Extracted Eucalyptus globulus Bark Fiber as a Potential Substrate for Pinus radiata and Quillaja saponaria Germination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Properties of the Substrates
2.2. Substrate Physical Properties
Surface Characteristics of Eucalyptus Fiber Barks
2.3. Pine and Quillay Substrate Germination Rates
2.4. Evaluation of Phytostimulants on the Growth of Q. saponaria and P. radiata Species
2.4.1. Germination Rate for Q. saponaria and P. radiata Using Phytostimulants
2.4.2. Effect of Phyto-Stimulant on Q. saponaria and P. radiata Seedling Biomass
2.5. Phytotoxicity of Substrate Mixtures Measured by Munoo-Liisa Vitality Index (MLVI)
Eucalyptus/Commercial Substrate Mixtures Growing Q. saponaria and P. radiata
2.6. Phytotoxicity of Substrate Mixtures with Phytostimulants Measured by Munoo-Liisa Vitality Index (MLVI)
3. Materials and Methods
3.1. Collection and Preparation of Substrates
3.2. Pilot-Scale Extraction of Eucalyptus Bark
3.3. Substrate Physicochemical Characteristics
3.3.1. pH Measurement
3.3.2. Determination of Electrical Conductivity
3.3.3. Organics and Ashes Determination
3.3.4. Bulk Density Determination
3.3.5. N-NO3, N-NH4, and Chemical Elements Determination
3.3.6. Scanning Electron Microscopy (SEM)
3.4. Phytostimulants
3.4.1. Fulvic Acid Encapsulation
3.4.2. Preparation of Chitosan
3.5. Growth Evaluations
3.5.1. Phytotoxicity Essay
3.5.2. Growth Test
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferreira, V.; Boyero, L.; Calvo, C.; Correa, F.; Figueroa, R.; Gonçalves, J.F.; Goyenola, G.; Graça, M.A.S.; Hepp, L.U.; Kariuki, S.; et al. A Global Assessment of the Effects of Eucalyptus Plantations on Stream Ecosystem Functioning. Ecosystems 2019, 22, 629–642. [Google Scholar] [CrossRef]
- Aguirre, D.; Caselli, J.; González, C.; Hernández, P.; González, V.; Velásquez, E.; Bañados, J.; Rocha, D. Anuario Forestal 2021; Boletín Estadístico N° 180; Instituto Forestal, Ministerio de Agricultura: Santiago, Chile, 2021; pp. 1–274. [Google Scholar]
- Quilhó, T.; Pereira, H. Within and Between-Tree Variation of Bark Content and Wood Density of Eucalyptus Globulus in Commercial Plantations. IAWA J. 2001, 22, 255–265. [Google Scholar] [CrossRef]
- Neiva, D.M.; Araújo, S.; Gominho, J.; Carneiro, A.d.C.; Pereira, H. Potential of Eucalyptus Globulus Industrial Bark as a Biorefinery Feedstock: Chemical and Fuel Characterization. Ind. Crop. Prod. 2018, 123, 262–270. [Google Scholar] [CrossRef]
- Casas-Ledón, Y.; Daza Salgado, K.; Cea, J.; Arteaga-Pérez, L.E.; Fuentealba, C. Life Cycle Assessment of Innovative Insulation Panels Based on Eucalyptus Bark Fibers. J. Clean. Prod. 2020, 249, 119356. [Google Scholar] [CrossRef]
- Silva-Fernandes, T.; Duarte, L.C.; Carvalheiro, F.; Marques, S.; Loureiro-Dias, M.C.; Fonseca, C.; Gírio, F. Biorefining Strategy for Maximal Monosaccharide Recovery from Three Different Feedstocks: EUCALYPTUS Residues, Wheat Straw and Olive Tree Pruning. Bioresour. Technol. 2015, 183, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Abdelkhalek, A.; Salem, M.Z.M.; Kordy, A.M.; Salem, A.Z.M.; Behiry, S.I. Antiviral, Antifungal, and Insecticidal Activities of Eucalyptus Bark Extract: HPLC Analysis of Polyphenolic Compounds. Microb. Pathog. 2020, 147, 104383. [Google Scholar] [CrossRef] [PubMed]
- Barth, S.; Vega, J.; Fuentealba, C.; Michanickl, A. Fiber Insulation Materials From Eucalyptus Bark Fibers—First Results. Pro Lingo 2018, 14, 3–8. [Google Scholar]
