Transcriptional Changes in Damask Rose Suspension Cell Culture Revealed by RNA Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rose Sample and Generation of Rose Callus
2.2. Suspension Cell Culture of Rose Callus
2.3. Extraction of Total RNAs and Preparation of Libraries for RNA Sequencing
2.4. Preparation of Reference Transcriptome, Quality Trimming, and Alignment of Raw Data
2.5. Calculation of Expression of Individual RNA and Identification of Differentially Expressed RNAs
2.6. Gene Enrichment Analyses
2.7. Identification of Target Coding RNAs for ncRNAs
2.8. Generation of Interaction Network between ncRNAs and Coding RNAs
2.9. Prediction of Subcellular Localization for Proteins Encoded by Rose RNAs
2.10. Quantitative Real-Time RT-PCR
3. Results
3.1. Suspension Cell Culture of Rose Callus Derived from Petals of Damask Rose and RNA Sequencing
3.2. Transcriptome Analyses of Rose Suspension Cells
3.3. Expression of Coding RNAs in Rose Suspension Cells
3.4. Subcellular Localization of Proteins Encoded by 580 Rose Coding RNAs
3.5. Expression of ncRNAs in Rose Suspension Cells
3.6. Identification of Differentially Expressed RNAs between Two Different Time Points
3.7. Confirmation of RNA Sequencing Results by Quantitative RT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Das, P.; Nanda, S. Medicinal efficacy of rose plant: A mini review. PharmaTutor 2015, 3, 23–26. [Google Scholar]
- Basu, S.; Zandi, P.; Cetzal-Ix, W.; Sengupta, R. The genus Rosa: An aristocrat from the plant family with class, color and fragrance. Iran Soc. Environ. 2015, 1–9. [Google Scholar]
- Fougère-Danezan, M.; Joly, S.; Bruneau, A.; Gao, X.-F.; Zhang, L.-B. Phylogeny and biogeography of wild roses with specific attention to polyploids. Ann. Bot. 2015, 115, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Agaoglu, Y. Rose oil industry and the production of oil rose (Rosa damascena Mill.) in Turkey. Biotechnol. Biotechnol. Equip. 2000, 14, 8–15. [Google Scholar] [CrossRef]
- Kaul, V.; Virendra, S.; Bikram, S. Damask rose and marigold: Prospective industrial crops. J. Med. Aromat. Plant Sci. 2000, 22, 313–318. [Google Scholar]
- Boskabady, M.H.; Shafei, M.N.; Saberi, Z.; Amini, S. Pharmacological effects of Rosa damascena. Iran. J. Basic Med. Sci. 2011, 14, 295. [Google Scholar] [PubMed]
- Akram, M.; Riaz, M.; Munir, N.; Akhter, N.; Zafar, S.; Jabeen, F.; Ali Shariati, M.; Akhtar, N.; Riaz, Z.; Altaf, S.H. Chemical constituents, experimental and clinical pharmacology of Rosa damascena: A literature review. J. Pharm. Pharmacol. 2020, 72, 161–174. [Google Scholar] [CrossRef]
- Mahboubi, M. Rosa damascena as holy ancient herb with novel applications. J. Tradit. Complement. Med. 2016, 6, 10–16. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Sugimoto, K.; Iwase, A. Plant callus: Mechanisms of induction and repression. Plant Cell 2013, 25, 3159–3173. [Google Scholar] [CrossRef]
- Nagata, T.; Takebe, I. Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 1971, 99, 12–20. [Google Scholar] [CrossRef]
- Skoog, F. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 1957, 11, 118–131. [Google Scholar] [PubMed]
- Lee, K.; Park, O.-S.; Seo, P.J. RNA-Seq analysis of the Arabidopsis transcriptome in pluripotent calli. Mol. Cells 2016, 39, 484. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, K.; Lv, D.; Wu, C.; Li, J.; Zhao, P.; Lin, Z.; Du, L.; Yan, Y.; Ye, X. Global Analysis of Differentially Expressed Genes and Proteins in the Wheat Callus Infected by Agrobacterium tumefacien s. PLoS ONE 2013, 8, e79390. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Fang, T.; Liu, Y.; Huang, L.; Zang, M.; Wang, G.; Liu, Y.; Fu, J. Transcriptome profiling predicts new genes to promote maize callus formation and transformation. Front. Plant Sci. 2019, 10, 1633. [Google Scholar] [CrossRef]
