in Cicer arietinum L. Euphytica 1978, 27, 465–485. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108 (Suppl. 1), S11. [Google Scholar] [CrossRef] [PubMed]
- Ramalho Ribeiro, J.; Portugal Melo, I. Composition and nutritive value of chickpea. In Present Status and Future Prospects of Chickpea Crop Production and Improvement in the Mediterranean Countries; Saxena, M., Cubero, J., Wery, J., Eds.; CIHEAM: Zaragoza, Spain, 1990; pp. 107–111. [Google Scholar]
- Oliveira, R.S.; Carvalho, P.; Marques, G.; Ferreira, L.; Nunes, M.; Rocha, I.; Ma, Y.; Carvalho, M.F.; Vosátka, M.; Freitas, H. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions. J. Sci. Food Agric. 2017, 97, 4379–4385. [Google Scholar] [CrossRef]
- Zhang, J.J.; Guo, C.; Chen, W.F.; Shang, Y.M.; de Lajudie, P.; Yang, X.; Mao, P.H.; Zheng, J.Q.; Wang, E.T. Dynamic succession of chickpea rhizobia over years and sampling sites in Xinjiang, China. Plant Soil 2018, 425, 241–251. [Google Scholar] [CrossRef]
- Chibbar, R.N.; Ambigaipalan, P.; Hoover, R. Molecular diversity in pulse seed starch and complex carbohydrates and its role in human nutrition and health. Cereal Chem. 2010, 87, 342–352. [Google Scholar] [CrossRef]
- Ibrikci, H.; Knewtson, S.J.; Grusak, M.A. Chickpea leaves as a vegetable green for humans: Evaluation of mineral composition. J. Sci. Food Agric. 2003, 83, 945–950. [Google Scholar] [CrossRef]
- Chavan, J.K.; Kadam, S.S.; Salunkhe, D.K. Biochemistry and technology of chickpea (Cicer arietinum L.) seeds. CRC Crit. Rev. Food Technol. 1986, 25, 107–158. [Google Scholar]
- Gecit, H. Chickpea utilization in Turkey. In Proceedings of the Consultants Meeting, Andra Pradesh, India, 27–30 March 1989; pp. 69–74. [Google Scholar]
- Han, I.; Baik, B.-K. Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound and high hydrostatic pressure. Cereal Chem. 2006, 83, 428–433. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.C.; Peñuela-Teruel, M.J.; Cámara-Hurtado, M.; Díez-Marqués, C.; Torija-Isasa, M.E. Determination of mono-, di-, and oligosaccharides in legumes by high-performance liquid chromatography using an amino-bonded silica column. J. Agric. Food Chem. 1998, 46, 3648–3652. [Google Scholar] [CrossRef]
- Wood, J.; Grusak, M. Nutritional value of chickpea. In Chickpea Breeding and Management; Yadav, S., Redden, R., Chen, W., Sharma, B., Eds.; CAB International: Wallingford, UK, 2007; pp. 101–142. [Google Scholar]
- Jones, D.; DuPont, M.; Ambrose, M. The discovery of compositional variation for the raffinose family of oligosaccharides in pea seeds. Seed Sci. Res. 1999, 9, 305–310. [Google Scholar]
- Bernabe, M.; Fenwick, R.; Frias, J.; Jimenezbarbero, J.; Price, K.; Valverde, S.; Vidalvalverde, C. Determination, by NMR spectroscopy, of the structure of ciceritol, a pseudotrisaccharide isolated from lentils. J. Agric. Food Chem. 1993, 41, 870–872. [Google Scholar] [CrossRef]
- Aguilera, Y.; Martín-Cabrejas, M.A.; Benítez, V.; Mollá, E.; López-Andréu, F.J.; Esteban, R.M. Changes in carbohydrate fraction during dehydration process of common legumes. J. Food Compos. Anal. 2009, 22, 678–683. [Google Scholar] [CrossRef]
- Dalgetty, D.; Baik, B. Isolation and characterization of cotyledon fibres from peas, lentils, and chickpea. Cereal Chem. 2003, 80, 310–315. [Google Scholar] [CrossRef]
- Özer, S.; Karaköy, T.; Toklu, F.; Baloch, F.S.; Kilian, B.; Özkan, H. Nutritional and physicochemical variation in Turkish kabuli chickpea (Cicer arietinum L.) landraces. Euphytica 2010, 175, 237–249. [Google Scholar] [CrossRef]