- Fuentealba, C.; Vega, J.; Norambuena-Contreras, J. New Biobased Composite Material Using Bark Fibres Eucalyptus. In Proceedings of the Biocomp 2016, Concepción, Chile, 13–15 November 2016. [Google Scholar]
- Santos, J.; Escobar-Avello, D.; Fuentealba, C.; Cabrera-Barjas, G.; González-Álvarez, J.; Martins, J.M.; Carvalho, L.H. Forest By-Product Valorization: Pilot-Scale Pinus Radiata and Eucalyptus Globulus Bark Mixture Extraction. Forests 2023, 14, 895. [Google Scholar] [CrossRef]
- Vázquez, G.; González-Alvarez, J.; Santos, J.; Freire, M.S.; Antorrena, G. Evaluation of Potential Applications for Chestnut (Castanea sativa) Shell and Eucalyptus (Eucalyptus globulus) Bark Extracts. Ind. Crop. Prod. 2009, 29. [Google Scholar] [CrossRef]
- Mansilla, C.; Pradena, M.; Fuentealba, C.; César, A. Evaluation of Mechanical Properties of Concrete Reinforced with Eucalyptus Globulus Bark Fibres. Sustainability 2020, 12, 10026. [Google Scholar] [CrossRef]
- de Carvalho, R.A.G.; Beça, C.G.G.; Neves, O.R.; Pereira, M.C.S. Composting of Pine and Eucalyptus Barks. Bioresour. Technol. 1991, 38, 51–63. [Google Scholar] [CrossRef]
- Chemetova, C.; Fabião, A.; Gominho, J.; Ribeiro, H. Range Analysis of Eucalyptus Globulus Bark Low-Temperature Hydrothermal Treatment to Produce a New Component for Growing Media Industry. Waste Manag. 2018, 79, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chemetova, C.; Mota, D.; Fabião, A.; Gominho, J.; Ribeiro, H. Low-Temperature Hydrothermally Treated Eucalyptus Globulus Bark: From by-Product to Horticultural Fiber-Based Growing Media Viability. J. Clean. Prod. 2021, 319, 128805. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Ferrer, V.; Bravo-Arrepol, G.; Reyes-Contreras, P.; Elissetche, J.P.; Santos, J.; Fuentealba, C.; Cabrera-Barjas, G. Pretreated Eucalyptus Globulus and Pinus Radiata Barks: Potential Substrates to Improve Seed Germination for a Sustainable Horticulture. Forests 2023, 14, 991. [Google Scholar] [CrossRef]
- Gusatti, M.; Zanuzo, M.R.; Machado, R.A.F.; Vieira, C.V.; Cavalli, E. Performance of Agricultural Substrates in the Production of Lettuce Seedlings (Lactuca sativa L.). Sci. Electron. Arch. 2019, 12, 40. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Burés, S. National Inventory of Organic Wastes for Use as Growing Media for Ornamental Potted Plant Production: Case Study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Di Lonardo, S.; Cacini, S.; Becucci, L.; Lenzi, A.; Orsenigo, S.; Zubani, L.; Rossi, G.; Zaccheo, P.; Massa, D. Testing New Peat-Free Substrate Mixtures for the Cultivation of Perennial Herbaceous Species: A Case Study on Leucanthemum Vulgare Lam. Sci. Hortic. 2021, 289, 110472. [Google Scholar] [CrossRef]
- Lu, B.; Wang, X.; Liu, N.; He, K.; Wu, K.; Li, H.; Tang, X. Feasibility of NIR Spectroscopy Detection of Moisture Content in Coco-Peat Substrate Based on the Optimization Characteristic Variables. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 239, 118455. [Google Scholar] [CrossRef]
- Guerrero, F.; Gascó, J.M.; Hernández-Apaolaza, L. Use of Pine Bark and Sewage Sludge Compost as Components of Substrates for Pinus Pinea and Cupressus Arizonica Production. J. Plant Nutr. 2002, 25, 129–141. [Google Scholar] [CrossRef]
- Bui, H.; Sebaibi, N.; Boutouil, M.; Levacher, D. Determination and review of physical and mechanical properties of raw and treated coconut fibers for their recycling in construction materials. Fibers 2020, 8, 37. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving Environmentally Sustainable Growing Media for Soilless Plant Cultivation Systems—A Review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef]
