Nematicidal Activity of Phytochemicals against the Root-Lesion Nematode Pratylenchus penetrans
Abstract
:1. Introduction
2. Results
2.1. Direct Nematicidal Activity
2.2. Toxicological Characterization of Nematicidal Phytochemicals
2.3. Indirect-Contact Bioassays
2.4. Toxicity to Mammals
2.5. Potential Environmental Safety
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Nematode Culture and Maintenance
4.3. Direct-Contact Bioassays
4.4. Indirect-Contact Bioassays
4.5. Microscopic Analysis of RLN Body Structure
4.6. Toxicological and Ecotoxicological Parameters
4.7. Data Treatment and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, M.; Fosu-Nyarko, J. Molecular biology of root lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Ann. Appl. Biol. 2014, 164, 163–181. [Google Scholar] [CrossRef]
- Castillo, P.; Vovlas, N. Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, Biology, Pathogenicity and Management. In Nematology Monographs and Perspectives; Brill: Leiden-Boston, The Netherlands, 2007; Volume 6, p. 529. [Google Scholar]
- Townshend, J.L.; Stobbs, L. Histopathology and histochemistry of lesions caused by Pratylenchus penetrans in roots of forage legumes. Can. J. Plant Pathol. 1981, 3, 123–128. [Google Scholar] [CrossRef]
- MacGuidwin, A.E.; Rouse, D.I. Role of Pratylenchus penetrans in the potato early dying disease of Russet Burbank potato. Phytopathology 1990, 80, 1077–1082. [Google Scholar] [CrossRef]
- Viketoft, M.; Flöhr, A.; Englund, J.-E.; Kardell, J.; Edin, E. Additive effect of the root-lesion nematode Pratylenchus penetrans and the fungus Rhizoctonia solani on potato yield and damage. J. Plant Dis. Prot. 2020, 127, 821–829. [Google Scholar] [CrossRef]
- Janssen, T.; Karssen, G.; Orlando, V.; Subbotin, S.; Bert, W. Molecular characterization and species delimiting of plant parasitic nematode of the genus Pratylenchus from the penetrans group (Nematoda: Pratylenchidae). Mol. Phylogenet. Evol. 2017, 117, 30–48. [Google Scholar] [CrossRef] [PubMed]
- Mizukubo, T.; Adachi, H. Effect of temperature on Pratylenchus penetrans development. J. Nematol. 1997, 29, 306–314. [Google Scholar] [PubMed]
- McSorley, R. Adaptations of nematodes to environmental extremes. Fla. Entomol. 2003, 86, 138–142. [Google Scholar] [CrossRef]
- Townshend, J.L. Anhydrobiosis in Pratylenchus penetrans. J. Nematol. 1984, 16, 282–289. [Google Scholar] [PubMed]
- Feldmesser, J.; Feder, W.A.; Rebois, R.V.; Hutchins, P.C. Longevity of Radopholus similis and Pratylenchus brachyurus in fallow soil in the greenhouse. Anat. Rec. 1960, 137, 355. [Google Scholar]
- Harrison, B.D.; Hooper, D.J. Longevity of Longidorus elongatus (de Man) and other nematodes in soil kept in polythene bags. Nematologica 1963, 9, 158–160. [Google Scholar]
- Davis, E.L.; MacGuidwin, A.E. Lesion Nematode Disease. Plant Health Instr. 2000. [Google Scholar] [CrossRef]
- Zasada, I.A.; Meyer, S.L.F.; Morra, M.J. Brassicaceous seed meals as soil amendments to suppress the plant-parasitic nematodes Pratylenchus penetrans and Meloidogyne incognita. J. Nematol. 2009, 41, 221–227. [Google Scholar]
- Evenhuis, A.; Korthals, G.W.; Molendijk, L.P.G. Tagetes patula as an effective catch crop for long-term control of Pratylenchus penetrans. Nematology 2004, 6, 877–881. [Google Scholar] [CrossRef]
- Pudasaini, M.P.; Viaene, N.; Moens, M. Effect of marigold (Tagetes patula) on population dynamics of Pratylenchus penetrans in a field. Nematology 2006, 8, 477–484. [Google Scholar] [CrossRef]
- Fonseca, W.L.; de Almeida, F.A.; Carvalho, R.M.; dos Santos, T.S.; Santos, A.R.B.; Rezende, J.S.; Leite, M.L.T.; Prochnow, J.T.; Rambo, A.P.P. Influence of aqueous extracts of black angico on Pratylenchus brachyurus in cotton plants. Afr. J. Microbiol. Res. 2019, 13, 122–127. [Google Scholar] [CrossRef]
- Nguyen, D.M.C.; Luong, T.H.; Nguyen, T.K.; Jung, W.J. Nematicidal activity of cinnamon bark extracts and chitosan against Meloidogyne incognita and Pratylenchus coffeae. Nematology 2021, 23, 655–666. [Google Scholar] [CrossRef]
- Olthof, T.H.A. Effects of fumigants and systemic pesticides on Pratylenchus penetrans and potato yield. J. Nematol. 1987, 19, 424–430. [Google Scholar] [PubMed]
- Olthof, T.H.A.; Townshend, J.L. Effect of Oxamyl treatment of potato seed pieces on Pratylenchus penetrans and yield. Suppl. J Nematol. 1991, 23, 699–705. [Google Scholar]
- European Union Common Agricultural Policy (CAP): 2023-27. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-2023-27_en (accessed on 4 January 2024).
