Spasmolytic Activity of Gentiana lutea L. Root Extracts on the Rat Ileum: Underlying Mechanisms of Action
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of G. lutea Root Extracts and Fractions
2.2. Spasmolytic Activity
2.2.1. Effects of G. lutea Extracts and Fractions on Spontaneous Ileum Contractions
2.2.2. Effects of the G. lutea Extract on Acetylcholine-Induced Ileum Contractions
2.2.3. Effects of the G. lutea Extract on Histamine-Induced Ileum Contractions
2.2.4. Effects of the G. lutea Extract on Calcium-Chloride-Induced Ileum Contractions
2.2.5. Effects of the G. lutea Extract on Potassium-Chloride-Induced Ileum Contractions
2.2.6. Effects of the G. lutea Extract on the Contractions Induced by an Agonist of L-Type Ca2+ Channels (Bay K8644)
2.2.7. Role of NO and cGMP on the Effect of G. lutea Extract on Spontaneous Contractions (L-NAME and ODQ)
2.2.8. Role of K+ Channels in Effect of G. lutea Extract on Spontaneous Contractions (Apamin, TRAM-34, Charybdotoxin, Glibenclamide, and Quinine)
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Extraction Procedure
4.3. Fractionation of the Selected Extract
4.4. HPLC Analysis
4.5. Experimental Animal Housing
4.6. Methodology for Isolated Rat Ileum Contractions
4.6.1. The Isolation and Placement of Rat Ileum
4.6.2. The Impact of G. lutea Extracts on Spontaneous Contractions of Rat Ileum
4.6.3. The Effects of the G. lutea Extract on Acetylcholine-Induced Contractions of Rat Ileum
4.6.4. The Effects of the G. lutea Extract on Histamine-Induced Contractions of Rat Ileum
4.6.5. The Role of Calcium Channels in the Effect of the G. lutea Extract
4.6.6. The Role of NO and cGMP in the Effect of the G. lutea Extract
4.6.7. The Role of K+ Channels in the Effect of the G. lutea Extract
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oyebode, O.; Kandala, N.B.; Chilton, P.J.; Lilford, R.J. Use of Traditional Medicine in Middle-Income Countries: A WHO-SAGE Study. Health Policy Plann. 2016, 31, 984–991. [Google Scholar] [CrossRef]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; et al. A Critical Analysis of Extraction Techniques Used for Botanicals: Trends, Priorities, Industrial Uses and Optimization Strategies. TrAC-Trend Anal. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Veiga, M.; Costa, E.M.; Silva, S.; Pintado, M. Impact of Plant Extracts upon Human Health: A Review. Crit. Rev. Food Sci. 2020, 60, 873–886. [Google Scholar] [CrossRef]
- Sadraei, H.; Ghanadian, M.; Asghari, G.; Madadi, E.; Azali, N. Antispasmodic and Antidiarrhoeal Activities of 6-(4-Hydroxy-3-Methoxyphenyl)-Hexanonic Acid from Pycnocycla Spinosa Decne. exBoiss. Res. Pharm. Sci. 2014, 9, 279–286. [Google Scholar]
- Verspohl, E.J.; Fujii, H.; Homma, K.; Buchwald-Werner, S. Testing of Perilla Frutescens Extract and Vicenin 2 for Their Antispasmodic Effect. Phytomedicine 2013, 20, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Šavikin, K.; Aljančić, I.S.; Vajs, V.E.; Milosavljević, S.M.; Jadranin, M.; Đorđević, I.; Menković, N.R. Bioactive Secondary Metabolites in Several Genera of Gentianaceae Species from the Central Regions of the Balkan Peninsula. In The Gentianaceae—Volume 2: Biotechnology and Applications; Rybczyński, J.J., Davey, M.R., Mikuła, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 319–347. [Google Scholar]