- Ampim, P.A.Y.; Sloan, J.J.; Cabrera, R.I.; Harp, D.A.; Jaber, F.H. Green Roof Growing Substrates: Types, Ingredients, Composition and Properties. J. Environ. Hortic. 2010, 28, 244–252. [Google Scholar] [CrossRef]
- Schafer, G.; Lerner, B.L. Physical and Chemical Characteristics and Analysis of Plant Substrate. Ornam. Hortic. 2022, 28, 181–192. [Google Scholar] [CrossRef]
- Boudreault, S.; Pepin, S.; Caron, J.; Lamhamedi, M.S.; Paiement, I. Substrate Aeration Properties and Growth of Containerized White Spruce: A Case Study. Vadose Zone J. 2014, 13, 1–15. [Google Scholar] [CrossRef]
- Buamscha, M.G.; Altland, J.E.; Sullivan, D.M.; Horneck, D.A.; McQueen, J.P.G. Nitrogen Availability in Fresh and Aged Douglas Fir Bark. Horttechnology 2008, 18, 619–623. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Rathor, P.; Gorim, L.Y.; Thilakarathna, M.S. Plant Physiological and Molecular Responses Triggered by Humic Based Biostimulants—A Way Forward to Sustainable Agriculture. Plant Soil 2023, 492, 31–60. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants. Biomolecules 2021, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Bernabé, P.; Becherán, L.; Cabrera-Barjas, G.; Nesic, A.; Alburquenque, C.; Tapia, C.V.; Taboada, E.; Alderete, J.; De Los Ríos, P. Chilean Crab (Aegla Cholchol) as a New Source of Chitin and Chitosan with Antifungal Properties against Candida Spp. Int. J. Biol. Macromol. 2020, 149, 962–975. [Google Scholar] [CrossRef]
- Cabrera-Barjas, G.; Gallardo, F.; Nesic, A.; Taboada, E.; Marican, A.; Mirabal-Gallardo, Y.; Avila-Salas, F.; Delgado, N.; De Armas-Ricard, M.; Valdes, O. Utilization of Industrial By-Product Fungal Biomass from Aspergillus Niger and Fusarium Culmorum to Obtain Biosorbents for Removal of Pesticide and Metal Ions from Aqueous Solutions. J. Environ. Chem. Eng. 2020, 8, 104355. [Google Scholar] [CrossRef]
- Awad, A.A.M.; El-Taib, A.B.A.; Sweed, A.A.A.; Omran, A.A.M. Nutrient Contents and Productivity of Triticum Aestivum Plants Grown in Clay Loam Soil Depending on Humic Substances and Varieties and Their Interactions. Agronomy 2022, 12, 705. [Google Scholar] [CrossRef]
- Ore, O.T.; Adeola, A.O.; Fapohunda, O.; Adedipe, D.T.; Bayode, A.A.; Adebiyi, F.M. Humic Substances Derived from Unconventional Resources: Extraction, Properties, Environmental Impacts, and Prospects. Environ. Sci. Pollut. Res. 2023, 30, 59106–59127. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, M. A Review on Application of Encapsulation in Agricultural Processes. Encapsulation Act. Mol. Their Deliv. Syst. 2020, 131–140. [Google Scholar] [CrossRef]
- Wani, T.A.; Masoodi, F.A.; Baba, W.N.; Ahmad, M.; Rahmanian, N.; Jafari, S.M. Nanoencapsulation of Agrochemicals, Fertilizers, and Pesticides for Improved Plant Production. In Advances in Phytonanotechnology; Academic Press: Cambridge, MA, USA, 2019; pp. 279–298. [Google Scholar] [CrossRef]
- Jiménez-Arias, D.; Morales-Sierra, S.; Borges, A.A.; Díaz Díaz, D. Biostimulant Nanoencapsulation: The New Keystone to Fight Hunger. J. Agric. Food Chem. 2020, 68, 7083–7085. [Google Scholar] [CrossRef] [PubMed]
- Jíménez-Arias, D.; Morales-Sierra, S.; Silva, P.; Carrêlo, H.; Gonçalves, A.; Ganança, J.F.T.; Nunes, N.; Gouveia, C.S.S.; Alves, S.; Borges, J.P.; et al. Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture. Plants 2023, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Chemetova, C.; Mota, D.; Fabião, A.; Gomimho, J.; Ribeiro, H. Valorization of Eucalyptus Globulus Bark as a Growing-Media Component for Potted Plants. In Proceedings of the 15th International Conference on Environmental Science and Technology (CEST 2017), Rhodes, Greece, 31 August–2 September 2017; pp. 2–6. [Google Scholar]