- Pyne, M.E.; Narcross, L.; Martin, V.J.J. Engineering plant secondary metabolism in microbial systems. Plant Physiol. 2019, 179, 844–861. [Google Scholar] [CrossRef] [PubMed]
- Digilio, M.C.; Mancini, E.; Voto, E.; De Feo, V. Insecticide activity of Mediterranean essential oils. J. Plant Interac. 2008, 3, 17–23. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.; Hikal, W.; Tkachenko, K. Essential oils with potential as insecticidal agents: A review. J. Environ. Plann. Man. 2017, 3, 23–33. [Google Scholar]
- Yang, Y.; Isman, M.B.; Tak, J.-H. Insecticidal activity of 28 essential oils and a commercial product containing Cinnamomum cassia bark essential oil against Sitophilus zeamais Motschulsky. Insects 2020, 11, 474. [Google Scholar] [CrossRef]
- Fournomiti, M.; Kimbaris, A.; Mantzourani, I.; Plessas, S.; Theodoridou, I.; Papaemmanouil, V.; Kapsiotis, I.; Panopoulou, M.; Stavropoulou, E.; Bezirtzoglou, E.E.; et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015, 26, 23289. [Google Scholar] [CrossRef]
- Elisha, I.L.; Botha, F.S.; McGaw, L.J.; Eloff, J.N. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement. Altern. Med. 2017, 17, 133. [Google Scholar] [CrossRef]
- Man, A.; Santacroce, L.; Jacob, R.; Mare, A.; Man, L. Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef]
- Andrés, M.F.; González-Coloma, A.; Sanz, J.; Burillo, J.; Sanz, P. Nematicidal activity of essential oils: A review. Phytochem. Rev. 2012, 11, 371–390. [Google Scholar] [CrossRef]
- Barbosa, P.; Faria, J.M.S.; Mendes, M.D.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C.; Mota, M. Bioassays against Pinewood Nematode: Assessment of a Suitable Dilution Agent and Screening for Bioactive Essential Oils. Molecules 2012, 17, 12312–12329. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Sena, I.; Ribeiro, B.; Rodrigues, A.M.; Maleita, C.M.N.; Abrantes, I.; Bennett, R.; Mota, M.; da Silva Figueiredo, A.C. First Report on Meloidogyne chitwoodi Hatching Inhibition Activity of Essential Oils and Essential Oils Fractions. J. Pest Sci. 2016, 89, 207–217. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Barbosa, P.; Vieira, P.; Vicente, C.S.L.; Figueiredo, A.C.; Mota, M. Phytochemicals as Biopesticides against the Pinewood Nematode Bursaphelenchus xylophilus: A Review on Essential Oils and Their Volatiles. Plants 2021, 10, 2614. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.M.S.; Barbosa, P.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity against Bursaphelenchus xylophilus: Nematotoxics from essential oils, essential oils fractions and decoction waters. Phytochemistry 2013, 94, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Jardim, I.N.; Oliveira, D.F.; Campos, V.P.; Silva, G.H.; Souza, P.E. Garlic essential oil reduces the population of Meloidogyne incognita in tomato plants. Eur. J. Plant Pathol. 2020, 157, 197–209. [Google Scholar] [CrossRef]