- Jiang, M.; Cui, B.W.; Wu, Y.L.; Nan, J.X.; Lian, L.H. Genus Gentiana: A Review on Phytochemistry, Pharmacology and Molecular Mechanism. J. Ethnopharmacol. 2021, 264, 113391. [Google Scholar] [CrossRef] [PubMed]
- Prakash, O.; Singh, R.; Kumar, S.; Srivastava, S.; Ved, A. Gentiana lutea Linn. (Yellow Gentian): A Comprehensive Review. J. Ayurvedic Herb. Med. 2017, 3, 175–181. [Google Scholar] [CrossRef]
- Yaneva, I.; Balabanski, V.; Karanesheva, T.; Ignatov, I. Some Endangered Healings Plants in Bulgaria–Legislative Regulation, Protection, Characteristic Description, Application, Agricultural Cultivation. Bulg. J. Agric. Sci. 2020, 26, 847–852. [Google Scholar]
- Heinrich, M.; Barnes, J.; Prieto-Garcia, J.; Gibbons, S.; Williamson, E.M. Fundamentals of Pharmacognosy and Phytotherapy E-Book, 3rd ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017; p. 243. [Google Scholar]
- Akbar, S. Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 955–962. [Google Scholar]
- Hempen, C.H.; Fischer, T. A Materia Medica for Chinese Medicine: Plants, Minerals, and Animal Products; Elsevier Health Sciences: Amsterdam, The Netherlands, 2009; pp. 110–263. [Google Scholar]
- European Medicines Agency. EMA/HMPC/607863/2017. Assessment Report on Gentiana lutea L., Radix; European Medicines Agency: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Mudrić, J.; Janković, T.; Šavikin, K.; Bigović, D.; Đukić-Ćosić, D.; Ibrić, S.; Đuriš, J. Optimization and Modelling of Gentiopicroside, Isogentisin and Total Phenolics Extraction from Gentiana lutea L. Roots. Ind. Crop Prod. 2020, 155, 112767. [Google Scholar] [CrossRef]
- Öztürk, N.; Herekman-Demir, T.; Öztürk, Y.; Bozan, B.; Başer, K.H. Choleretic Activity of Gentiana lutea ssp. Symphyandra in Rats. Phytomedicine 1998, 5, 283–288. [Google Scholar] [CrossRef]
- Kesavan, R.; Chandel, S.; Upadhyay, S.; Bendre, R.; Ganugula, R.; Potunuru, U.R.; Giri, H.; Sahu, G.; Kumar, P.U.; Reddy, G.B.; et al. Gentiana lutea Exerts Anti-Atherosclerotic Effects by Preventing Endothelial Inflammation and Smooth Muscle Cell Migration. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 293–301. [Google Scholar] [CrossRef]
- Wölfle, U.; Haarhaus, B.; Seiwerth, J.; Cawelius, A.; Schwabe, K.; Quirin, K.W.; Schempp, C.M. The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo. Int. J. Mol. Sci. 2017, 18, 1814. [Google Scholar] [CrossRef] [PubMed]
- Amin, A. Ketoconazole-induced Testicular Damage in Rats Reduced by Gentiana Extract. Exp. Toxicol. Pathol. 2008, 59, 377–384. [Google Scholar] [CrossRef]
- Rojas, A.; Bah, M.; Rojas, J.I.; Gutiérrez, D.M. Smooth Muscle Relaxing Activity of Gentiopicroside Isolated from Gentiana Spathacea. Planta Med. 2000, 66, 765–767. [Google Scholar] [CrossRef] [PubMed]
- Šavikin, K.; Živković, J.; Alimpić, A.; Zdunić, G.; Janković, T.; Duletić-Laušević, S.; Menković, N. Activity Guided Fractionation of Pomegranate Extract and Its Antioxidant, Antidiabetic and Antineurodegenerative Properties. Ind. Crop Prod. 2018, 113, 142–149. [Google Scholar] [CrossRef]