- Mead, D. Sustainable Management of Pinus Radiata Plantations; FAO Forestry Paper No. 170.; FAO: Rome, Italy, 2013; ISBN 9789251076347. [Google Scholar]
- Romanyà, J.; Vallejo, V.R. Productivity of Pinus Radiata Plantations in Spain in Response to Climate and Soil. For. Ecol. Manag. 2004, 195, 177–189. [Google Scholar] [CrossRef]
- Dumroese, K.; Landis, T.; Pinto, J.; Haase, D.; Wilkinson, K.; Davis, A. Meeting Forest Restoration Challenges: Using the Target Plant Concept. Reforesta 2016, 1, 37–52. [Google Scholar] [CrossRef]
- Flores Molina, L.A.; Pincheira Barrera, M.E.; Quiroz Marchant, I.; Villarroel Muñoz, A.J. Manual de Viverización y Plantación de Especies Nativas. Zona Centro Sur de Chile; INFOR: Valdivia, Chile, 2001. [Google Scholar]
- Nagase, A.; Dunnett, N. The Relationship between Percentage of Organic Matter in Substrate and Plant Growth in Extensive Green Roofs. Landsc. Urban Plan. 2011, 103, 230–236. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, R.; Wang, X.; Xu, X.; Ai, C.; He, P.; Liang, G.; Zhou, W.; Zhu, P. Effect of High Soil C/N Ratio and Nitrogen Limitation Caused by the Long-Term Combined Organic-Inorganic Fertilization on the Soil Microbial Community Structure and Its Dominated SOC Decomposition. J. Environ. Manag. 2022, 303, 114155. [Google Scholar] [CrossRef]
- Santelices, R.; Bobadilla, C. Arraigamiento de Estacas de Quillaja Saponaria Mol. Y Peumus Boldus Mol. Bosque 1997, 18, 77–85. [Google Scholar] [CrossRef]
- Hachiya, T.; Sakakibara, H. Interactions between Nitrate and Ammonium in Their Uptake, Allocation, Assimilation, and Signaling in Plants. J. Exp. Bot. 2017, 68, 2501–2512. [Google Scholar] [CrossRef] [PubMed]
- Landis, T.D.; Dumroese, R.K.; Haase, D.L. The Container Tree Nursery Manual. Volume Seven: Seedling Processing, Storage, and Outplanting; US Department of Agriculture, Forest Service: Washington, DC, USA, 2010; p. 208.
- Quiroz Marchant, I.; Chung Guin-po, P.; García Rivas, E.; González Ortega, M.P.; Soto Guevara, H. Vivero Forestal: Producción de Plantas Nativas a Raíz Cubierta; INFOR: Valdivia, Chile, 2009. [Google Scholar]
- NCh2880.c2003 Proyecto de Norma en Consulta Pública—Compost Clasificación y Requisitos. 2003, pp. 1–27. Available online: http://www.ingeachile.cl/descargas/normativa/agricola/NCH2880.pdf (accessed on 5 January 2024).
- Fields, J.S.; Owen, J.S.; Altland, J.E.; van Iersel, M.W.; Jackson, B.E. Soilless Substrate Hydrology Can Be Engineered to Influence Plant Water Status for an Ornamental Containerized Crop Grown within Optimal Water Potentials. J. Am. Soc. Hortic. Sci. 2018, 143, 268–281. [Google Scholar] [CrossRef]
- Dou, J.; Karakoç, A.; Johansson, L.S.; Hietala, S.; Evtyugin, D.; Vuorinen, T. Mild Alkaline Separation of Fiber Bundles from Eucalyptus Bark and Their Composites with Cellulose Acetate Butyrate. Ind. Crop. Prod. 2021, 165, 113436. [Google Scholar] [CrossRef]
- Mayer, A.M.; Poljakoff-Mayber, A. Chapter 3: Factors Affecting Germination. In The Germination of Seeds; Elsevier Ltd.: Amsterdam, The Netherlands, 1982; pp. 22–49. ISBN 978-0-08-028853-6. [Google Scholar]
- Carrera-Castaño, G.; Calleja-Cabrera, J.; Pernas, M.; Gómez, L.; Oñate-Sánchez, L. An Updated Overview on the Regulation of Seed Germination. Plants 2020, 9, 703. [Google Scholar] [CrossRef] [PubMed]
