A MaxEnt Model of Citrus Black Fly Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae) under Different Climate Change Scenarios
Abstract
:1. Introduction
2. Results
2.1. Modeling Performance
2.2. Bioclimatc Variables Contribution
2.3. Response Curves
2.4. Current Potential Distribution of CBF
2.5. Impact of Climate Change on Future Potential Distribution of CBF in 2030 and 2050 under the SSP1-2.6 Scenario
2.6. Impact of Climate Change on Future Potential Distribution of CBF in 2030 and 2050 under the SSP5-8.5 Scenario
2.7. Global Orange Production
3. Materials and Methods
3.1. Occurrence Datasets
3.2. Bioclimatic Variables Data
3.3. Future Projections for Aleurocanthus woglumi
3.4. MaxEnt Development and Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rapisarda, C.; Massimino Cocuzza, G.E.; Marano, G.; Conti, F. Emergenze Fitosanitarie: Aspetti Entomologici; Polistampa: Florence, Italy, 2016; pp. 25–53. [Google Scholar]
- EPPO Global Database—European Union Funding. Available online: https://gd.eppo.int/taxon/ALECWO/distribution (accessed on 25 July 2023).
- Vieira, D.L.; Batista, J.; De Oliveira, R.; Malaquias, J.B.; De Souza, G.M. Aleurocanthus woglumi (Hemiptera: Aleyrodidae) in Citrus: Opportunities and Challenges to Implement a Sustainable Management. In Citrus Pathology; InTech: Rijeka, Croatia, 2017; pp. 121–136. [Google Scholar]
- Nguyen, R.; Hamon, A.B.; Fasulo, T.R. Citrus Blackfly, Aleurocanthus woglumi Ashby (Insecta: Hemiptera: Aleyrodidae). Available online: https://edis.ifas.ufl.edu/pdf%5CIN%5CIN19900.pdf (accessed on 26 January 2024).
- Smith, H.D.; Maltby, H.L.; Jiménez, E.J. Biological Control of the Citrus Blackfly in Mexico; US Department of Agriculture: Washington, DC, USA, 1964.
- Bedford, E.; Thomas, E. Biological Control of the Citrus Blackfly, Aleurocanthus woglumi (Ashby) (Homoptera: Aleyrodidae) in South Africa. J. Entomol. Soc. S. Afr. 1965, 28, 117–132. [Google Scholar]
- Maia, W.J.M.S.; Souza, J.C.; Marques, L.C.; Silva, L.M.S.; Benaduce, R.V.; Gentil, R.M. Infestação em citros por Aleurocanthus woglumi (Ashby) e perspectivas de Controle biológico aplicado no Pará. In Proceedings of the Anais do 9° Simpósio de Controle Biológico, Recife, Brazil, 15–19 May 2005; Volume 13, p. 183. [Google Scholar]
- Barbosa, F.; Santana, M.d.R.; da Silva, C.; Paranhos, B. Aleurocanthus woglumi (Hemíptera: Aleyrodidae): Uma Ameaça À Fruticultura Do Vale Do São Francisco; Embrapa Uva e Vinho: Gramado, Brazil, 2004. [Google Scholar]
- De Moraes, B.C.; De Souza, E.B.; Ribeiro, J.B.M.; Ferreira, D.B.D.S.; Maia, W.J.d.M. Impactos das mudanças climáticas na ecoclimatologia de Aleurocanthus woglumi Ashby, 1903 (Hemiptera: Aleyrodidae) no estado do Pará. Rev. Bras. Meteorol. 2014, 29, 77–84. [Google Scholar] [CrossRef]
- Aruna, J.; Jagginavar, S.; Karabhantanal, S.; Huilgol, S.N. Seasonal Incidence of Citrus Blackfly, Aleurocanthus woglumi Ashby and Its Natural Enemies on Acid Lime. J. Exp. Zool. India 2017, 20, 1519–1523. [Google Scholar]
- Lima, B.G.; Farias, P.R.S.; Ramos, E.; Soares, M.L.; Sales, T.D.M.; Silva, A.G.D. Economic Injury Level of Citrus Black-Fly in Commercial ‘Pera-Rio’orange Area. Rev. Bras. Frutic. 2017, 39, e461. [Google Scholar] [CrossRef]