- Jambunathan, R.; Singh, U. Studies on desi and kabuli chickpea (Cicer arietinum L.) cultivars. 1. Chemical composition. In Proceedings of the International Workshop on Chickpea Improvement, Hyderabad, India, 28 February–2 March 1979; ICRISAT: Andra Pradesh, India, 1980; pp. 61–66. [Google Scholar]
- Aguilera, Y.; Esteban, R.M.; Benitez, V. Starch, Functional properties, and microstructural characteristics in chickpea and Lentil as affected by thermal processing. J. Agric. Food Chem. 2009, 57, 10682–10688. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Iqbal, S.; Ahmad, S.; Imran, M.; Niaz, A.; Bhanger, M.I. Nutritional and compositional study of Desi chickpea (Cicer arietinum L.) cultivars grown in Punjab, Pakistan. Food Chem. 2007, 105, 1357–1363. [Google Scholar] [CrossRef]
- Khalil, A.W.; Zeb, A.; Mahmood, F.; Tariq, S.; Khattak, A.B.; Shah, H. Comparison of sprout quality characteristics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT Food Sci. Technol. 2007, 40, 937–945. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Shah, W.H. Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chem. 2005, 91, 327–331. [Google Scholar] [CrossRef]
- Tosh, S.M.; Yada, S. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Res. Int. 2010, 43, 450–460. [Google Scholar] [CrossRef]
- Rincón, F.; Martínez, B.; Ibáñez, M. Proximate composition and antinutritive substances in chickpea (Cicer arietinum L.) as affected by the biotype factor. J. Sci. Food Agric. 1998, 78, 382–388. [Google Scholar] [CrossRef]
- Hulse, J. Nature, composition and utilization of pulses. In Proceedings of the Uses of Tropical Grain Legumes, Proceedings of a Consultants Meeting, Andra Pradesh, India, 27–30 March 1989; pp. 11–27. [Google Scholar]
- Badshah, A.; Khan, M.; Bibi, N.; Khan, M.; Ali, S.; Ashraf Chaudry, M. Quality studies of newly evolved chickpea cultivars. Adv. Food Sci. 2003, 25, 95–99. [Google Scholar]
- Kaur, M.; Singh, N.; Sodhi, N.S. Physicochemical, cooking, textural and roasting characteristics of chickpea (Cicer arietinum L.) cultivars. J. Food Eng. 2005, 69, 511–517. [Google Scholar] [CrossRef]
- Wang, N.; Daun, J. The Chemical Composition and Nutritive Value of Canadian Pulses; Canadian Grain Commission Report; Canadian Grain Commission: Winnipeg, MB, Canada, 2004; pp. 19–29. [Google Scholar]
- Wang, X.; Gao, W.; Zhang, J.; Hua, Z.; Li, J.; He, X.; Hao, M. Subunit, amino acid composition and in vitro digestibility of protein isolates from Chinese kabuli and desi chickpea (Cicer arietinum L.) cultivars. Food Res. Int. 2010, 43, 567–572. [Google Scholar] [CrossRef]
- Alajaji, S.A.; El-Adawy, T.A. Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. J. Food Compos. Anal. 2006, 19, 806–812. [Google Scholar] [CrossRef]
- Cabrera, C.; Lloris, F.; Giménez, R.; Olalla, M.; López, M.C. Mineral content in legumes and nuts: Contribution to the Spanish dietary intake. Sci. Total Environ. 2003, 308, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Duhan, A.; Khetarpaul, N.; Bishnoi, S. Improvement in starch digestibility (in vitro) of various Pigeonpea cultivars through processing and cooking. Ecol. Food Nutr. 1998, 37, 557–568. [Google Scholar] [CrossRef]
- Quinteros, A.; Farré, R.; Lagarda, M.J. Optimization of iron speciation (soluble, ferrous and ferric) in beans, chickpeas and lentils. Food Chem. 2001, 75, 365–370. [Google Scholar] [CrossRef]
- Guillon, F.; Champ, M.M. Carbohydrate fractions of legumes: Uses in human nutrition and potential for health. Br. J. Nutr. 2002, 88, 293–306. [Google Scholar] [CrossRef]
