Phytochemical Profile and Evaluation of the Antioxidant, Cyto-Genotoxic, and Antigenotoxic Potential of Salvia verticillata Hydromethanolic Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Phenolic, Flavone, and Diterpene Metabolites in Hydromethanolic Extracts of S. verticillata
2.2. Total Phenolic Content and Antioxidant Activity
2.3. CBMN Assay in Human Lymphocytes
2.3.1. Cytotoxic Activity
2.3.2. Genotoxic and Antigenotoxic Activity
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Extraction
3.4. High-Performance Liquid Chromatography–Diode Array Detection–Mass Spectrometry (HPLC–DAD–ESI-MS)
3.5. High-Performance Liquid Chromatography–Diode Array Detector (HPLC–DAD)
3.6. Determination of Total Phenolic Content and Antioxidant Activity
3.6.1. Determination of Total Phenolic Content (TPC)
3.6.2. Ferric Reducing Antioxidant Power (FRAP) Assay
3.6.3. Radical Scavenging Activity by DPPH• Assay
3.7. CBMN Assay in Human Lymphocytes In Vitro
3.7.1. Ethics Statement
3.7.2. CBMN Assay Application
3.7.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TPC | Total Phenolic Content |
AA | Antioxidant Activity |
FRAP | Ferric Reducing Antioxidant Power |
RT | Retention Times |
MW | Molecular Weight |
CBMN | Cytokinesis Block MicroNucleus |
MMC | Mitomycin C |
MN | Micronuclei |
CBPI | Cytokinesis Block Proliferation Index |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
References
- Mervić, M.; Bival Štefan, M.; Kindl, M.; Blažeković, B.; Marijan, M.; Vladimir-Knežević, S. Comparative Antioxidant, Anti-Acetylcholinesterase and Anti-α-Glucosidase Activities of Mediterranean Salvia Species. Plants 2022, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.F.; Pereira, O.R.; Fernandes, Â.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, I.C.F.R.; Cardoso, S.M. Phytochemical Composition and Bioactive Effects of Salvia Africana, Salvia Officinalis “Icterina” and Salvia Mexicana Aqueous Extracts. Molecules 2019, 24, 4327. [Google Scholar] [CrossRef]
- Nasermoadeli, S.; Rowshan, V.; Abotalebi, A.; Nasermoadeli, L.; Charkhchian, M.M. Comparison of Salvia Verticillata Essential Oil Components in Wild and Cultivated Population. Ann. Biol. Res. 2013, 4, 252–255. [Google Scholar]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological Properties of Salvia Officinalis and Its Components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Ozcelik, B.; Altın, G.; Daşkaya-Dikmen, C.; Martorell, M.; Ramírez-Alarcón, K.; Alarcón-Zapata, P.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Alves Borges Leal, A.L.; et al. Salvia spp. Plants-from Farm to Food Applications and Phytopharmacotherapy. Trends Food Sci. Technol. 2018, 80, 242–263. [Google Scholar] [CrossRef]
- Xu, J.; Wei, K.; Zhang, G.; Lei, L.; Yang, D.; Wang, W.; Han, Q.; Xia, Y.; Bi, Y.; Yang, M.; et al. Ethnopharmacology, Phytochemistry, and Pharmacology of Chinese Salvia Species: A Review. J. Ethnopharmacol. 2018, 225, 18–30. [Google Scholar] [CrossRef]