- Health, E.P.o.P.; Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.A.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P. Pest Categorisation of Aleurocanthus spp. EFSA J. 2018, 16, e05436. [Google Scholar]
- Mingoti, R.; Pessoa, M.; Marinho-Prado, J.; Siqueira, C.; Ramos, G.; Jacomo, B.; Catarina De Araújo Siqueira, B.C.; Giovanna Galhardo Ramos, B.C.; Bárbara De Oliveira Jacomo, B.C. Zoneamentos Mensais de Áreas Favoráveis a Aleurocanthus Woglumi No Brasil; Atena Editora: São Paulo, Brazil, 2021. [Google Scholar]
- Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B.; Peterson, A.T.; Soberón, J.; Pearson, R.G. Ecological Niches and Geographic Distributions (Mpb-49); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Kumar, S.; Neven, L.G.; Yee, W.L. Evaluating Correlative and Mechanistic Niche Models for Assessing the Risk of Pest Establishment. Ecosphere 2014, 5, 1–23. [Google Scholar] [CrossRef]
- Santana, P.A., Jr.; Kumar, L.; Da Silva, R.S.; Pereira, J.L.; Picanço, M.C. Assessing the Impact of Climate Change on the Worldwide Distribution of Dalbulus maidis (Delong) Using Maxent. Pest Manag. Sci. 2019, 75, 2706–2715. [Google Scholar] [CrossRef]
- Yan, X.-R.; Wang, Z.-Y.; Feng, S.-Q.; Zhao, Z.-H.; Li, Z.-H. Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change. Insects 2022, 13, 981. [Google Scholar] [CrossRef]
- Ramasamy, M.; Das, B.; Ramesh, R. Predicting Climate Change Impacts on Potential Worldwide Distribution of Fall Armyworm Based on Cmip6 Projections. J. Pest Sci. 2022, 95, 841–854. [Google Scholar] [CrossRef]
- Galdino, T.V.d.S.; Kumar, S.; Oliveira, L.S.; Alfenas, A.C.; Neven, L.G.; Al-Sadi, A.M.; Picanco, M.C. Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata. PLoS ONE 2016, 11, e0159450. [Google Scholar] [CrossRef] [PubMed]
- Aidoo, O.F.; da Silva, R.S.; Santana Junior, P.A.; Souza, P.G.C.; Kyerematen, R.; Owusu-Bremang, F.; Yankey, N.; Borgemeister, C. Model-Based Prediction of the Potential Geographical Distribution of the Invasive Coconut Mite, Aceria guerreronis Keifer (Acari: Eriophyidae) Based on Maxent. Agric. For. Entomol. 2022, 24, 390–404. [Google Scholar] [CrossRef]
- Ramos, R.S.; Kumar, L.; Shabani, F.; Picanço, M.C. Mapping Global Risk Levels of Bemisia Tabaci in Areas of Suitability for Open Field Tomato Cultivation under Current and Future Climates. PLoS ONE 2018, 13, e0198925. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; pp. 1–864. [Google Scholar]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; van Vuuren, D.P.; van den Berg, M.; Feng, L.; Klein, D.; et al. Global Emissions Pathways under Different Socioeconomic Scenarios for Use in Cmip6: A Dataset of Harmonized Emissions Trajectories through the End of the Century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef]
- Akrivou, A.; Georgopoulou, I.; Papachristos, D.P.; Milonas, P.G.; Kriticos, D.J. Potential Global Distribution of Aleurocanthus woglumi Considering Climate Change and Irrigation. PLoS ONE 2021, 16, e0261626. [Google Scholar] [CrossRef]
- USDA. Citrus: World Markets and Trade, Citrus World Mark. Trade. 2022. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/w66343603/bv73d549r/1v53m4335/citrus.pdf (accessed on 20 August 2023).