- Ponticelli, M.; Lela, L.; Moles, M.; Mangieri, C.; Bisaccia, D.; Faraone, I.; Falabella, R.; Milella, L. The Healing Bitterness of Gentiana lutea L., Phytochemistry and Biological Activities: A Systematic Review. Phytochemistry 2023, 206, 113518. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.M.; Caprioli, G.; Ricciutelli, M.; Maggi, F.; Marín, R.; Vittori, S.; Sagratini, G. Comparative HPLC/ESI-MS and HPLC/DAD Study of Different Populations of Cultivated, Wild and Commercial Gentiana lutea L. Food Chem. 2015, 174, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Živković, J.; Janković, T.; Menković, N.; Šavikin, K. Optimization of Ultrasound-Assisted Extraction of Isogentisin, Gentiopicroside and Total Polyphenols from Gentian Root Using Response-Surface Methodology. Ind. Crop Prod. 2019, 139, 111567. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Jovanović, M.S.; Milutinović, M.; Lazarević, Z.; Mudrić, J.; Matejić, J.; Kitić, D.; Šavikin, K. Heat- and Microwave-Assisted Extraction of Bioactive Compounds from Gentiana Asclepiadea L. Underground Parts: Optimization and Comparative Assessment Using Response Surface Methodology. J. Appl. Res. Med. Aroma. 2023, 34, 100483. [Google Scholar] [CrossRef]
- Krgović, N.; Jovanović, M.; Aradski, A.A.; Janković, T.; Stević, T.; Zdunić, G.; Laušević, S.D.; Šavikin, K. Bioassay-Guided Skin-Beneficial Effects of Fractionated Sideritis Raeseri Subsp. Raeseri Extract. Plants 2022, 11, 2677. [Google Scholar] [CrossRef]
- Wang, H.; Tan, C.; Bai, X.; Du, Y.; Lin, B. Pharmacological Studies of Anti-Diarrhoeal Activity of Gentianopsis Paludosa. J. Ethnopharmacol. 2006, 105, 114–117. [Google Scholar] [CrossRef]
- Ni, Y.; Liu, M.; Yu, H.; Chen, Y.; Liu, Y.; Chen, S.; Ruan, J.; Da, A.; Zhang, Y.; Wang, T. Desmethylbellidifolin from Gentianella Acuta Ameliorate TNBS-Induced Ulcerative Colitis through Antispasmodic Effect and Anti-Inflammation. Front. Pharmacol. 2019, 10, 1104. [Google Scholar] [CrossRef] [PubMed]
- Chda, A.; Kabbaoui, M.; Chokri, A.; Abida, K.; Tazi, A.; Cheikh, R. Spasmolytic action of Centaurium Erythraea on Rabbit Jejunum is through Calcium Channel Blockade and NO Release. European J. Med. Plants 2016, 11, 1–13. [Google Scholar] [CrossRef]
- Ratz, P.H.; Berg, K.M.; Urban, N.H.; Miner, A.S. Regulation of Smooth Muscle Calcium Sensitivity: KCl as a Calcium-Sensitizing Stimulus. Am. J. Physiol. Cell Physiol. 2005, 288, C769–C783. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.S.; López, V.; Castro, M.; Gómez-Rincón, C.; Arruebo, M.P.; Les, F.; Plaza, M.Á. Involvement of NO/cGMP Signaling Pathway, Ca2+ and K+ Channels on Spasmolytic Effect of Everlasting Flower Polyphenolic Extract (Helichrysum Stoechas (L.) Moench). Int. J. Mol. Sci. 2022, 23, 14422. [Google Scholar] [CrossRef] [PubMed]
