Temporal and Within-Sporophyte Variations in Triphenyltin Chloride (TPTCL) and Its Degradation Products in Cultivated Undaria pinnatifida
Abstract
:1. Introduction
2. Results
2.1. Seasonal Variation in Water Temperature and Nutrient Concentration
2.2. Seasonal Morphological Characteristics of U. pinnatifida
2.3. TPTCL and Its Degradation Products in Seawater and in Sporophytic Tissues from Different Parts
3. Discussion
3.1. Accumulation of TPTCL by Cultivated U. pinnatifida
3.2. Degradation of TPTCL by Cultivated U. pinnatifida
3.3. Temporal and Intra-Sporophyte Variations of TPTCL and Its Degradation Products in Cultivated U. pinnatifida
4. Materials and Methods
4.1. Sample Collection and Treatment
4.2. Determination of TPTCL and Its Degradation Products in Seawater and Sporophytic Tissues from Different Parts
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoch, M. Organotin compounds in the environment—An overview. Appl. Geochem. 2001, 16, 719–743. [Google Scholar] [CrossRef]
- Yen, J.; Tsai, C.; Su, C.; Wang, Y. Environmental dissipation of fungicide triphenyltin acetate and its potential as a groundwater contaminant. Ecotox. Environ. Saf. 2001, 49, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Grigarick, A.A.; Webster, R.K.; Meyer, R.P.; Zalom, F.G.; Smith, K.A. Effect of pesticide treatments on nontarget organisms in California rice paddies: I. Impact of triphenyltin hydroxide; II. Impact of diflubenzuron and triflumuron. Hilgardia 1990, 58, 1–36. [Google Scholar] [CrossRef]
- Huang, G.; Song, Z. Immobilization of Spirulina subsalsa for removal of triphenyltin from water. Artif. Cells Blood Substit. Immobil. Biotechnol. 2002, 30, 293–305. [Google Scholar] [CrossRef]
- Fent, K. Ecotoxicology of organotin compounds. Crit. Rev. Toxicol. 1996, 26, 3–117. [Google Scholar] [CrossRef]
- Yamada, H.; Takayanagi, K.; Tateishi, M.; Tagata, H.; Ikeda, K. Organotin compounds and polychlorinated biphenyls of livers in squid collected from coastal waters and open oceans. Environ. Pollut. 1997, 96, 217–226. [Google Scholar] [CrossRef]
- Novelli, A.A.; Argese, E.; Tagliapietra, D.; Bettiol, C.; Ghirardini, A.V. Toxicity of tributyltin and triphenyltin to early life-stages of Paracentrotus lividus (Echinodermata: Echinoidea). Environ. Toxicol. Chem. 2002, 21, 859–864. [Google Scholar]
- Alzieu, C.; Sanjuan, J.; Deltreil, J.; Borel, M. Tin contamination in Arcachon Bay: Effects on oyster shell anomalies. Mar. Pollut. Bull. 1986, 17, 494–498. [Google Scholar] [CrossRef]
- Horiguchi, T.; Shiraishi, H.; Shimizu, M.; Morita, M. Effects of triphenyltin chloride and five other organotin compounds on the development of imposex in the rock shell, Thais clavigera. Environ. Pollut. 1997, 95, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.M.; Reis-Henriques, M.A.; Vieira, M.N.; Solé, M. Triphenyltin and tributyltin, single and in combination, promote imposex in the gastropod Bolinus brandaris. Ecotox. Environ. Saf. 2006, 64, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Laranjeiro, F.; Sánchez-Marín, P.; Barros, A.; Galante-Oliveira, S.; Moscoso-Pérez, C.; Fernández-González, V.; Barroso, C. Triphenyltin induces imposex in Nucella lapillus through an aphallic route. Aquat. Toxicol. 2016, 175, 127–131. [Google Scholar] [CrossRef]
- Li, P.; Li, Z.; Zhong, L. Effects of low concentrations of triphenyltin on neurobehavior and the thyroid endocrine system in zebrafish. Ecotox. Environ. Saf. 2019, 186, 109776. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Song, Z.; Liu, G.; Zhang, W. Toxic effect of triphenyltin chloride on the alga Spirulina subsalsa. Appl. Organomet. Chem. 2002, 16, 117–122. [Google Scholar] [CrossRef]
- Xu, J.; Li, M.; Mak, N.K.; Chen, F.; Jiang, Y. Triphenyltin chloride induced growth inhibition and antioxidative responses in the green microalga Scenedesmus quadricauda. Ecotoxicology 2011, 20, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.K. Common Seaweeds of China; Science Press: Beijing, China, 1984; p. 149. [Google Scholar]
- Koh, C.H.; Shin, H.C. Growth and size distribution of some large brown algae in Ohori, east coast of Korea. Hydrobiologia 1989, 204–205, 225–231. [Google Scholar]
- Watanabe, Y.; Nishihara, G.N.; Tokunaga, S.; Terada, R. The effect of irradiance and temperature responses and the phenology of a native alga, Undaria pinnatifida (Laminariales), at the southern limit of its natural distribution in Japan. J. Appl. Phycol. 2014, 26, 2405–2415. [Google Scholar] [CrossRef]
- Stuart, M.D. Review of Research on Undaria pinnatifida in New Zealand and Its Potential Impacts on the Eastern Coast of the South Island; Department of Conservation: Wellington, New Zealand, 2004; pp. 7–8. [Google Scholar]