- Liu, C.-H.; Lu, R.-J.; Guo, G.-M.; He, T.; Li, Y.-B.; Xu, H.-W.; Gao, R.-H.; Chen, Z.-W.; Huang, J.-H. Transcriptome analysis reveals translational regulation in barley microspore-derived embryogenic callus under salt stress. Plant Cell Rep. 2016, 35, 1719–1728. [Google Scholar] [CrossRef]
- Nie, H.; Wang, Y.; Wei, C.; Grover, C.E.; Su, Y.; Wendel, J.F.; Hua, J. Embryogenic Calli Induction and Salt Stress Response Revealed by RNA-Seq in Diploid Wild Species Gossypium sturtianum and Gossypium raimondii. Front. Plant Sci. 2021, 12, 715041. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Tang, D.; Yuan, E.; Wang, M.; Zhang, Q.; Liu, Y.; Shen, B.; Chen, J.; Yin, Z. Inducement and cultivation of novel red Cyclocarya paliurus callus and its unique morphological and metabolic characteristics. Ind. Crops Prod. 2020, 147, 112266. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Zhang, F.; Song, Y. Transcriptome analysis of callus from melon. Gene 2019, 684, 131–138. [Google Scholar] [CrossRef]
- Borges, F.; Martienssen, R.A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 2015, 16, 727–741. [Google Scholar] [CrossRef]
- Chen, C.-J.; Liu, Q.; Zhang, Y.-C.; Qu, L.-H.; Chen, Y.-Q.; Gautheret, D. Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol. 2011, 8, 538–547. [Google Scholar] [CrossRef]
- Lamboursain, L.; Jolicoeur, M. Determination of cell concentration in a plant cell suspension using a fluorescence microplate reader. Plant Cell Rep. 2005, 23, 665–672. [Google Scholar] [CrossRef]
- Dubois, A.; Remay, A.; Raymond, O.; Balzergue, S.; Chauvet, A.; Maene, M.; Pecrix, Y.; Yang, S.-H.; Jeauffre, J.; Thouroude, T. Genomic approach to study floral development genes in Rosa sp. PLoS ONE 2011, 6, e28455. [Google Scholar] [CrossRef]
- Cho, W.K.; Chen, X.Y.; Chu, H.; Rim, Y.; Kim, S.; Kim, S.T.; Kim, S.W.; Park, Z.Y.; Kim, J.Y. Proteomic analysis of the secretome of rice calli. Physiol. Plant. 2009, 135, 331–341. [Google Scholar] [CrossRef]
- Jamet, E.; Albenne, C.; Boudart, G.; Irshad, M.; Canut, H.; Pont-Lezica, R. Recent advances in plant cell wall proteomics. Proteomics 2008, 8, 893–908. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Wen, W.; Huang, C.; Li, X.; Xiao, S.; Wu, M.; Shi, J.; Xu, D. Full transcriptome analysis of callus suspension culture system of Bletilla striata. Front. Genet. 2020, 11, 995. [Google Scholar] [CrossRef]
- Yao, D.; Chen, Y.; Xu, X.; Lin, Y.; Lai, Z. Exploring the Effect of Methyl Jasmonate on the Expression of microRNAs Involved in Biosynthesis of Active Compounds of Rosemary Cell Suspension Cultures through RNA-Sequencing. Int. J. Mol. Sci. 2022, 23, 3704. [Google Scholar] [CrossRef] [PubMed]
- Zaher, H.S.; Green, R. Fidelity at the molecular level: Lessons from protein synthesis. Cell 2009, 136, 746–762. [Google Scholar] [CrossRef] [PubMed]
- Van Lijsebettens, M.; Grasser, K.D. Transcript elongation factors: Shaping transcriptomes after transcript initiation. Trends Plant Sci. 2014, 19, 717–726. [Google Scholar] [CrossRef]
- Fedoroff, N.V. RNA-binding proteins in plants: The tip of an iceberg? Curr. Opin. Plant Biol. 2002, 5, 452–459. [Google Scholar] [CrossRef]