- Çiftçi, H.; Ozkaya, A.; Çevrimli, B.S.; Bakoğlu, A. Levels of fat-soluble vitamins in some foods. Asian J. Chem. 2010, 22, 1251–1256. [Google Scholar]
- Lebiedzińska, A.L.; Szefer, P. Vitamins B in grain and cereal-grain food, soy-products and seeds. Food Chem. 2006, 95, 116–122. [Google Scholar] [CrossRef]
- Pittaway, J.K.; Ahuja, K.D.K.; Robertson, I.K.; Ball, M.J. Effects of a controlled diet supplemented with chickpeas on serum lipids, glucose tolerance, satiety and bowel function. J. Am. Coll. Nutr. 2007, 26, 334–340. [Google Scholar]
- Muir, J.G.; O’Dea, K. Measurement of resistant starch: Factors affecting the amount of starch escaping digestion in vitro. Am. J. Clin. Nutr. 1992, 56, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Kendall, C.W.; Emam, A.; Augustin, L.S.; Jenkins, D.J. Resistant starches and health. J. AOAC Int. 2004, 87, 769–774. [Google Scholar] [CrossRef]
- Osorio-Díaz, P.; Agama-Acevedo, E.; Mendoza-Vinalay, M.; Tovar, J.; Bello-Pérez, L.A. Pasta added with chickpea flour: Chemical composition, in vitro starch digestibility and predicted glycemic index. Cienc. Tecnol. Aliment. 2008, 6, 6–12. [Google Scholar]
- Ahmed, R.; Anthony, B.; David, T.; Sarah, B.; Judy, F.; Tina, B.; Behjat, K.H.; Zhongyi, L.; Sadequr, R.; Matthew, M. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc. Natl. Acad. Sci. USA 2006, 103, 3546–3551. [Google Scholar]
- Aurand, L.; Woods, A.; Wells, M. Food Composition and Analysis; Van Nostrand Reinhold Company: New York, NY, USA, 1987. [Google Scholar]
- Cummings, J.; Stephen, A.; Branch, W. Implications of dietary fibre breakdown in the human colon. In Banbury Report 7 Gastrointestinal Cancer; Bruce, W., Correa, P., Lipkin, M., Tannenbaum, S., Wilkins, T., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1981; pp. 71–81. [Google Scholar]
- Mathers, J.C. Pulses and carcinogenesis: Potential for the prevention of colon, breast and other cancers. Br. J. Nutr. 2002, 88, 273–279. [Google Scholar]
- Raicht, R.F.; Cohen, B.I.; Fazzini, E.P.; Sarwal, A.N.; Takahashi, M. Protective effect of plant sterols against chemically induced colon tumors in rats. Cancer Res. 1980, 40, 403–405. [Google Scholar] [PubMed]
- Giovannucci, E.; Ascherio, A.; Rimm, E.B.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C. Intake of carotenoids and retinol in relation to risk of prostate cancer. J. Natl. Cancer Inst. 1995, 87, 1767–1776. [Google Scholar] [CrossRef]
- Julio, G.C.; Javier, V.; María, D.M.Y.; Justo, P.; Manuel, A.; Francisco, M. Effect of chickpea aqueous extracts, organic extracts, and protein concentrates on cell proliferation. J. Med. Food 2004, 7, 122–129. [Google Scholar]
- Ying, Y.; Libin, Z.; Yuanjun, G.; Yibo, Z.; Jingfeng, T.; Fengying, L.; Wenbin, S.; Boren, J.; Xiaohua, Y.; Mingdao, C. Dietary chickpeas reverse visceral adiposity, dyslipidaemia and insulin resistance in rats induced by a chronic high-fat diet. Br. J. Nutr. 2007, 98, 720–726. [Google Scholar]
- Murty, C.M.; Pittaway, J.K.; Ball, M.J. Chickpea supplementation in an Australian diet affects food choice, satiety and bowel health. Appetite 2010, 54, 282–288. [Google Scholar]
- Paul, N.; Marja, C.; Andriana, C. Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. Am. J. Clin. Nutr. 2004, 79, 390–395. [Google Scholar]
- Thudi, M.; Chitikineni, A.; Liu, X.; He, W.; Roorkiwal, M.; Yang, W.; Jian, J.; Doddamani, D.; Gaur, P.M.; Rathore, A.; et al. Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Sci. Rep. 2016, 6, 38636. [Google Scholar] [CrossRef]