- Nguyen, D.; Seo, D.; Nguyen, V.; Kim, K.; Park, R.; Jung, W. Nematicidal activity of gallic acid purified from Terminalia nigrovenulosa bark against the root-knot nematode Meloidogyne incognita. Nematology 2013, 15, 507–518. [Google Scholar] [CrossRef]
- D’Errico, G.; Woo, S.; Lombardi, N.; Manganiello, G.; Roversi, P. Activity of chestnut tannins against the southern root-knot nematode Meloidogyne incognita. J. Zool. 2018, 101, 53–59. [Google Scholar] [CrossRef]
- Liu, X.C.; Lai, D.; Liu, Q.Z.; Zhou, L.; Liu, Q.; Liu, Z.L. Bioactivities of a new pyrrolidine alkaloid from the root barks of Orixa japonica. Molecules 2016, 21, 1665. [Google Scholar] [CrossRef]
- Mostafa, F.A.M.; Refaei, A.R.; Khalil, A.E.; El-Deriny, M.M. Potential use of botanicals rich in alkaloids for controlling Meloidogyne incognita and Rotylenchulus reniformis infecting cucurbits. Egypt J. Agronematol. 2016, 15, 29–43. [Google Scholar] [CrossRef]
- Thoden, T.C.; Boppré, M.; Hallmann, J. Effects of Pyrrolizidine Alkaloids on the Performance of Plant-Parasitic and Free-Living Nematodes. Pest Manag. Sci. 2009, 65, 823–830. [Google Scholar] [CrossRef]
- Lazzeri, L.; Curto, G.; Leoni, O.; Dallavalle, E. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. J. Agric. Food Chem. 2004, 52, 6703–6707. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, P.; Hallmann, J. New insights on the role of allyl isothiocyanate in controlling the root knot nematode Meloidogyne hapla. Plants 2020, 9, 603. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 29 December 2023).
- ECHA. ECHA European Chemicals Agency. Available online: https://echa.europa.eu/pt/home (accessed on 29 December 2023).
- University of Hertfordshire PPDB: Pesticide Properties DataBase. Available online: http://sitem.herts.ac.uk/aeru/ppdb/en/ (accessed on 29 December 2023).
- Martin, T. Toxicity Estimation Software Tool (TEST); US EPA: Washington, DC, USA, 2016.
- Mackay, D.; Di Guardo, A.; Paterson, S.; Cowan, C.E. Evaluating the Environmental Fate of a Variety of Types of Chemicals Using the EQC Model. Environ. Toxicol. Chem. 1996, 15, 1627–1637. [Google Scholar] [CrossRef]
- US EPA. Estimation Programs Interface SuiteTM for Microsoft® Windows, v 4.11; US EPA: Washington, DC, USA, 2023.
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/documents/card/en?details=cc7724en (accessed on 4 January 2024).
- Kimura, Y.; Hiraoka, K.; Kawano, T.; Fujioka, S.; Shimada, A. Nematicidal Activities of Acetylene Compounds from Coreopsis lanceolata L. Z. Naturforschung C 2008, 63, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Wuyts, N.; Swennen, R.; De Waele, D. Effects of Plant Phenylpropanoid Pathway Products and Selected Terpenoids and Alkaloids on the Behaviour of the Plant-Parasitic Nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 2006, 8, 89–101. [Google Scholar] [CrossRef]
- Tsao, R.; Yu, Q. Nematicidal Activity of Monoterpenoid Compounds against Economically Important Nematodes in Agriculture. J. Essent. Oil Res. 2000, 12, 350–354. [Google Scholar] [CrossRef]