- Katanić Stanković, J.S.; Srećković, N.; Mišić, D.; Gašić, U.; Imbimbo, P.; Monti, D.M.; Mihailović, V. Bioactivity, Biocompatibility and Phytochemical Assessment of Lilac Sage, Salvia verticillata L. (Lamiaceae)—A Plant Rich in Rosmarinic Acid. Ind. Crops Prod. 2020, 143, 111932. [Google Scholar] [CrossRef]
- Zengin, G.; Llorent-Martínez, E.J.; Córdova, M.L.F.; Bahadori, M.B.; Mocan, A.; Locatelli, M.; Aktumsek, A. Chemical Composition and Biological Activities of Extracts from Three Salvia Species: S. Blepharochlaena, S. Euphratica Var. Leiocalycina, and S. Verticillata Subsp. Amasiaca. Ind. Crops Prod. 2018, 111, 11–21. [Google Scholar] [CrossRef]
- Leontaritou, P.; Lamari, F.N.; Papasotiropoulos, V.; Iatrou, G. Morphological, genetic and essential oil variation of Greek sage (Salvia fruticosa Mill.) populations from Greece. Ind. Crops Prod. 2020, 150, 112346. [Google Scholar] [CrossRef]
- Leontaritou, P.; Lamari, F.N.; Papasotiropoulos, V.; Iatrou, G. Exploration of genetic, morphological and essential oil variation reveals tools for the authentication and breeding of Salvia pomifera subsp. calycina (Sm.) Hayek. Phytochemistry 2021, 191, 112900. [Google Scholar] [CrossRef]
- Hashemi, M.; Armaki, M.A. Impact of salinity stress on seed germination characteristics of two medicinal species Salvia verticillata and S. limbata. Biol. Forum 2015, 7, 1409–1413. [Google Scholar]
- Yilmaz Gokdogan, E.; Burun, B. The Studies on Seed Germination and in Vitro Cultures of Salvia L. Species from Turkish Flora. Nat. Prod. Biotechnol. 2022, 2, 60–73. [Google Scholar]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Sokmen, A. Screening of the Antioxidant Potentials of Six Salvia Species from Turkey. Food Chem. 2006, 95, 200–204. [Google Scholar] [CrossRef]
- Naderi, N.; Akhavan, N.; Ahari, F.A.; Zamani, N.; Kamalinejad, M.; Shokrzadeh, M.; Motamedi, F. Effects of hydroalcoholic extract from Salvia verticillata on pharmacological models of seizure, anxiety and depression in mice. Iran. J. Pharm. Res. 2011, 10, 535. [Google Scholar]
- Mihailović, V.; Srećković, N.; Nedić, Z.P.; Dimitrijević, S.; Matić, M.; Obradović, A.; Selaković, D.; Rosić, G.; Katanić Stanković, J.S. Green Synthesis of Silver Nanoparticles Using Salvia verticillata and Filipendula ulmaria Extracts: Optimization of Synthesis, Biological Activities, and Catalytic Properties. Molecules 2023, 28, 808. [Google Scholar] [CrossRef] [PubMed]
- Çadirci, E.; Süleyman, H.; Gürbüz, P.; Uz, A.Y.Ş.E.; Güvenalp, Z.; Demirezer, L.Ö. Anti-inflammatory effects of different extracts from three Salvia species. Turk. J. Biol. 2012, 36, 59–64. [Google Scholar] [CrossRef]
- Orhan, I.; Kartal, M.; Naz, Q.; Ejaz, A.; Yilmaz, G.; Kan, Y.; Choudhary, M.I. Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chem. 2007, 103, 1247–1254. [Google Scholar] [CrossRef]
- Golriz, Y.; Afkhami Goli, A.; Sadeghnia, H.R.; Kazemi Mehrjerdi, H. Salvia verticillata Improved Cognitive Deficits in a Chronic Cerebral Hypoperfusion Rat Model. Iran. J. Vet. Sci. Technol. 2023, 15, 1–8. [Google Scholar] [CrossRef]