- James, K.; Kibele, J.; Shears, N.T. Using satellite-derived sea surface temperature to predict the potential global range and phenology of the invasive kelp Undaria pinnatifida. Biol. Invasions 2015, 17, 3393–3408. [Google Scholar] [CrossRef]
- Epstein, G.; Smale, D.A. Undaria pinnatifida: A case study to highlight challenges in marine invasion ecology and management. Ecol. Evol. 2017, 7, 8624–8642. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.A.; Volesky, B.; Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Torres, A.I.; Gil, M.N.; Esteves, J.L. Nutrient uptake rates by the alien alga Undaria pinnatifida (Phaeophyta) (Nuevo Gulf, Patagonia, Argentina) when exposed to diluted sewage effluent. Hydrobiologia 2004, 520, 1–6. [Google Scholar] [CrossRef]
- Lee, S.; Park, C. Biosorption of Heavy Metal Ions by Brown Seaweeds from Southern Coast of Korea. Biotechnol. Bioproc. E 2012, 17, 853–861. [Google Scholar] [CrossRef]
- Yamanaka, R.; Akiyama, K. Cultivation and utilization of Undaria pinnatifida (Wakame) as food. J. Appl. Phycol. 1993, 5, 249–253. [Google Scholar] [CrossRef]
- Hwang, E.K.; Hwang, I.K.; Park, E.J.; Gong, Y.G.; Park, C.S. Development and cultivation of F2 hybrid between Undariopsis peterseniana and Undaria pinnatifida for abalone feed and commercial mariculture in Korea. J. Appl. Phycol. 2014, 26, 747–752. [Google Scholar] [CrossRef]
- Shan, T.F.; Pang, S.J.; Li, J.; Gao, S.Q. Breeding of an elite cultivar Haibao no. 1 of Undaria pinnatifida (Phaeophyceae) through gametophyte clone crossing and consecutive selection. J. Appl. Phycol. 2016, 28, 2419–2426. [Google Scholar] [CrossRef]
- Kolb, N.; Vallorani, L.; Milanovic, N.; Stocchi, V. Evaluation of marine algae wakame (Undaria pinnatifida) and kombu (Laminaria digitata japonica) as food supplements. Food Technol. Biotechnol. 2004, 42, 57–61. [Google Scholar]
- Prabhasankar, P.; Ganesan, P.; Bhaskar, N.; Hirose, A.; Stephen, N.; Gowda, L.R.; Hosokawa, M.; Miyashita, K. Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chem. 2009, 115, 501–508. [Google Scholar] [CrossRef]
- Lee, J.; Hayashi, K.; Hashimoto, M.; Nakano, T.; Hayashi, T. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem. Pharm. Bull. 2004, 52, 1091–1094. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Tamauchi, H.; Hashimoto, M.; Nakano, T. Suppression of Th2 immune responses by mekabu fucoidan from Undaria pinnatifida sporophylls. Int. Arch. Allergy Immunol. 2005, 137, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Hemmingson, J.A.; Falshaw, R.; Furneaux, R.H.; Thompson, K. Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). J. Appl. Phycol. 2006, 18, 185–193. [Google Scholar] [CrossRef]
- Nadeeshani, H.; Hassouna, A.; Lu, J. Proteins extracted from seaweed Undaria pinnatifida and their potential uses as foods and nutraceuticals. Crit. Rev. Food Sci. 2022, 62, 6187–6203. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, W.; Han, M. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models. J. Hazard. Mater. 2008, 155, 327–333. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Gong, Q.; Gao, X.; Li, J. Physiological and ultrastructural responses of the brown seaweed Undaria pinnatifida to triphenyltin chloride (TPTCL) stress. Mar. Pollut. Bull. 2020, 153, 110978. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Liu, Y.; Gong, Q.; Gao, X. Accumulation and degradation of organotin compounds in cultivated sporophytes of the brown alga Undaria pinnatifida. J. Appl. Phycol. 2022, 34, 577–587. [Google Scholar] [CrossRef]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef]
- Huang, G.; Bai, Z.; Dai, S.; Xie, Q. Accumulation and toxic effect of organometallic compounds on algae. Appl. Organomet. Chem. 1993, 7, 373–380. [Google Scholar] [CrossRef]
- Lu, X.; Li, J.; Wang, Z.; Liu, Q. Removal and transformation of tributytin in seawater by three marine microalgae. Acta Sci. Circumstantiae 1994, 3, 341–348. (In Chinese) [Google Scholar]
- Harino, H.; Fukushima, M.; Yamamoto, Y.; Kawai, S.; Miyazaki, N. Contamination of butyltin and phenyltin compounds in the marine environment of otsuchi bay, Japan. Environ. Pollut. 1998, 101, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y. Bioaccumulation and Influential Mechanisms of Heavy Metals in Offshore Seafood. Ph.D. Thesis, University of Chinese Academy of Science, Beijing, China, June 2021. [Google Scholar]
- Bureau of Fisheries and Fisheries Administration, Ministry of Agriculture and Rural Affairs, PRC. China Fishery Statistical Yearbook 2022; China Agriculture Press: Beijing, China, 2022; pp. 22–23.