- Zhang, H.; Song, J.; Zhao, H.; Li, M.; Han, W. Predicting the Distribution of the Invasive Species Leptocybe invasa: Combining Maxent and Geodetector Models. Insects 2021, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wei, W.; Li, H.; Wang, B.; Yang, X.; Liu, Y. Modelling the Potential Distribution and Shifts of Three Varieties of Stipa tianschanica in the Eastern Eurasian Steppe under Multiple Climate Change Scenarios. Glob. Ecol. Conserv. 2018, 16, e00501. [Google Scholar] [CrossRef]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R Package for Spatial Thinning of Species Occurrence Records for Use in Ecological Niche Models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Ramos, R.S.; Kumar, L.; Shabani, F.; da Silva, R.S.; de Araújo, T.A.; Picanço, M.C. Climate Model for Seasonal Variation in Bemisia tabaci Using Climex in Tomato Crops. Int. J. Biometeorol. 2019, 63, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Jarnevich, C.S.; Stohlgren, T.J.; Kumar, S.; Morisette, J.T.; Holcombe, T.R. Caveats for Correlative Species Distribution Modeling. Ecol. Inform. 2015, 29, 6–15. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A., Jr. A Practical Guide to Maxent for Modeling Species’ Distributions: What It Does, and Why Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of Maxent for Ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Townsend Peterson, A.; Papeş, M.; Eaton, M. Transferability and Model Evaluation in Ecological Niche Modeling: A Comparison of Garp and Maxent. Ecography 2007, 30, 550–560. [Google Scholar] [CrossRef]
- Nguyen, R. Aleurocanthus woglumi. In Invasive Species Compendium; CABI: Wallingford, UK, 2008. [Google Scholar] [CrossRef]
- Dowell, R.V.; Fitzpatrick, G.E. Effects of Temperature on the Growth and Survivorship of the Citrus Blackfly (Homoptera: Aleyrodidae) 1. Can. Entomol. 1978, 110, 1347–1350. [Google Scholar] [CrossRef]
- Haddad, M.L.; Parra, J.R.P.; Moraes, R.C.B. Métodos para Estimar os Limites Térmicos Inferior e Superior de Desenvolvimento de Insetos; Fundação de Estudos Agrários Luiz de Queiroz: Piracicaba, Brazil, 1999. [Google Scholar]
- Rodriguez, O. Ecofisiologia dos Citros; Castro, P.R.C., Ferreira, S.O., Yamada, T., Eds.; Associação Brasileira para Pesquisa da Potassa e do Fosfato: Piracicaba, Brazil, 1987. [Google Scholar]
- Mattos Junior, D.d.; De Negri, J.; Figueiredo, J.d.; Pompeu Junior, J. Citros: Principais Informações E Recomendações de Cultivo. Bol. Técnico 2005, 200. [Google Scholar]
- Flanders, S.E.; Herbert, D. Smith’s Observations on Citrus Blackfly Parasites in India and Mexico and the Correlated Circumstances. Can. Entomol. 1969, 101, 467–480. [Google Scholar] [CrossRef]
- Da Siva, A.G.; Farias, P.R.S.; Junior, A.L.B.; Souza, B.H.S. Mosca-Negra-Dos-Citros: Características Gerais, Bioecologia E Métodos De Controle Dessa Importante Praga Quarentenária Da Citricultura Brasileira. EntomoBrasilis 2011, 4, 85–91. [Google Scholar] [CrossRef]