- OECD. Test No. 487: In Vitro Mammalian Cell Micronucleus Test. In OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Fenech, M.; Chang, W.P.; Kirsch-Volders, M.; Holland, N.; Bonassi, S.; Zeiger, E. HUman MicronNucleus project HUMN Project: Detailed Description of the Scoring Criteria for the Cytokinesis-Block Micronucleus Assay Using Isolated Human Lymphocyte Cultures. Mutat. Res. 2003, 534, 65–75. [Google Scholar] [CrossRef]
- Kirsch-Volders, M.; Decordier, I.; Elhajouji, A.; Plas, G.; Aardema, M.J.; Fenech, M. In Vitro Genotoxicity Testing Using the Micronucleus Assay in Cell Lines, Human Lymphocytes and 3D Human Skin Models. Mutagenesis 2011, 26, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Gkioni, M.D.; Zeliou, K.; Dimaki, V.D.; Trigas, P.; Lamari, F.N. GC-MS and LC-DAD-MS Phytochemical Profiling for Characterization of Three Native Salvia Taxa from Eastern Mediterranean with Antiglycation Properties. Molecules 2022, 28, 93. [Google Scholar] [CrossRef]
- Zimmermann, B.F.; Walch, S.G.; Tinzoh, L.N.; Stühlinger, W.; Lachenmeier, D.W. Rapid UHPLC Determination of Polyphenols in Aqueous Infusions of Salvia officinalis L. (Sage Tea). J. Chromatogr. B 2011, 879, 2459–2464. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Evaluation of Bioactive Properties and Phenolic Compounds in Different Extracts Prepared from Salvia officinalis L. Food Chem. 2015, 170, 378–385. [Google Scholar] [CrossRef]
- Oliveira-Alves, S.C.; Vendramini-Costa, D.B.; Betim Cazarin, C.B.; Maróstica Júnior, M.R.; Borges Ferreira, J.P.; Silva, A.B.; Prado, M.A.; Bronze, M.R. Characterization of Phenolic Compounds in Chia (Salvia hispanica L.) Seeds, Fiber Flour and Oil. Food Chem. 2017, 232, 295–305. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Q.; Wang, X.; Yang, J.; Wang, Q. Qualitative Analysis and Simultaneous Quantification of Phenolic Compounds in the Aerial Parts of Salvia Miltiorrhiza by HPLC-DAD and ESI/MSn. Phytochem. Anal. 2011, 22, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Gulsoy Toplan, G.; Kurkcuoglu, M.; Goger, F.; İşcan, G.; Ağalar, H.G.; Mat, A.; Baser, K.H.C.; Koyuncu, M.; Sarıyar, G. Composition and Biological Activities of Salvia Veneris Hedge Growing in Cyprus. Ind. Crops Prod. 2017, 97, 41–48. [Google Scholar] [CrossRef]
- Cvetkovikj, I.; Stefkov, G.; Acevska, J.; Stanoeva, J.P.; Karapandzova, M.; Stefova, M.; Dimitrovska, A.; Kulevanova, S. Polyphenolic Characterization and Chromatographic Methods for Fast Assessment of Culinary Salvia Species from South East Europe. J. Chromatogr. A 2013, 1282, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Atwi, M.; Weiss, E.-K.; Loupassaki, S.; Makris, D.P.; Ioannou, E.; Roussis, V.; Kefalas, P. Major Antioxidant Polyphenolic Phytochemicals of Three Salvia Species Endemic to the Island of Crete. J. Herbs Spices Med. Plants 2016, 22, 27–34. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical Profile of Rosmarinus Officinalis and Salvia Officinalis Extracts and Correlation to Their Antioxidant and Anti-Proliferative Activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Borrás Linares, I.; Arráez-Román, D.; Herrero, M.; Ibáñez, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Comparison of Different Extraction Procedures for the Comprehensive Characterization of Bioactive Phenolic Compounds in Rosmarinus Officinalis by Reversed-Phase High-Performance Liquid Chromatography with Diode Array Detection Coupled to Electrospray Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2011, 1218, 7682–7690. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.-H.; Lin, Y.-H.; Yang, M.; Guo, H.; Guan, S.-H.; Sun, J.-H.; Guo, D.-A. Development of the Fingerprints for the Quality of the Roots of Salvia Miltiorrhiza and Its Related Preparations by HPLC-DAD and LC–MSn. J. Chromatogr. B 2007, 846, 32–41. [Google Scholar] [CrossRef]
- Liu, A.-H.; Guo, H.; Ye, M.; Lin, Y.-H.; Sun, J.-H.; Xu, M.; Guo, D.-A. Detection, Characterization and Identification of Phenolic Acids in Danshen Using High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Mass Spectrometry. J. Chromatogr. A 2007, 1161, 170–182. [Google Scholar] [CrossRef]
- Istasse, T.; Jacquet, N.; Berchem, T.; Haubruge, E.; Nguyen, B.K.; Richel, A. Extraction of Honey Polyphenols: Method Development and Evidence of Cis Isomerization Ubertas Academica. Anal. Chem. Insights 2016, 11, ACI.S39739. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Cheng, H.; Yang, F.; Wan, J.; Bo, J.; Liu, Y.; Yang, J.; Liu, J.; Zhou, G.-C. Identification, Structural Properties and Chelating Capacity of Miltipolone as a Broad-Spectrum Inhibitor to Cancer Cells. Eur. J. Med. Chem. 2011, 46, 1117–1121. [Google Scholar] [CrossRef]
- Yumrutas, O.; Sokmen, A.; Ozturk, N. Determination of in Vitro Antioxidant Activities and Phenolic Compounds of Different Extracts of Salvia verticillata ssp. Verticillata and spp. Amasiaca from Turkey’s Flora. J. Appl. Pharm. Sci. 2011, 1, 43–46. [Google Scholar]
- Matkowski, A.; Zielińska, S.; Oszmiański, J.; Lamer-Zarawska, E. Antioxidant Activity of Extracts from Leaves and Roots of Salvia Miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresour. Technol. 2008, 99, 7892–7896. [Google Scholar] [CrossRef]
- Khiya, Z.; Oualcadi, Y.; Gamar, A.; Berrekhis, F.; Zair, T.; Hilali, F.E. Correlation of Total Polyphenolic Content with Antioxidant Activity of Hydromethanolic Extract and Their Fractions of the Salvia Officinalis Leaves from Different Regions of Morocco. J. Chem. 2021, 2021, 8585313. [Google Scholar] [CrossRef]
- Kiliçkaya Selvï, E. Antioxidant Activity and Total Phenolic and Flavonoid Contents of Salvia verticillata L., Salvia tomentosa Mill., and Phlomis lychnitis L. J. Anatol. Environ. Anim. Sci. 2020, 5, 125–130. [Google Scholar] [CrossRef]
- Talib, W.H.; Alsalahat, I.; Daoud, S.; Abutayeh, R.F.; Mahmod, A.I. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020, 25, 5319. [Google Scholar] [CrossRef] [PubMed]