- Maguire, R.J.; Wong, P.T.S.; Rhamey, J.S. Accumulation and metabolism of tri-n-butyltin cation by a green alga, Ankistrodesmus falcatus. Can. J. Fish. Aquat. Sci. 1984, 41, 537–540. [Google Scholar] [CrossRef]
- Tsang, C.K.; Lau, P.S.; Tam, N.F.Y.; Wong, Y.S. Biodegradation capacity of tributyltin by two chlorella species. Environ. Pollut. 1999, 105, 289–297. [Google Scholar] [CrossRef]
- Tam, N.F.Y.; Chong, A.M.Y.; Wong, Y.S. Removal of tributyltin (TBT) by live and dead microalgal cells. Mar. Pollut. Bull. 2002, 45, 362–371. [Google Scholar] [CrossRef]
- Xie, Y.; Su, R.; Zhang, L.; Wang, X. A study on biosorption and biodegradation of tributyltin by two red tide microalgae. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011. [Google Scholar]
- Gao, J.; Ye, J.; Ma, J.; Tang, L.; Huang, J. Biosorption and biodegradation of triphenyltin by Stenotrophomonas maltophilia and their influence on cellular metabolism. J. Hazard. Mater. 2014, 276, 112–119. [Google Scholar] [CrossRef]
- Ortiz, A.; Teruel, J.A.; Aranda, F.J. Effect of triorganotin compounds on membrane permeability. Biochim. Biophys. Acta 2005, 1720, 137–142. [Google Scholar] [CrossRef]
- Huang, J.; Ye, J.; Ma, J.; Gao, J.; Chen, S.; Wu, X. Triphenyltin biosorption, dephenylation pathway and cellular responses during triphenyltin biodegradation by Bacillus thuringiensis and tea saponin. Chem. Eng. J. 2014, 249, 167–173. [Google Scholar] [CrossRef]
- Yi, W.; Yang, K.; Ye, J.; Long, Y.; Ke, J.; Ou, H. Triphenyltin degradation and proteomic response by an engineered Escherichia coli expressing cytochrome P450 enzyme. Ecotox. Environ. Saf. 2017, 137, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Song, M.F.; Li, J. The Contaminative Status of Organic Tin Compounds and its Reproductive Toxicity. J. Environ. Occup. Med. 2005, 22, 549–551. (In Chinese) [Google Scholar]
- World Health Organization. Concise International Chemical Assessment Document 13: Triphenyltin Compounds. Available online: https://www.inchem.org/documents/cicads/cicads/cicad13.htm (accessed on 2 May 1999).