- Rodrigues-Silva, N.; de Oliveira Campos, S.; de Sá Farias, E.; De Souza, T.C.; Martins, J.C.; Picanço, M.C. Relative Importance of Natural Enemies and Abiotic Factors as Sources of Regulation of Mealybugs (Hemiptera: Pseudococcidae) in Brazilian Coffee Plantations. Ann. Appl. Biol. 2017, 171, 303–315. [Google Scholar] [CrossRef]
- Medeiros, F.R.; Lemos, R.N.S.D.; Ottati, A.L.T.; Araújo, J.R.G.; Machado, K.K.G.; Rodrigues, A.A.C. Dinâmica Populacional Da Mosca-Negra-Dos-Citros Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae) Em Citrus Spp. No Município De São Luís-Ma. Rev. Bras. Frutic. 2009, 31, 1016–1021. [Google Scholar] [CrossRef]
- Reboita, M.S.; Gan, M.A.; Rocha, R.P.d.; Ambrizzi, T. Regimes de Precipitação Na América Do Sul: Uma Revisão Bibliográfica. Rev. Bras. Meteorol. 2010, 25, 185–204. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Ji, W.; Gao, G.; Wei, J. Potential Global Distribution of Daktulosphaira vitifoliae under Climate Change Based on Maxent. Insects 2021, 12, 347. [Google Scholar] [CrossRef]
- Wang, C.-J.; Wan, J.-Z.; Qu, H.; Zhang, Z.-X. Modelling Plant Invasion Pathways in Protected Areas under Climate Change: Implication for Invasion Management. Web Ecol. 2017, 17, 69–77. [Google Scholar] [CrossRef]
- Zou, Y.; Ge, X.; Guo, S.; Zhou, Y.; Wang, T.; Zong, S. Impacts of Climate Change and Host Plant Availability on the Global Distribution of Brontispa longissima (Coleoptera: Chrysomelidae). Pest Manag. Sci. 2020, 76, 244–256. [Google Scholar] [CrossRef]
- Cherry, R.; Fitzpatrick, G. Intra-Tree Dispersion of Citrus Blackfly. Environ. Entomol. 1979, 8, 997–999. [Google Scholar] [CrossRef]
- Quezada, J. Biological Control of Aleurocanthus woglumi [Homoptera: Aleyrodidae] in El Salvador. Entomophaga 1974, 19, 243–254. [Google Scholar] [CrossRef]
- Silva, A.B. Mosca negra dos citros, Aleurocanthus woglumi Ashby, praga potencial para a citricultura brasileira. In Pragas e Doenças de Cultivos Amazônicos; Embrapa: Belém, Brazil, 2005; pp. 147–156, 379. [Google Scholar]
- Cunha, M.d. Distribuição, Hospedeiros, Densidade Populacional, Aspectos Biológicos e Controle Químico da Mosca Negra dos Citros (Aleurocanthus woglumi Ashby) nas Condições do Estado do Pará. Master’s Thesis, Universidade Federal Rural da Amazônia, Belém, Brazil, 2003. [Google Scholar]
- Limberger, L.; Silva, M.E.S. Precipitação Na Bacia Amazônica E Sua Associação À Variabilidade Da Temperatura Da Superfície Dos Oceanos Pacífico E Atlântico: Uma Revisão. GEOUSP Espaço Tempo (Online) 2016, 20, 657–675. [Google Scholar] [CrossRef]
- Fisch, G.; Marengo, J.A.; Nobre, C.A. Clima Da Amazônia. In Climanálise-Boletim de Monitoramento e Análise Climática-Edição Comemorativa de; CPTEC—Centro de Previsão de Tempo e Estudos Climáticos: São Paulo, Brazil, 1996; pp. 24–41. [Google Scholar]
- IBGE. Produção Agrícola Municipal—PAM. Available online: https://www.ibge.gov.br/estatisticasnovoportal/economicas/agricul-turaepecuaria/9117producaoagricolamunicipalculturastemporariasepermanentes.html?edicao=18051&t=downloads (accessed on 5 August 2023).