- Karakaş, F.P.; Yildirim, A.; Türker, A. Biological Screening of Various Medicinal Plant Extracts for Antibacterial and Antitumor Activities. Turk. J. Biol. 2012, 36, 641–652. [Google Scholar] [CrossRef]
- Tian, S.; Shi, Y.; Zhou, X.; Ge, L.; Upur, H. Total Polyphenolic (Flavonoids) Content and Antioxidant Capacity of Different Ziziphora Clinopodioides Lam. Extracts. Pharmacogn. Mag. 2011, 7, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Liu, J.; Gao, D.; Xu, Y.; He, L.; Zang, Y.; Li, N.; Lin, D. Detailed Studies on the Anticancer Action of Rosmarinic Acid in Human Hep-G2 Liver Carcinoma Cells: Evaluating Its Effects on Cellular Apoptosis, Caspase Activation and Suppression of Cell Migration and Invasion. J. BUON Off. J. Balk. Union Oncol. 2020, 25, 1383–1389. [Google Scholar]
- Canturk, Z.; Dikmen, M.; Artagan, O.; Ozarda, M.G.; Ozturk, N. Cytotoxic Effects of Resveratrol, Rutin and Rosmarinic Acid on ARH-77 Human (Multiple Myeloma) Cell Line. Nat. Prod. Commun. 2016, 11, 1441–1444. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-G.; Hwang, K.-A.; Choi, K.-C. Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell Lines. Nutrients 2018, 10, 1784. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, R.; Manoharan, S. Anti-Tumor Activity of Rosmarinic Acid in 7,12-Dimethylbenz(a)Anthracene (DMBA) Induced Skin Carcinogenesis in Swiss Albino Mice. Indian J. Exp. Biol. 2012, 50, 187–194. [Google Scholar] [PubMed]
- Han, Y.-H.; Kee, J.-Y.; Hong, S.-H. Rosmarinic Acid Activates AMPK to Inhibit Metastasis of Colorectal Cancer. Front. Pharmacol. 2018, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Ozay, Y.; Guzel, S.; Gokalp Ozkorkmaz, E.; Kumas, M.; Uzun, C.; Yıldırım, Z.; Celik, A.; Camlıca, Y.; Yumrutas, O.; Guler, G.; et al. Biochemical, Histopathologic, and Genotoxic Effects of Ethanol Extract of Salvia Hypargeia (Fisch. & Mey.) on Incisional and Excisional Wounded Diabetic Rats. J. Investig. Surg. Off. J. Acad. Surg. Res. 2021, 34, 7–19. [Google Scholar] [CrossRef]
- Lorge, E.; Thybaud, V.; Aardema, M.J.; Oliver, J.; Wakata, A.; Lorenzon, G.; Marzin, D. SFTG International collaborative study on the in vitro micronucleus test. I. General conditions and overall conclusions of the study. Mutat. Res. 2006, 607, 13–36. [Google Scholar] [CrossRef]
- Oalđe Pavlović, M.; Kolarević, S.; Đorđević, J.; Jovanović Marić, J.; Lunić, T.; Mandić, M.; Kračun Kolarević, M.; Živković, J.; Alimpić Aradski, A.; Marin, P.D.; et al. A Study of Phytochemistry, Genoprotective Activity, and Antitumor Effects of Extracts of the Selected Lamiaceae Species. Plants 2021, 10, 2306. [Google Scholar] [CrossRef]
- Patenkovic, A.; Stamenkovic-Radak, M.; Banjanac, T.; Andjelkovic, M. Antimutagenic Effect of Sage Tea in the Wing Spot Test of Drosophila Melanogaster. Food Chem. Toxicol. 2009, 47, 180–183. [Google Scholar] [CrossRef]
- De Oliveira, N.C.D.; Sarmento, M.S.; Nunes, E.A.; Porto, C.M.; Rosa, D.P.; Bona, S.R.; Rodrigues, G.; Marroni, N.P.; Pereira, P.; Picada, J.N.; et al. Rosmarinic Acid as a Protective Agent against Genotoxicity of Ethanol in Mice. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2012, 50, 1208–1214. [Google Scholar] [CrossRef]