- Food and Agriculture Organization of the United Nations. Pesticide Residues in Food 1991. In Proceedings of the FAO Plant Production and Protection Paper Report of Joint FAO/Who Meeting on Pesticide Residues in Food 1991, Geneva, Switzerland, 16–25 September 1991. [Google Scholar]
- Yamada, H.; Takayanagi, K. Bioconcentration and elimination of bis (tributyltin) oxide (TBTO) and triphenyltin chloride chloride (TPTC) in several marine fish species. Wat. Res. 1992, 26, 1589–1595. [Google Scholar] [CrossRef]
- Yang, J.; Oshima, Y.; Sei, I.; Miyazaki, N. Metabolism of tributyltin and triphenyltin by Dall’s porpoise hepatic microsomes. Chemosphere 2009, 76, 1013–1015. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Endo, H.; Taniguchi, K.; Agatsuma, Y. Combined effects of seawater temperature and nutrient condition on growth and survival of juvenile sporophytes of the kelp Undaria pinnatifida (Laminariales; phaeophyta) cultivated in northern honshu, japan. J. Appl. Phycol. 2013, 25, 269–275. [Google Scholar] [CrossRef]
- Lüning, K.; Schmitz, K.; Willenbrink, J. CO2 fixation and translocation in benthic marine algae. III. Rates and ecological significance of translocation in Laminaria hyperborea and L. saccharina. Mar. Biol. 1973, 23, 275–281. [Google Scholar] [CrossRef]
- Johnston, C.S.; Jones, R.G.; Hunt, R.D. A seasonal carbon budget for a laminarian population in a Scottish sea-loch. Helgoländer Wiss. Meeresunters 1977, 30, 527–545. [Google Scholar] [CrossRef]
- Mizuta, H.; Maita, Y.; Kuwada, K. Nitrogen recycling mechanism within the thallus of Laminaria japonica (Phaeophyceae) under the nitrogen limitation. Fish. Sci. 1994, 60, 763–767. [Google Scholar] [CrossRef]
- Davison, I.R.; Stewart, W.D.P. Occurrence and significance of nitrogen transport in the brown alga Laminaria digitata. Mar. Biol. 1983, 77, 107–112. [Google Scholar] [CrossRef]
- Schmitz, K.; Lobban, C.S. A survey of translocation in Laminariales (Phaeophyceae). Mar. Biol. 1976, 36, 207–216. [Google Scholar] [CrossRef]
- GB/T 12763.4-2007; Part 4: Survey of Chemical Parameters in Seawater. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2007; pp. 13–23.
Blade | Stipe | Sporophyll | |||||||
---|---|---|---|---|---|---|---|---|---|
Month | Length (cm) | Width (cm) | Fresh Weight (g) | Length (cm) | Width (cm) | Fresh Weight (g) | Length (cm) | Width (cm) | Fresh Weight (g) |
December | 74.25 ± 11.27 a | 12.37 ± 4.20 a | 15.74 ± 6.84 a | 15.90 ± 4.44 a | 1.11 ± 0.30 a | 10.74 ± 3.46 a | None | None | None |
January | 123.67 ± 16.94 c | 21.76 ± 6.39 bc | 48.79 ± 26.34 a | 30.62 ± 7.03 bc | 1.80 ± 0.37 bc | 42.41 ± 15.94 b | None | None | None |
February | 138.33 ± 27.06 d | 22.54 ± 5.99 cd | 58.11 ± 22.73 a | 38.96 ± 10.78 c | 1.86 ± 0.29 cd | 63.48 ± 24.71 c | 6.83 ± 2.42 a | 3.45 ± 1.28 a | 2.45 ± 2.00 a |
March | 89.64 ± 9.53 b | 15.72 ± 2.72 ab | 26.52 ± 7.50 a | 23.63 ± 7.83 ab | 1.49 ± 0.83 b | 26.30 ± 7.88 ab | 6.54 ± 3.03 a | 2.08 ± 0.34 a | 0.88 ± 0.41 a |
April | 80.84 ± 12.99 ab | 28.60 ± 8.47 d | 67.33 ± 42.65 a | 22.47 ± 9.25 ab | 1.60 ± 0.31 bc | 36.71 ± 16.99 b | 11.59 ± 6.93 a | 3.34 ± 1.26 a | 6.99 ± 9.21 a |
May | 101.88 ± 20.97 c | 36.89 ± 9.39 e | 247.36 ± 133.77 b | 36.61 ± 8.37 c | 2.21 ± 0.35 d | 93.73 ± 32.10 d | 28.02 ± 11.70 b | 6.49 ± 1.62 b | 105.95 ± 72.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Zhang, Y.; Gao, X.; Gong, Q.; Li, J. Temporal and Within-Sporophyte Variations in Triphenyltin Chloride (TPTCL) and Its Degradation Products in Cultivated Undaria pinnatifida. Plants 2024, 13, 767. https://doi.org/10.3390/plants13060767
Ren X, Zhang Y, Gao X, Gong Q, Li J. Temporal and Within-Sporophyte Variations in Triphenyltin Chloride (TPTCL) and Its Degradation Products in Cultivated Undaria pinnatifida. Plants. 2024; 13(6):767. https://doi.org/10.3390/plants13060767
Chicago/Turabian StyleRen, Xingyue, Yuanyuan Zhang, Xu Gao, Qingli Gong, and Jingyu Li. 2024. "Temporal and Within-Sporophyte Variations in Triphenyltin Chloride (TPTCL) and Its Degradation Products in Cultivated Undaria pinnatifida" Plants 13, no. 6: 767. https://doi.org/10.3390/plants13060767
APA StyleRen, X., Zhang, Y., Gao, X., Gong, Q., & Li, J. (2024). Temporal and Within-Sporophyte Variations in Triphenyltin Chloride (TPTCL) and Its Degradation Products in Cultivated Undaria pinnatifida. Plants, 13(6), 767. https://doi.org/10.3390/plants13060767