- Kumar, M.; Yusuf, M.A.; Nigam, M.; Kumar, M. An update on genetic modification of chickpea for increased yield and stress tolerance. Mol. Biotechnol. 2018, 60, 651–663. [Google Scholar] [CrossRef]
- Roorkiwal, M.; Bharadwaj, C.; Barmukh, R.; Dixit, G.P.; Thudi, M.; Gaur, P.M.; Chaturvedi, S.K.; Fikre, A.; Hamwieh, A.; Kumar, S.; et al. Integrating genomics for chickpea improvement: Achievements and opportunities. Theor. Appl. Genet. 2020, 133, 1703–1720. [Google Scholar] [CrossRef] [PubMed]
- Seyedimoradi, H.; Talebi, R.; Kanouni, H.; Naji, A.M.; Karami, E. Genetic diversity and population structure analysis of chickpea (Cicer arietinum L.) advanced breeding lines using whole-genome DArTseq-generated SilicoDArT markers. Braz. J. Bot. 2020, 43, 541–549. [Google Scholar] [CrossRef]
- Li, H.; Rodda, M.; Gnanasambandam, A.; Aftab, M.; Redden, R.; Hobson, K.; Rosewarne, G.; Materne, M.; Kaur, S.; Slater, A.T. Breeding for biotic stress resistance in chickpea: Progress and prospects. Euphytica 2015, 204, 257–288. [Google Scholar]
- Ahmar, S.; Gill, R.A.; Jung, K.-H.; Faheem, A.; Qasim, M.U.; Mubeen, M.; Zhou, W. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: Recent advances and future outlook. Int. J. Mol. Sci. 2020, 21, 2590. [Google Scholar] [CrossRef]
- Stefaniak, T.; McPhee, K. Comparison of hybridization techniques in chickpea. Crop Sci. 2017, 57, 843–846. [Google Scholar] [CrossRef]
- Salimath, P.M.; Toker, C.; Sandhu, J.S.; Kumar, J.; Bahl, P.N. Conventional breeding methods. In Chickpea Breeding & Management; CABI: Wallingford, UK, 2007. [Google Scholar]
- Upadhyaya, H.D.; Dwivedi, S.L.; Sharma, S. Managing and discovering agronomically beneficial traits in chickpea germplasm collections. In The Chickpea Genome; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Abbo, S.; Berger, J.; Turner, N.C. Evolution of cultivated chickpea: Four bottlenecks limit diversity and constrain adaptation. Funct. Plant Biol. 2003, 30, 1081–1087. [Google Scholar] [CrossRef]
- Abbo, S.; Shtienberg, D.; Lichtenzveig, J.; Lev-Yadun, S.; Gopher, A. The chickpea, summer cropping, and a new model for pulse domestication in the ancient Near East. Q. Rev. Biol. 2003, 78, 435–448. [Google Scholar] [CrossRef]
- Varshney, R.K.; Thundi, M.; May, G.D.; Jackson, S.A. Legume Genomics and Breeding. In Plant Breeding Reviews; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 33. [Google Scholar]
- Jha, U.C. Current advances in chickpea genomics: Applications and future perspectives. Plant Cell Rep. 2018, 37, 947–965. [Google Scholar] [CrossRef]
- Varshney, R.K.; Hiremath, P.J.; Lekha, P.; Kashiwagi, J.; Balaji, J.; Deokar, A.A.; Vadez, V.; Xiao, Y.; Srinivasan, R.; Gaur, P.M.; et al. A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genom. 2009, 10, 523. [Google Scholar] [CrossRef]
- Nayak, S.N.; Zhu, H.; Varghese, N.; Datta, S.; Choi, H.-K.; Horres, R.; Juengling, R.; Singh, J.; Kishor, P.B.K.; Sivaramakrishnan, S.; et al. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor. Appl. Genet. 2010, 120, 1415–1441. [Google Scholar] [CrossRef]
- Hiremath, P.J.; Kumar, A.; Penmetsa, R.V.; Farmer, A.; Schlueter, J.A.; Chamarthi, S.K.; Whaley, A.M.; Carrasquilla-Garcia, N.; Gaur, P.M.; Upadhyaya, H.D.; et al. Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol. J. 2012, 10, 716–732. [Google Scholar] [CrossRef]
- Thudi, M.; Bohra, A.; Nayak, S.N.; Varghese, N.; Shah, T.M.; Penmetsa, R.V.; Thirunavukkarasu, N.; Gudipati, S.; Gaur, P.M.; Kulwal, P.L. Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS ONE 2011, 6, e27275. [Google Scholar]