- Furtado, R.A.; de Araújo, F.R.R.; Resende, F.A.; Cunha, W.R.; Tavares, D.C. Protective Effect of Rosmarinic Acid on V79 Cells Evaluated by the Micronucleus and Comet Assays. J. Appl. Toxicol. JAT 2010, 30, 254–259. [Google Scholar] [CrossRef]
- Mladenović, M.; Matić, S.; Stanić, S.; Solujić, S.; Mihailović, V.; Stanković, N.; Katanić, J. Combining molecular docking and 3-D pharmacophore generation to enclose the in vivo antigenotoxic activity of naturally occurring aromatic compounds: Myricetin, quercetin, rutin, and rosmarinic acid. Biochem. Pharmacol. 2013, 86, 1376–1396. [Google Scholar] [CrossRef] [PubMed]
- Vlastos, D.; Mademtzoglou, D.; Drosopoulou, E.; Efthimiou, I.; Chartomatsidou, T.; Pandelidou, C.; Astyrakaki, M.; Chalatsi, E.; Mavragani-Tsipidou, P. Evaluation of the Genotoxic and Antigenotoxic Effects of Chios Mastic Water by the in Vitro Micronucleus Test on Human Lymphocytes and the in Vivo Wing Somatic Test on Drosophila. PLoS ONE 2013, 8, e69494. [Google Scholar] [CrossRef]
- Doi, K.; Wei, M.; Kitano, M.; Uematsu, N.; Inoue, M.; Wanibuchi, H. Enhancement of Preneoplastic Lesion Yield by Chios Mastic Gum in a Rat Liver Medium-Term Carcinogenesis Bioassay. Toxicol. Appl. Pharmacol. 2009, 234, 135–142. [Google Scholar] [CrossRef]
- Koutsoudaki, C.; Krsek, M.; Rodger, A. Chemical Composition and Antibacterial Activity of the Essential Oil and the Gum of Pistacia lentiscus var. Chia. J. Agric. Food Chem. 2005, 53, 7681–7685. [Google Scholar] [CrossRef]
- Dormousoglou, M.; Efthimiou, I.; Antonopoulou, M.; Fetzer, D.L.; Hamerski, F.; Corazza, M.L.; Papadaki, M.; Santzouk, S.; Dailianis, S.; Vlastos, D. Investigation of the genotoxic, antigenotoxic and antioxidant profile of different extracts from Equisetum arvense L. Antioxidants 2022, 11, 1393. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Joseph, A. Rossi Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Clarke, G.; Ting, K.N.; Wiart, C.; Fry, J. High Correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging, Ferric Reducing Activity Potential and Total Phenolics Content Indicates Redundancy in Use of All Three Assays to Screen for Antioxidant Activity of Extracts of Plants from the Malaysian Rainforest. Antioxidants 2013, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Choi, S.-P.; Jeong, H.; Yu, W.K.; Kim, S.W.; Park, Y.-S. The Radical Scavenging Activities and Anti-Wrinkle Effects of Soymilk Fractions Fermented with Lacticaseibacillus paracasei MK1 and Their Derived Peptides. Antioxidants 2023, 12, 1392. [Google Scholar] [CrossRef] [PubMed]
- Surrallés, J.; Xamena, N.; Creus, A.; Catalán, J.; Norppa, H.; Marcos, R. Induction of Micronuclei by Five Pyrethroid Insecticides in Whole-Blood and Isolated Human Lymphocyte Cultures. Mutat. Res. 1995, 341, 169–184. [Google Scholar] [CrossRef] [PubMed]
RT (min) | Tentative Identification | MW | Ions (m/z) after Negative Ionization | Ions (m/z) after Positive Ionization | λmax (nm) | Ref. | |