- Ntalli, N.; Ratajczak, M.; Oplos, C.; Menkissoglu-Spiroudi, U.; Adamski, Z. Acetic Acid, 2-Undecanone, and (E)-2-Decenal Ultrastructural Malformations on Meloidogyne incognita. J. Nematol. 2016, 48, 248–260. [Google Scholar] [CrossRef]
- Calvet, C.; Pinochet, J.; Camprubí, A.; Estaún, V.; Rodríguez-Kábana, R. Evaluation of Natural Chemical Compounds against Root-Lesion and Root-Knot Nematodes and Side-Effects on the Infectivity of Arbuscular Mycorrhizal Fungi. Eur. J. Plant Pathol. 2001, 107, 601–605. [Google Scholar] [CrossRef]
- Javed, N.; Gowen, S.R.; Inam-Ulhaq, M.; Anwar, S.A. Protective and curative effect of neem (Azadirachta indica) formulations on the development of root-knot nematode Meloidogyne javanica in roots of tomato plants. Crop Prot. 2007, 26, 530–534. [Google Scholar] [CrossRef]
- Lord, J.S.; Lazzeri, L.; Atkinson, H.J.; Urwin, P.E. Biofumigation for control of pale potato cyst nematodes: Activity of brassica leaf extracts and green manures on Globodera pallida in vitro and in soil. Agric. Food Chem. 2011, 59, 7882–7890. [Google Scholar] [CrossRef] [PubMed]
- Ojaghian, M.R.; Jiang, H.; Xie, G.L.; Cui, Z.Q.; Zhang, J.Z.; Li, B. In vitro biofumigation of Brassica tissues against potato stem rot caused by Sclerotinia sclerotiorum. Plant Pathol. J. 2012, 28, 185–190. [Google Scholar] [CrossRef]
- Kessler, A.; Halitschke, R.; Diezel, C.; Baldwin, I.T. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 2006, 148, 280–292. [Google Scholar] [CrossRef]
- Wheatley, R.E. The consequences of volatile organic compound mediated bacterial and fungal interactions. Anton. Leeuw. Int. J. G 2002, 81, 357–364. [Google Scholar] [CrossRef]
- Kimpinski, J.; Arsenault, W.J.; Gallant, C.E.; Sanderson, J.B. The effect of marigolds (Tagetes spp.) and other cover crops on Pratylenchus penetrans and on following potato crops. Suppl. J. Nematol. 2000, 32, 531–536. [Google Scholar]
- Sato, K.; Kadota, Y.; Shirasu, K. Plant immune responses to parasitic nematodes. Front. Plant Sci. 2019, 10, 1165. [Google Scholar] [CrossRef]
- Esteves, I.; Maleita, C.; Abrantes, I. Root-lesion and root-knot nematodes parasitizing potato. Eur. J. Plant Pathol. 2015, 141, 397–406. [Google Scholar] [CrossRef]
- Boisseau, M.; Sarah, J.-L. In Vitro rearing of Pratylenchidae nematodes on carrot discs. Fruits 2008, 63, 307–310. [Google Scholar] [CrossRef]
- Trent University Level I Model. Available online: https://www.trentu.ca/cemc/resources-and-models/level-i-model (accessed on 29 December 2023).
- Puntener, W. Manual for Field Trials in Plant Protection, 2nd ed.; Ciba-Geiji Limited: Basle, Switzerland, 1981; p. 205. [Google Scholar]
- Kong, J.O.; Lee, S.M.; Moon, Y.S.; Lee, S.G.; Ahn, Y.J. Nematicidal Activity of Plant Essential Oils against Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). J. Asia Pac. Entomol. 2006, 9, 173–178. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Cavaco, T.; Gonçalves, D.; Barbosa, P.; Teixeira, D.M.; Moiteiro, C.; Inácio, M.L. First report on the synergistic interaction between essential oils against the pinewood nematode Bursaphelenchus xylophilus. Plants 2023, 12, 2438. [Google Scholar] [CrossRef]