- Massolo, E.; Pirola, M.; Benaglia, M. Amide bond formation strategies: Latest advances on a dateless transformation. Eur. J. Org. Chem. 2020, 2020, 4641–4651. [Google Scholar] [CrossRef]
- Lu, B.; Xiao, W.-J.; Chen, J.-R. Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules 2022, 27, 517. [Google Scholar] [CrossRef]
- Carey, J.S.; Laffan, D.; Thomson, C.; Williams, M.T. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem. 2006, 4, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Todorovic, M.; Perrin, D.M. Recent developments in catalytic amide bond formation. Pept. Sci. 2020, 112, e24210. [Google Scholar] [CrossRef]
- Notoya, M. Chloroplast changes and differentiation of callus cells in Eckloniopsis radicosa (Kjellman) Okamura (Phaeophyta, Laminariales). J. Appl. Phycol. 1997, 9, 175–178. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Iwase, A.; Rymen, B.; Lambolez, A.; Kojima, M.; Takebayashi, Y.; Heyman, J.; Watanabe, S.; Seo, M.; De Veylder, L. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol. 2017, 175, 1158–1174. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signaling transduction. Annu. Rev. Plant Biol. 2004, 55, 373. [Google Scholar] [CrossRef]
- Waszczak, C.; Carmody, M.; Kangasjärvi, J. Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 2018, 69, 209–236. [Google Scholar] [CrossRef]
- Qu, Y.; Yan, M.; Zhang, Q. Functional regulation of plant NADPH oxidase and its role in signaling. Plant Signal. Behav. 2017, 12, e1356970. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Kaothien, P.; Matsui, T.; Kawaoka, A.; Shinmyo, A. Molecular biology and application of plant peroxidase genes. Appl. Microbiol. Biotechnol. 2003, 60, 665–670. [Google Scholar] [CrossRef]
- Faltin, Z.; Holland, D.; Velcheva, M.; Tsapovetsky, M.; Roeckel-Drevet, P.; Handa, A.K.; Abu-Abied, M.; Friedman-Einat, M.; Eshdat, Y.; Perl, A. Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation. Plant Cell Physiol. 2010, 51, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, Y.; Chen, X.; Chen, Y. Plant noncoding RNAs: Hidden players in development and stress responses. Annu. Rev. Cell Dev. Biol. 2019, 35, 407. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Mikami, R.; Akita, Y. Characterization of 5-O-glucosyltransferase involved in anthocyanin biosynthesis in Cyclamen purpurascens. Plant Biotechnol. 2021, 38, 263–268. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, W.K.; Choi, H.; Kim, S.-Y.; Kim, E.; Paek, S.H.; Kim, J.; Song, J.; Heo, K.; Min, J.; Jo, Y.; et al. Transcriptional Changes in Damask Rose Suspension Cell Culture Revealed by RNA Sequencing. Plants 2024, 13, 602. https://doi.org/10.3390/plants13050602
Cho WK, Choi H, Kim S-Y, Kim E, Paek SH, Kim J, Song J, Heo K, Min J, Jo Y, et al. Transcriptional Changes in Damask Rose Suspension Cell Culture Revealed by RNA Sequencing. Plants. 2024; 13(5):602. https://doi.org/10.3390/plants13050602
Chicago/Turabian StyleCho, Won Kyong, Hoseong Choi, Soo-Yun Kim, Euihyun Kim, Seung Hye Paek, Jiyeon Kim, Jihyeok Song, Kyoungyeon Heo, Jiae Min, Yeonhwa Jo, and et al. 2024. "Transcriptional Changes in Damask Rose Suspension Cell Culture Revealed by RNA Sequencing" Plants 13, no. 5: 602. https://doi.org/10.3390/plants13050602
APA StyleCho, W. K., Choi, H., Kim, S. -Y., Kim, E., Paek, S. H., Kim, J., Song, J., Heo, K., Min, J., Jo, Y., Lee, J. H., & Moh, S. H. (2024). Transcriptional Changes in Damask Rose Suspension Cell Culture Revealed by RNA Sequencing. Plants, 13(5), 602. https://doi.org/10.3390/plants13050602