---|---|---|---|---|---|---|---|
1 | 1.8 | quinic, citric, or isocitric acid | 192 | 111 191 [M−H]− | - | 200, 209sh, 215 | [25] |
2 | 4.3 | dimer-β-(3,4-dihydroxyphenyl) lactic acid | 396 | 135 [caffeic acid−H−CO2]− 179 [caffeic acid−H]− 197 [M−2H]2− 395 [M−H]− 417 [M+Na−2H]− | 221 [M+2Na]2+ 317 435 [M+K]+ 831 [2M+K]+ | 198, 225, 282sh | [26] |
3 | 8.0 | caftaric acid | 312 | 149 [tartaric acid−H]− 179 [caffeic acid−H]− 311 [M−H]− 333 [M+Na−2H]− | 335 [M+Na]+ 354 [M+ACN+H]+ 376 [M+ACN+Na]+ | 202, 215, 325sh | [26] |
6 | 10.5 | coumaroyl-hexose | 326 | 163 [M-hexose]− 193 325 [M−H]− 371 [M+FA−H]− | 349 [Μ+Νa]+ 365 [M+K]+ 675 [2M+Na]+ | 202sh, 219, 285, 328 | [7,8,23] |
7 | 10.7 | medioresinol | 388 | 177 256 387 [M−H]− 423 [M+Cl]− 433 [M+FA−H]− 775 [2M−H]− | 227 389 [M+H]+ 411 [Μ+Νa]+ 427 [M+K]+ 799 [2M+Na]+ | 226sh, 315 | [22,23] |
10 | 19.3 | luteolin glucuronide | 462 | 421 461 [M−H]− 483 [M+Na−2H]− 923 [2M−H]− | 287 [M-glucuronide+H]+ 463 [Μ+H]+ 485 [M+Na]+ 925 [2M+H]+ 947 [2M+Na]+ | 200sh, 219, 268sh, 344 | [7,8,22,24,28] |
11 | 21.2 | sagerinic acid | 720 | 539 719[M−H]− 741 [M+Na-2H]− | 163 313 328 380 [M+H+K]2+ 523 721 [M+H]+ 743 [Μ+Νa]+ 759 [M+K]+ 1441 [2M+H]+ 1463 [2M+Na]+ | 199, 221, 283sh | [8,24] |
12 | 21.9 | apigenin glucuronide | 446 | 269 [M−glucuronide−H]− 445 [M−H]− 891 [2M−H]− | 271 [M−glucuronide+H]+ 447 [Μ+H]+ 469 [M+Na]+ 893 [2M+H]+ | 200sh, 221, 268, 337 | [7,8,23,28,29] |
13 | 22.1 | rosmarinic acid | 360 | 161 179 [M−2H]2− and [caffeic acid−H]− 197 359 [M−H]− 719 [2M−H]− 1079 [3M−H]− | 163 361 [M+H]+ 383 [Μ+Νa]+ 721 [2M+H]+ 743 [2M+Na]+ | 199sh, 236, 327, 333 | [7,8,25,26,28,30,31,32] |
14 | 22.8 | hispidulin glucuronide | 476 | 299 [M−glucuronide-H]− 475 [M−H]− 535 [M+Hac−H]− 951 [2M−H]− | 301 [M-glucuronide+H]+ 477 [Μ+H]+ 499 [M+Na]+ 953 [2M+H]+ | 200, 223, 343sh | [23,24] |
16 | 23.9 | salvianolic acid K or isomer | 556 | 493 535 555 [M−H]− 577 [M+Na-2H]− | 267 298 [M+H+K]2+ 323 341 359 539 557 [M+H]+ 559 579 [M+Na]+ 595 [M+K]+ 1155 [2M+ACN+H]+ | 225, 286sh, 325sh | [8,23] |
17 | 24.2 | salvianolic acid H,I,J, lithospermic acid, or 3′-O-(8″-Z-caffeoyl)rosmarinic acid | 538 | 537 [M−H]− 559 [M+Na−2H]− 1075 [2M−H]− | 457 561 [M+Na]+ 1077 [2M+H]+ 1099 [2M+Na]+ 1115 [2M+K]+ | 199, 223, 286sh, 320sh | [24,28,32] |
18 | 26.0 | salvianolic acid E | 718 | 537 717 [M−H]− 739 [M+Na−2H]− | 323 379 [M+H+K]2+ 521 719 [M+H]+ 741 [Μ+Na]+ 757 [M+K]+ 1459 [2M+Na]+ 1475 [2M+K]+ | 199, 223, 286sh, 320sh | [25,26,32,33] |
19 | 26.5 | salvianic acid A (danshensu) rhamnoside | 344 | 179 [danshensu]− 243 343 [M−H]− 379 [M+Cl]− 687 [2M−H]− 733 [2M+FA−H]− 747 [2M+Hac−H]− | 147 367 [Μ+Na]+ | 226, 286sh, 320sh | [25,32] |
20 | 27.9 | cis-methyl rosmarinic acid | 374 | 135 179 373 [M−H]− 395 [M+Na−2H]− 747 [2M−H]− | 177 341 397 [Μ+Na]+ 771 [2M+Na]+ | 197, 223, 286sh, 326sh | [8,25,26,34] |
21 | 28.3 | trans-methyl rosmarinic acid | 374 | 373 [M−H]− 747 [2M−H]− 1120 [3M−H]− | 177 375 [M+H]+ 397 [Μ+Na]+ 771 [2M+Na]+ 787 [2M+K]+ | 199sh,220,285sh, 329 | [7,8,25,26] |