- Kudapa, H.; Azam, S.; Sharpe, A.G.; Taran, B.; Li, R.; Deonovic, B.; Cameron, C.; Farmer, A.D.; Cannon, S.B.; Varshney, R.K. Comprehensive Transcriptome Assembly of Chickpea (Cicer arietinum L.) Using sanger and next generation sequencing platforms: Development and applications. PLoS ONE 2014, 9, e86039. [Google Scholar] [CrossRef]
- Agarwal, G.; Garg, V.; Kudapa, H.; Doddamani, D.; Pazhamala, L.T.; Khan, A.W.; Thudi, M.; Lee, S.-H.; Varshney, R.K. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnol. J. 2016, 14, 1563–1577. [Google Scholar] [CrossRef]
- Mashaki, K.M.; Garg, V.; Ghomi, A.A.N.; Kudapa, H.; Chitikineni, A.; Nezhad, K.Z.; Yamchi, A.; Soltanloo, H.; Varshney, R.K.; Thudi, M. RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS ONE 2018, 13, e0199774. [Google Scholar] [CrossRef]
- Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’an, B.; et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef]
- Varshney, R.K.; Roorkiwal, M.; Sun, S.; Bajaj, P.; Chitikineni, A.; Thudi, M.; Singh, N.P.; Du, X.; Upadhyaya, H.D.; Khan, A.W.; et al. A chickpea genetic variation map based on the sequencing of 3366 genomes. Nature 2021, 599, 622–627. [Google Scholar] [CrossRef]
- Zhang, Y.; Massel, K.; Godwin, I.D.; Gao, C. Applications and potential of genome editing in crop improvement. Genome Biol. 2018, 19, 210. [Google Scholar] [CrossRef]
- Sarmah, B.K.; Moore, A.; Tate, W.; Molvig, L.; Morton, R.L.; Rees, D.P.; Chiaiese, P.; Chrispeels, M.J.; Tabe, L.M.; Higgins, T.J.V. Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol. Breed. 2004, 14, 73–82. [Google Scholar]
- Chakraborti, D.; Sarkar, A.; Mondal, H.A.; Das, S. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res. 2009, 18, 529–544. [Google Scholar] [CrossRef]
- Das, A.; Datta, S.; Thakur, S.; Shukla, A.; Ansari, J.; Sujayanand, G.K.; Chaturvedi, S.K.; Kumar, P.A.; Singh, N.P. Expression of a chimeric gene encoding insecticidal crystal protein Cry1Aabc of Bacillus thuringiensis in chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner.). Front. Plant Sci. 2017, 8, 1423. [Google Scholar] [CrossRef]
- Kambrekar, D.N. Management of Legume Podborer, Helicoverpa armigera with Host Plant Resistance. J. Farm Sci. 2016, 29, 157–171. [Google Scholar]
- Anbazhagan, K.; Bhatnagar-Mathur, P.; Vadez, V.; Dumbala, S.R.; Kishor, P.B.K.; Sharma, K.K. DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep. 2015, 34, 199–210. [Google Scholar] [CrossRef]
- Ghanti, S.K.K.; Sujata, K.G.; Kumar, B.M.V.; Karba, N.N.; Reddy, K.J.; Rao, M.S.; Kishor, P.B.K. Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biol. Plant. 2011, 55, 634–640. [Google Scholar] [CrossRef]
- Razzaq, M.K.; Akhter, M.; Ahmad, R.M.; Cheema, K.L.; Hina, A.; Karikari, B.; Raza, G.; Xing, G.; Gai, J.; Khurshid, M. CRISPR-Cas9 based stress tolerance: New hope for abiotic stress tolerance in chickpea (Cicer arietinum). Mol. Biol. Rep. 2022, 49, 8977–8985. [Google Scholar] [CrossRef] [PubMed]
- Nour, S.M.; Fernandez, M.P.; Normand, P.; Cleyet-Marel, J.C. Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int. J. Syst. Bacteriol. 1994, 44, 511–522. [Google Scholar]
- Nour, S.M.; Cleyet-Marel, J.C.; Normand, P.; Fernandez, M.P. Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int. J. Syst. Bacteriol. 1995, 45, 640–648. [Google Scholar] [PubMed]
- Zhang, J.J.; Lou, K.; Jin, X.; Mao, P.H.; Wang, E.T.; Tian, C.F.; Sui, X.H.; Chen, W.F.; Chen, W.X. Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China. Plant Soil 2012, 353, 123–134. [Google Scholar] [CrossRef]