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample Selection Bias and Presence-Only Distribution Models: Implications for Background and Pseudo-Absence Data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, A.; Ni, Z.; Wang, Q.; Zhang, E.; Yang, X.; Dong, H.; Shen, J.; Zhu, L.; Wang, J. Biodiversity Patterns across Taxonomic Groups along a Lake Water-Depth Gradient: Effects of Abiotic and Biotic Drivers. Sci. Total Environ. 2019, 686, 1262–1271. [Google Scholar] [CrossRef]
Bio | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.00 | |||||||||||||||||||
2 | 0.03 | 1.00 | ||||||||||||||||||
3 | 0.72 | −0.56 | 1.00 | |||||||||||||||||
4 | −0.71 | 0.60 | −0.98 | 1.00 | ||||||||||||||||
5 | 0.05 | 0.99 | −0.60 | 0.62 | 1.00 | |||||||||||||||
6 | 0.63 | −0.73 | 0.95 | −0.98 | −0.73 | 1.00 | ||||||||||||||
7 | −0.36 | 0.91 | −0.85 | 0.88 | 0.91 | −0.95 | 1.00 | |||||||||||||
8 | −0.56 | −0.12 | −0.47 | 0.53 | −0.07 | −0.38 | 0.20 | 1.00 | ||||||||||||
9 | 0.88 | −0.19 | 0.86 | −0.88 | −0.22 | 0.79 | −0.58 | −0.81 | 1.00 | |||||||||||
10 | −0.14 | 0.92 | −0.77 | 0.79 | 0.95 | −0.84 | 0.96 | 0.20 | −0.46 | 1.00 | ||||||||||
11 | 0.88 | −0.38 | 0.95 | −0.96 | −0.39 | 0.91 | −0.73 | −0.59 | 0.95 | −0.59 | 1.00 | |||||||||
12 | 0.24 | −0.85 | 0.77 | −0.75 | −0.87 | 0.82 | −0.91 | 0.12 | 0.36 | −0.87 | 0.60 | 1.00 | ||||||||
13 | 0.39 | −0.63 | 0.80 | −0.76 | −0.67 | 0.78 | −0.79 | 0.02 | 0.46 | −0.74 | 0.68 | 0.94 | 1.00 | |||||||
14 | 0.01 | −0.65 | 0.27 | −0.22 | −0.58 | 0.39 | −0.51 | 0.68 | −0.16 | −0.39 | 0.13 | 0.68 | 0.53 | 1.00 | ||||||
15 | 0.29 | 0.89 | −0.18 | 0.23 | 0.83 | −0.43 | 0.65 | −0.48 | 0.20 | 0.64 | −0.02 | −0.67 | −0.41 | −0.77 | 1.00 | |||||
16 | 0.43 | −0.69 | 0.86 | −0.81 | −0.73 | 0.83 | −0.84 | 0.00 | 0.50 | −0.79 | 0.72 | 0.96 | 0.98 | 0.59 | −0.44 | 1.00 | ||||
17 | 0.02 | −0.69 | 0.32 | −0.28 | −0.64 | 0.44 | −0.56 | 0.64 | −0.12 | −0.46 | 0.17 | 0.72 | 0.57 | 1.00 | −0.80 | 0.63 | 1.00 | |||
18 | −0.66 | −0.60 | −0.28 | 0.26 | −0.54 | −0.07 | −0.21 | 0.68 | −0.61 | −0.27 | −0.46 | 0.25 | −0.05 | 0.63 | −0.85 | 0.00 | 0.63 | 1.00 | ||
19 | 0.64 | −0.61 | 0.96 | −0.94 | −0.64 | 0.93 | −0.86 | −0.28 | 0.74 | −0.77 | 0.89 | 0.88 | 0.93 | 0.40 | −0.28 | 0.95 | 0.44 | −0.22 | 1.00 | |
20 | 0.26 | 0.92 | −0.40 | 0.38 | 0.93 | −0.51 | 0.75 | −0.39 | 0.07 | 0.81 | −0.14 | −0.83 | −0.62 | −0.74 | 0.87 | −0.67 | −0.77 | −0.70 | −0.49 | 1.00 |
Code | Environmental Variable | Percent Contribution |
---|---|---|
bio11 | Average temperature of the coldest quarter months | 36.7 |
bio13 | Precipitation of the rainiest month | 14.7 |
bio3 | Isothermality | 13.2 |
bio14 | Precipitation of the driest month | 10.2 |
bio4 | Seasonality of temperature | 5.2 |
bio20 | Elevation | 4 |
bio19 | Precipitation of the coldest quarter months | 2.5 |
bio17 | Precipitation of the driest quarter months | 2.4 |
bio16 | Precipitation of the rainiest quarter months | 2.2 |
bio1 | Annual average temperature | 1.8 |
bio6 | Lowest temperature of the coldest month | 1.4 |
bio2 | Average variation of daytime temperature | 1.3 |
bio12 | Annual precipitation | 1.2 |
bio7 | Annual temperature variation | 1.2 |
bio18 | Precipitation of the hottest quarter months | 0.6 |