22 | 33.8 | salvianolic acid B, L or isosalvianolic acid B | 718 | 717 [M−H]− 739 [M+Na−2H]− | 323 343 371 [M+H+Na]2+ 379 [M+H+K]2+ 719 [M+H]+ 741 [Μ+Na]+ 1454 [2M+NH4]+ | 198, 224, 284sh, 330sh | [23,32,33] |
23 | 34.7 | dedihydro- salvianolic acid B/isomer | 716 | 715 [M−H]− 737 [M+Na−2H]− | 295 378 [M+H+K]2+ 519 [salvianolic acid B-H-98]− 739 [Μ+Na]+ 755 [M+K]+ 1455 [2M+Na]+ | 199sh, 227, 284sh, 346 | [33] |
25 | 38.8 | circimaritin | 314 | 283 [M−H−2CH3]− 313 [M−H]− | 315 [Μ+H]+ 337 [M+Na]+ 651 [2M+Na]+ | 227, 277sh, 335 | [7,31] |
26 | 43.4 | salvigenin | 328 | - | 329 [M+H]+ 351 [M+Na]+ 392 [M+ACN+Na]+ 679 [2M+Na]+ | 228, 280sh, 332 | [29,31] |
28 | 48.6 | miltipolone or hinokione | 300 | 149 205 301 [M+H]+ | 228, 278sh | [31,35] |
Wavelength (nm) | Compound | Concentration (mg g−1 Dry Extract Weight) | Concentration (mg g−1 Dry Leaf) | |
Phenolic acids a | ||||
8 | 280 | unknown (MW = 592) | 13.44 ± 1.63 | 5.16 ± 0.63 |
13 | 280 | rosmarinic acid | 223.12 ± 8.66 | 85.63 ± 3.32 |
21 | 280 | trans- methyl rosmarinic acid | 63.03± 7.33 | 24.19 ± 2.81 |
23 | 280 | dedihydro-salvianolic acid B/isomer | 19.42 ±2.81 | 7.45 ± 1.08 |
Flavonoids b | ||||
10 | 330 | luteolin-glucuronide | 23.92 ± 2.20 | 9.18 ± 0.84 |
12 | 330 | apigenin-glucuronide | 29.71 ± 4.33 | 11.40 ± 1.66 |
14 | 330 | hispidulin glucuronide | 6.97 ± 0.67 | 2.68 ± 0.26 |
25 | 330 | circimaritin | 6.85 ± 0.80 | 2.63 ± 0.31 |
26 | 330 | salvigenin | 5.27 ± 0.47 | 2.02 ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavropoulou, L.S.; Efthimiou, I.; Giova, L.; Manoli, C.; Sinou, P.S.; Zografidis, A.; Lamari, F.N.; Vlastos, D.; Dailianis, S.; Antonopoulou, M. Phytochemical Profile and Evaluation of the Antioxidant, Cyto-Genotoxic, and Antigenotoxic Potential of Salvia verticillata Hydromethanolic Extract. Plants 2024, 13, 731. https://doi.org/10.3390/plants13050731
Stavropoulou LS, Efthimiou I, Giova L, Manoli C, Sinou PS, Zografidis A, Lamari FN, Vlastos D, Dailianis S, Antonopoulou M. Phytochemical Profile and Evaluation of the Antioxidant, Cyto-Genotoxic, and Antigenotoxic Potential of Salvia verticillata Hydromethanolic Extract. Plants. 2024; 13(5):731. https://doi.org/10.3390/plants13050731
Chicago/Turabian StyleStavropoulou, Lamprini S., Ioanna Efthimiou, Lambrini Giova, Chrysoula Manoli, Paraskevi S. Sinou, Aris Zografidis, Fotini N. Lamari, Dimitris Vlastos, Stefanos Dailianis, and Maria Antonopoulou. 2024. "Phytochemical Profile and Evaluation of the Antioxidant, Cyto-Genotoxic, and Antigenotoxic Potential of Salvia verticillata Hydromethanolic Extract" Plants 13, no. 5: 731. https://doi.org/10.3390/plants13050731
APA StyleStavropoulou, L. S., Efthimiou, I., Giova, L., Manoli, C., Sinou, P. S., Zografidis, A., Lamari, F. N., Vlastos, D., Dailianis, S., & Antonopoulou, M. (2024). Phytochemical Profile and Evaluation of the Antioxidant, Cyto-Genotoxic, and Antigenotoxic Potential of Salvia verticillata Hydromethanolic Extract. Plants, 13(5), 731. https://doi.org/10.3390/plants13050731