- Elias, N.V.; Herridge, D.F. Naturalised populations of mesorhizobia in chickpea (Cicer arietinum L.) cropping soils: Effects on nodule occupancy and productivity of commercial chickpea. Plant Soil 2015, 387, 233–249. [Google Scholar]
- Zhang, J.J.; Liu, T.Y.; Chen, W.F.; Wang, E.T.; Sui, X.H.; Zhang, X.X.; Li, Y.; Li, Y.; Chen, W.X. Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. Int. J. Syst. Evol. Microbiol. 2012, 62, 2737–2742. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, C.; Chen, W.; De, L.P.; Zhang, Z.; Shang, Y.; Wang, E.T. Mesorhizobium wenxiniae sp. nov., isolated from chickpea (Cicer arietinum L.) in China. Int. J. Syst. Evol. Microbiol. 2018, 68, 1930–1936. [Google Scholar] [PubMed]
- Tena, W.; Wolde-Meskel, E.; Degefu, T.; Walley, F. Genetic and phenotypic diversity of rhizobia nodulating Chickpea (Cicer arietinum L.) in soils from southern and central Ethiopia. Can. J. Microbiol. 2017, 63, 690–707. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, A.; Brigido, C.; Laranjo, M.; Rodrigues, S.; Oliveira, S. Survey of Chickpea Rhizobia diversity in Portugal reveals the predominance of species distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum. Microb. Ecol. 2009, 58, 930–941. [Google Scholar] [CrossRef]
- Laranjo, M.; Machado, J.; Young, J.P.; Oliveira, S. High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiol. Ecol. 2004, 48, 101–107. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yang, X.; Guo, C.; de Lajudie, P.; Singh, R.P.; Wang, E.T.; Chen, W.F. Mesorhizobium muleiense and Mesorhizobium gsp. nov. are symbionts of Cicer arietinum L. in alkaline soils of Gansu, Northwest China. Plant Soil 2017, 410, 103–112. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, S.; Shang, Y.; Brunel, B.; Li, S.; Zhao, Y.; Liu, Y.; Chen, W.; Wang, E.; Singh, R.P.; et al. Genomic diversity of chickpea-nodulating rhizobia in Ningxia (north central China) and gene flow within symbiotic Mesorhizobium muleiense populations. Syst. Appl. Microbiol. 2020, 43, 126089. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Wang, N.; Chen, W.; Feng, X.; Jia, B.; Zhao, Y.; Yang, T.; Zong, X. The introduced strain Mesorhizobium ciceri USDA 3378 is more competitive than an indigenous strain in nodulation of chickpea in newly introduced areas of China. Lett. Appl. Microbiol. 2022, 75, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Handbook of Agriculture; Indian Council of Agricultural Research: New Delhi, India, 2014. [Google Scholar]
- Unkovich, M.; Herridge, D.; Peoples, M.; Cadisch, G.; Boddey, B.; Giller, K.; Alves, B.; Chalk, P. Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems; Australian Centre for International Agricultural Research: Canberra, Australia, 2008; p. 16. [Google Scholar]
- Sridevi, M.; Mallaiah, K.V. Phosphate solubilization by Rhizobium strains. Indian J. Microbiol. 2009, 49, 98. [Google Scholar]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 2012, 963401. [Google Scholar]
- Singh, Z.; Singh, G. Role of Rhizobium in chickpea (Cicer arietinum) production—A review. Agric. Rev. 2018, 39, 31–39. [Google Scholar]
- Zhang, J.J.; Yu, T.; Lou, K.; Mao, P.H.; Wang, E.T.; Chen, W.F.; Chen, W.X. Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils. Syst. Appl. Microbiol. 2014, 37, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, N.; Li, S.; Wang, J.; Feng, Y.; Wang, E.; Li, Y.; Yang, T.; Chen, W. The effect of different rhizobial symbionts on the composition and diversity of rhizosphere microorganisms of chickpea in different soils. Plants 2023, 2023, 3421. [Google Scholar] [CrossRef]