bio10 | Average temperature of the hottest quarter months | 0.5 |
bio15 | Precipitation seasonality | 0.3 |
bio5 | Highest temperature of the hottest month | 0.2 |
bio9 | Average temperature of the driest quarter months | 0.2 |
bio8 | Average temperature of the rainiest quarter months | 0.1 |
Code | Environmental Variable | Percent Contribution |
---|---|---|
bio11 | Average temperature of the coldest quarter months | 36.1 |
bio13 | Precipitation of the rainiest month | 32.4 |
bio14 | Precipitation of the driest month | 31.6 |
Code | Environmental Variable | Unit |
---|---|---|
bio1 | Annual average temperature | °C |
bio2 | Average variation in daytime temperature | °C |
bio3 | Isothermality | °C |
bio4 | Seasonality of temperature | °C |
bio5 | Highest temperature of the hottest month | °C |
bio6 | Lowest temperature of the coldest month | °C |
bio7 | Annual temperature variation | °C |
bio8 | Average temperature of the rainiest quarter months | °C |
bio9 | Average temperature of the driest quarter months | °C |
bio10 | Average temperature of the hottest quarter months | °C |
bio11 | Average temperature of the coldest quarter months | °C |
bio12 | Annual precipitation | mm |
bio13 | Precipitation of the rainiest month | mm |
bio14 | Precipitation of the driest month | mm |
bio15 | Precipitation seasonality | mm |
bio16 | Precipitation of the rainiest quarter months | mm |
bi017 | Precipitation of the driest quarter months | mm |
bio18 | Precipitation of the hottest quarter months | mm |
bio19 | Precipitation of the coldest quarter months | mm |
bio20 | Elevation | m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, N.R.; Souza, P.G.C.; de Oliveira, G.S.; da Silva Santana, A.; Bacci, L.; Silva, G.A.; Barry, E.J.D.V.; de Aguiar Coelho, F.; Soares, M.A.; Picanço, M.C.; et al. A MaxEnt Model of Citrus Black Fly Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae) under Different Climate Change Scenarios. Plants 2024, 13, 535. https://doi.org/10.3390/plants13040535
da Silva NR, Souza PGC, de Oliveira GS, da Silva Santana A, Bacci L, Silva GA, Barry EJDV, de Aguiar Coelho F, Soares MA, Picanço MC, et al. A MaxEnt Model of Citrus Black Fly Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae) under Different Climate Change Scenarios. Plants. 2024; 13(4):535. https://doi.org/10.3390/plants13040535
Chicago/Turabian Styleda Silva, Nilson Rodrigues, Philipe Guilherme Corcino Souza, Gildriano Soares de Oliveira, Alisson da Silva Santana, Leandro Bacci, Gerson Adriano Silva, Edmond Joseph Djibril Victor Barry, Fernanda de Aguiar Coelho, Marcus Alvarenga Soares, Marcelo Coutinho Picanço, and et al. 2024. "A MaxEnt Model of Citrus Black Fly Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae) under Different Climate Change Scenarios" Plants 13, no. 4: 535. https://doi.org/10.3390/plants13040535
APA Styleda Silva, N. R., Souza, P. G. C., de Oliveira, G. S., da Silva Santana, A., Bacci, L., Silva, G. A., Barry, E. J. D. V., de Aguiar Coelho, F., Soares, M. A., Picanço, M. C., Sarmento, R. A., & da Silva, R. S. (2024). A MaxEnt Model of Citrus Black Fly Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae) under Different Climate Change Scenarios. Plants, 13(4), 535. https://doi.org/10.3390/plants13040535