- Silveira, E.S.; Bezerra, S.B.; Ávila, K.S.; Rocha, T.M.; Pinheiro, R.G.; de Queiroz, M.G.R.; Magalhães, P.J.C.; Santos, F.A.; Leal, L.K.A.M. Gastrointestinal Effects of Standardized Brazilian Phytomedicine (Arthur de Carvalho Drops®) Containing Matricaria Recutita, Gentiana lutea and Foeniculum vulgare. Pathophysiology 2019, 26, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Lamarca, V.; Grasa, L.; Fagundes, D.S.; Arruebo, M.P.; Plaza, M.A.; Murillo, M.D. K+ Channels Involved in Contractility of Rabbit Small Intestine. J. Physiol. Biochem. 2006, 62, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Randjelović, M.; Branković, S.; Miladinović, B.; Milutinović, M.; Živanović, S.; Mihajilov-Krstev, T.; Kitić, D. The Benefits of Salvia Sclarea L. Ethanolic Extracts on Gastrointestinal and Respiratory Spasms. S. Afr. J. Bot. 2022, 150, 621–632. [Google Scholar] [CrossRef]
Sample | Loganic Acid | Sweroside | Swertiamarin | Gentiopicroside | Isogentisin | Isovitexin |
---|---|---|---|---|---|---|
mg/g DW | ||||||
UAE | 13.70 ± 0.17 a | 1.65 ± 0.03 a | 1.05 ± 0.03 a | 51.78 ± 1.11 b | 11.50 ± 0.16 a | tr |
HAE | 13.66 ± 0.36 a | 1.39 ± 0.04 b | 0.72 ± 0.02 c | 50.33 ± 1.96 b | 10.85 ± 0.31 b | tr |
PE | 12.83 ± 0.22 b | 1.16 ± 0.01 c | 0.89 ± 0.02 b | 62.54 ± 1.23 a | 3.00 ± 0.05 c | tr |
Petroleum ether fraction | nd | 11.08 ± 0.34 c | nd | 5.80 ± 0.09 c | 262.30 ± 5.03 b | nd |
Ethyl acetate fraction | 133.22 ± 4.08 a | 62.95 ± 1.27 a | nd | 23.75 ± 0.85 b | 871.58 ± 9.16 a | nd |
n-Butanol fraction | 31.10 ± 1.51 b | 23.75 ± 1.08 b | 15.54 ± 0.61 a | 221.71 ± 8.87 a | 145.12 ± 2.78 c | 5.92 ± 0.24 |
Water fraction | 9.75 ± 0.41 c | 1.00 ± 0.04 d | 1.28 ± 0.04 b | 16.07 ± 0.51 bc | nd | tr |
Samples | Crude Extracts | Fractions of UAE | Positive Control | |||||
---|---|---|---|---|---|---|---|---|
UAE | HAE | PE | Petroleum Ether | Ethyl Acetate | n-Butanol | Water | Papaverine | |
EC50 (mg/mL) | 2.34 ± 0.15 a | 6.82 ± 0.33 b | 2.70 ± 0.11 c | 0.59 ± 0.01 d | 0.65 ± 0.01 e | / | / | 3.18 × 10−2 ± 0.01 × 10−2 f |
Maximal reduction of contractions (%) | 46.19 ± 4.60 a | 29.98 ± 2.56 b | 33.69 ± 2.79 b | 32.15 ± 2.08 b | 28.77 ± 2.62 b | / | / | 62.72 ± 2.72 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitić, N.; Živković, J.; Šavikin, K.; Randjelović, M.; Jovanović, M.; Kitić, D.; Miladinović, B.; Milutinović, M.; Stojiljković, N.; Branković, S. Spasmolytic Activity of Gentiana lutea L. Root Extracts on the Rat Ileum: Underlying Mechanisms of Action. Plants 2024, 13, 453. https://doi.org/10.3390/plants13030453
Kitić N, Živković J, Šavikin K, Randjelović M, Jovanović M, Kitić D, Miladinović B, Milutinović M, Stojiljković N, Branković S. Spasmolytic Activity of Gentiana lutea L. Root Extracts on the Rat Ileum: Underlying Mechanisms of Action. Plants. 2024; 13(3):453. https://doi.org/10.3390/plants13030453
Chicago/Turabian StyleKitić, Nemanja, Jelena Živković, Katarina Šavikin, Milica Randjelović, Miloš Jovanović, Dušanka Kitić, Bojana Miladinović, Milica Milutinović, Nenad Stojiljković, and Suzana Branković. 2024. "Spasmolytic Activity of Gentiana lutea L. Root Extracts on the Rat Ileum: Underlying Mechanisms of Action" Plants 13, no. 3: 453. https://doi.org/10.3390/plants13030453
APA StyleKitić, N., Živković, J., Šavikin, K., Randjelović, M., Jovanović, M., Kitić, D., Miladinović, B., Milutinović, M., Stojiljković, N., & Branković, S. (2024). Spasmolytic Activity of Gentiana lutea L. Root Extracts on the Rat Ileum: Underlying Mechanisms of Action. Plants, 13(3), 453. https://doi.org/10.3390/plants13030453