- Rudresh, D.L.; Shivaprakash, M.K.; Prasad, R.D. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl. Soil Ecol. 2005, 28, 139–146. [Google Scholar]
- Elkoca, E.; Kantar, F.; Sahin, F. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J. Plant Nutr. 2008, 31, 157–171. [Google Scholar]
- Solaiman, A.; Talukder, M.S.; Rabbani, M.G. Influence of some Rhizobium strains on chickpea: Nodulation, dry matter yield and nitrogen uptake. Bangladesh J. Microbiol. 2011, 27, 61–64. [Google Scholar] [CrossRef]
- Yadav, J.; Verma, J.P. Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.). Eur. J. Soil Biol. 2014, 63, 70–77. [Google Scholar] [CrossRef]
- Shahzad, S.M.; Khalid, A.; Arif, M.S.; Riaz, M.; Ashraf, M.; Iqbal, Z.; Yasmeen, T. Co-inoculation integrated with P-enriched compost improved nodulation and growth of Chickpea (Cicer arietinum L.) under irrigated and rainfed farming systems. Biol. Fertil. Soils 2014, 50, 1–12. [Google Scholar] [CrossRef]
- Uddin, M.; Hussain, S.; Khan, M.; Akhtar, M.; Hashmi, N.; Idrees, M.; Naeem, M.; Dar, T.A. Use of N and P biofertilizers together with phosphorus fertilizer improves growth and physiological attributes of chickpea. Glob. J. Agric. Sci. 2014, 2, 168–174. [Google Scholar]
- Erman, M.; Demir, S.; Ocak, E.; Tüfenkçi, Ş.; Oğuz, F.; Akköprü, A. Effects of Rhizobium, arbuscular mycorrhiza and whey applications on some properties in chickpea (Cicer arietinum L.) under irrigated and rainfed conditions 1—Yield, yield components, nodulation and AMF colonization. Field Crops Res. 2011, 122, 14–24. [Google Scholar] [CrossRef]
- Kaur, N.; Sharma, P.; Sharma, S. Co-inoculation of Mesorhizobium sp. and plant growth promoting rhizobacteria Pseudomonas sp. as bio-enhancer and bio-fertilizer in chickpea (Cicer arietinum L.). Legume Res. 2015, 38, 367–374. [Google Scholar] [CrossRef]
- Sahai, P.; Chandra, R. Performance of Liquid and Carrier-based Inoculants of Mesorhizobium ciceri and PGPR (Pseudomonas diminuta) in Chickpea (Cicer arietinum L.) on Nodulation, Yield and Soil properties. J. Indian Soc. Soil Sci. 2011, 59, 263–267. [Google Scholar]
- Das, S.; Pareek, N.; Raverkar, K.; Chandra, R.; Kaustav, A. Effectiveness of micronutrient application and Rhizobium inoculation on growth and yield of chickpea. Int. J. Agric. Environ. Biotechnol. 2012, 5, 445–452. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, J.; Zhu, C.; Singh, R.P.; Chen, W. Chickpea: Its Origin, Distribution, Nutrition, Benefits, Breeding, and Symbiotic Relationship with Mesorhizobium Species. Plants 2024, 13, 429. https://doi.org/10.3390/plants13030429
Zhang J, Wang J, Zhu C, Singh RP, Chen W. Chickpea: Its Origin, Distribution, Nutrition, Benefits, Breeding, and Symbiotic Relationship with Mesorhizobium Species. Plants. 2024; 13(3):429. https://doi.org/10.3390/plants13030429
Chicago/Turabian StyleZhang, Junjie, Jingqi Wang, Cancan Zhu, Raghvendra Pratap Singh, and Wenfeng Chen. 2024. "Chickpea: Its Origin, Distribution, Nutrition, Benefits, Breeding, and Symbiotic Relationship with Mesorhizobium Species" Plants 13, no. 3: 429. https://doi.org/10.3390/plants13030429
APA StyleZhang, J., Wang, J., Zhu, C., Singh, R. P., & Chen, W. (2024). Chickpea: Its Origin, Distribution, Nutrition, Benefits, Breeding, and Symbiotic Relationship with Mesorhizobium Species. Plants, 13(3), 429. https://doi.org/10.3390/plants13030429