Compound | Chemical Classification | Mc (%) |
---|---|---|
Terpenes | ||
Carvacrol | monoterpene phenol | 100.00 ± 0.00 |
Thymol | monoterpene phenol | 100.00 ± 0.00 |
Geraniol | monoterpene alcohol | 70.03 ± 1.04 |
Citral | monoterpene aldehyde | 66.81 ± 1.53 |
Citronellal | monoterpene aldehyde | 55.79 ± 1.54 |
α-Terpineol | monoterpene alcohol | 45.88 ± 1.91 |
Terpinen-4-ol | monoterpene alcohol | 42.09 ± 1.84 |
Isopulegol | monoterpene alcohol | 41.71 ± 2.37 |
Pulegone | monoterpene ketone | 34.43 ± 1.30 |
Piperitone | monoterpene ketone | 26.63 ± 1.63 |
Linalool | monoterpene alcohol | 25.76 ± 1.60 |
Menthol | monoterpene alcohol | 13.48 ± 1.01 |
Sabinene | monoterpene hydrocarbon | 8.31 ± 0.89 |
p-Cymene | monoterpene hydrocarbon | 8.14 ± 0.92 |
Limonene | monoterpene hydrocarbon | 7.08 ± 1.16 |
γ-Terpinene | monoterpene hydrocarbon | 6.93 ± 0.83 |
trans-β-Caryophyllene | sesquiterpene hydrocarbon | 5.08 ± 0.69 |
δ-3-Carene | monoterpene hydrocarbon | 5.07 ± 0.72 |
α-Pinene | monoterpene hydrocarbon | 1.89 ± 0.56 |
β-Pinene | monoterpene hydrocarbon | 1.64 ± 0.41 |
Phenolics | ||
Benzaldehyde | phenylpropanoid/benzenoid | 100.00 ± 0.00 |
Methyl salicylate | salicylate ester | 76.69 ± 1.53 |
Eugenol | phenylpropanoid | 59.60 ± 1.83 |
trans-Anethole | phenylpropanoid | 54.09 ± 2.85 |
Gentisic acid | phenolic acid | 5.98 ± 1.30 |
Caffeic acid | phenolic acid | 4.63 ± 0.75 |
Catechin | flavonoid | 2.26 ± 0.61 |
Ferulic acid | phenolic acid | 2.06 ± 0.34 |
Coumaric acid | phenolic acid | 1.88 ± 0.37 |
Gallic acid | phenolic acid | 1.44 ± 0.41 |
Quercetin | flavonoid | 1.37 ± 0.34 |
Alkaloids | ||
Caffeine | xanthine | 1.55 ± 0.39 |
Fatty acids derivatives | ||
3-Octanol | fatty alcohol | 99.06 ± 0.35 |
1-Decanol | fatty alcohol | 89.44 ± 0.86 |
1-Undecanol | fatty alcohol | 87.64 ± 0.58 |
1-Dodecanol | fatty alcohol | 68.85 ± 0.91 |
1-Tridecanol | fatty alcohol | 58.56 ± 1.79 |
2-Octyl-1-decanol | fatty alcohol | 3.25 ± 0.52 |
β-Keto acids derivative | ||
2-Undecanone | methyl ketone | 63.25 ± 1.31 |
Synthetic nematicide | ||
Oxamyl 1 | carbamate | 65.62 ± 2.11 |
Compounds | EC50 (mg/mL) | EC100 (mg/mL) | Slope | Goodness of Fit (adj. R2) |
---|---|---|---|---|
Benzaldehyde | 0.45 ± 0.01 | 1.71 (1.39–1.83) | 3.15 ± 0.20 | 0.97 |
Carvacrol | 0.48 ± 0.01 | 1.54 (0.81–1.66) | 5.63 ± 0.69 | 0.97 |
Thymol | 0.50 ± 0.01 | 1.61 (0.79–1.75) | 5.38 ± 0.75 | 0.97 |
3-Octanol | 0.68 ± 0.01 | 1.71 (1.61–1.78) | 2.32 ± 0.09 | 0.99 |
Methyl salicylate | 0.96 ± 0.04 | - | 0.97 ± 0.08 | 0.86 |
Citral | 1.09 ± 0.06 | - | 0.56 ± 0.05 | 0.71 |
Geraniol | 1.09 ± 0.06 | - | 0.75 ± 0.07 | 0.77 |
2-Undecanone | 1.22 ± 0.07 | - | 0.52 ± 0.05 | 0.70 |
Eugenol | 1.72 ± 0.04 | - | 0.69 ± 0.03 | 0.92 |
trans-Anethole | 1.78 ± 0.07 | - | 0.64 ± 0.06 | 0.77 |
α-Terpineol | 2.09 ± 0.04 | - | 0.66 ± 0.05 | 0.91 |
Terpinen-4-ol | 2.13 ± 0.04 | - | 0.71 ± 0.05 | 0.93 |
Isopulegol | 2.20 ± 0.05 | - | 0.68 ± 0.06 | 0.88 |
Citronellal | 2.34 ± 0.09 | - | 0.52 ± 0.05 | 0.82 |
Pulegone | 2.50 ± 0.09 | - | 0.52 ± 0.05 | 0.83 |
Linalool | 2.56 ± 0.08 | - | 0.81 ± 0.09 | 0.89 |
Compounds | Mc (%) | ET50 (h) | Goodness of Fit (adj R2) | Vapor Pressure (Pa) 1 |
---|---|---|---|---|
Carvacrol | 54.08 ± 1.34 | 24.07 ± 0.58 | 0.95 | 3.1–6.7 |
Benzaldehyde | 60.53 ± 1.77 | 23.54 ± 1.07 | 0.85 | 133 |
3-Octanol | 62.09 ± 2.39 | 24.68 ± 1.45 | 0.76 | 34.1 |
Thymol | 63.73 ± 1.51 | 26.56 ± 1.66 | 0.71 | 2.1 |
Reported LD50 (mg/kg) | Benzaldehyde | Carvacrol | 3-Octanol | Thymol | Oxamyl |
---|---|---|---|---|---|
Oral (Rat) | 1300 | 810 | >5000 | 980 | 3 |
Dermal (Rat) | >2000 | 2700 | >5000 | >2000 | 5000 |
Predicted LD50 (mg/kg) 1 | |||||
Oral (Rat) | 1128 | 1073 | 2828 | 507 | 8 |
Mutagenicity level 2 | Negative | Negative | Negative | Negative | Positive |
PED | Benzaldehyde | Carvacrol | 3-Octanol | Thymol | Oxamyl |
---|---|---|---|---|---|
Air (%) | 34 | 2 | 55 | 1 | 0 |
Sediments (%) | 0 | 2 | 0 | 2 | 0 |
Soil (%) | 1 | 73 | 3 | 74 | 3 |
Water (%) | 65 | 23 | 42 | 23 | 97 |
Persistence (h) | 343 | 429 | 251 | 464 | 1150 |
Volatilization from water 1 | |||||
Model river (half-life in h) | 24 | 444 | 23 | 206 | 4 × 106 |
Model lake (half-life in h) | 344 | 4949 | 343 | 2347 | 4 × 107 |
Removal in wastewater treatment 2 | |||||
Total removal (%) | 3 | 6 | 4 | 6 | 2 |
Biodegradation (%) | 0 | 0 | 0 | 0 | 0 |
Sludge adsorption (%) | 2 | 6 | 2 | 6 | 2 |
Release to the Air (%) | 1 | 0 | 2 | 0 | 0 |
Reported EC50 (mg/L) | Benzaldehyde | Carvacrol | 3-Octanol | Thymol | Oxamyl |
---|---|---|---|---|---|
Invertebrates (48 h) 1 | 20 | 6 | 185 | 5 | 0.3 |
Fish (96 h) 2 | 8 | 6 | 11 4 | 5 | 3 |
Algae (96 h) 3 | 8 | 4 | 114 | 12 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, P.; Faria, J.M.S.; Cavaco, T.; Figueiredo, A.C.; Mota, M.; Vicente, C.S.L. Nematicidal Activity of Phytochemicals against the Root-Lesion Nematode Pratylenchus penetrans. Plants 2024, 13, 726. https://doi.org/10.3390/plants13050726
Barbosa P, Faria JMS, Cavaco T, Figueiredo AC, Mota M, Vicente CSL. Nematicidal Activity of Phytochemicals against the Root-Lesion Nematode Pratylenchus penetrans. Plants. 2024; 13(5):726. https://doi.org/10.3390/plants13050726
Chicago/Turabian StyleBarbosa, Pedro, Jorge M. S. Faria, Tomás Cavaco, Ana Cristina Figueiredo, Manuel Mota, and Cláudia S. L. Vicente. 2024. "Nematicidal Activity of Phytochemicals against the Root-Lesion Nematode Pratylenchus penetrans" Plants 13, no. 5: 726. https://doi.org/10.3390/plants13050726
APA StyleBarbosa, P., Faria, J. M. S., Cavaco, T., Figueiredo, A. C., Mota, M., & Vicente, C. S. L. (2024). Nematicidal Activity of Phytochemicals against the Root-Lesion Nematode Pratylenchus penetrans. Plants, 13(5), 726. https://doi.org/10.3390/plants13050726