- Chemetova, C.; Quilhó, T.; Braga, S.; Fabião, A.; Gominho, J.; Ribeiro, H. Aged Acacia Melanoxylon Bark as an Organic Peat Replacement in Container Media. J. Clean. Prod. 2019, 232, 1103–1111. [Google Scholar] [CrossRef]
- Faúndez, Á.; Magni, C.R.; Martínez-Herrera, E.; Espinoza, S.; Vaswani, S.; Yañez, M.A.; Gréz, I.; Seguel, O.; Abarca-Rojas, B.; Quiroz, I. Effect of the Soil Matric Potential on the Germination Capacity of Prosopis Chilensis, Quillaja Saponaria and Cryptocarya Alba from Contrasting Geographical Origins. Plants 2022, 11, 2963. [Google Scholar] [CrossRef] [PubMed]
- Sidari, M.; Mallamaci, C.; Muscolo, A. Drought, Salinity and Heat Differently Affect Seed Germination of Pinus Pinea. J. For. Res. 2008, 13, 326–330. [Google Scholar] [CrossRef]
- Mphaphuli, N.S.; van Averbeke, W.; Böhringer, R. Pine Litter as Substrate for Propagation of Vegetable Transplants in Trays. S. Afr. J. Plant Soil 2005, 22, 223–228. [Google Scholar] [CrossRef]
- Caron, J.; Michel, J.C. Overcoming Physical Limitations in Alternative Growing Media with and without Peat. Acta Hortic. 2017, 1168, 413–422. [Google Scholar] [CrossRef]
- Bano, A.; Waqar, A.; Khan, A.; Tariq, H. Phytostimulants in Sustainable Agriculture. Front. Sustain. Food Syst. 2022, 6, 801788. [Google Scholar] [CrossRef]
- Akram, N.A.; Saleem, M.H.; Shafiq, S.; Naz, H.; Farid-ul-Haq, M.; Ali, B.; Shafiq, F.; Iqbal, M.; Jaremko, M.; Qureshi, K.A. Phytoextracts as Crop Biostimulants and Natural Protective Agents—A Critical Review. Sustainability 2022, 14, 14498. [Google Scholar] [CrossRef]
- Kurepin, L.V.; Zaman, M.; Pharis, R.P. Phytohormonal Basis for the Plant Growth Promoting Action of Naturally Occurring Biostimulators. J. Sci. Food Agric. 2014, 94, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Abobatta, W.F. Plant Stimulants and Horticultural Production. MOJ Ecol. Environ. Sci. 2020, 5, 261–265. [Google Scholar] [CrossRef]
- Hidangmayum, A.; Dwivedi, P.; Katiyar, D.; Hemantaranjan, A. Application of Chitosan on Plant Responses with Special Reference to Abiotic Stress. Physiol. Mol. Biol. Plants 2019, 25, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Qavami, N.; Naghdi Badi, H.; Labbafi, M.; Mehregan, M.; Tavakoli, M.; Mehrafarin, A. Overview on Chitosan as a Valuable Ingredient and Biostimulant in Pharmaceutical Industries and Agricultural Products. Trakia J. Sci. 2017, 15, 83–91. [Google Scholar] [CrossRef]
- Stasińska-Jakubas, M.; Hawrylak-Nowak, B. Protective, Biostimulating, and Eliciting Effects of Chitosan and Its Derivatives on Crop Plants. Molecules 2022, 27, 2801. [Google Scholar] [CrossRef] [PubMed]
- Dinler, B.S.; Gunduzer, E.; Tekinay, T. Pre-Treatment of Fulvic Acid Plays a Stimulant Role in Protection of Soybean (Glycine max L.) Leaves against Heat and Salt Stress. Acta Biol. Cracoviensia Ser. Bot. 2016, 58, 29–41. [Google Scholar] [CrossRef]
- Borcioni, E.; Mógor, Á.F.; Pinto, F. Application of Fulvic Acid to Seedlings Influencing Root Growth and Productivity of Iceberg Lettuce. Trends Hortic. 2019, 2, 8. [Google Scholar] [CrossRef]
- Devi, N.; Sarmah, M.; Khatun, B.; Maji, T.K. Encapsulation of Active Ingredients in Polysaccharide–Protein Complex Coacervates. Adv. Colloid Interface Sci. 2017, 239, 136–145. [Google Scholar] [CrossRef]
- de Alcantara Lemos, J.; Oliveira, A.E.M.F.M.; Araujo, R.S.; Townsend, D.M.; Ferreira, L.A.M.; de Barros, A.L.B. Recent Progress in Micro and Nano-Encapsulation of Bioactive Derivatives of the Brazilian Genus Pterodon. Biomed. Pharmacother. 2021, 143, 112137. [Google Scholar] [CrossRef]
- Bautista-Baños, S.; Hernández-Lauzardo, A.N.; Velázquez-Del Valle, M.G.; Hernández-López, M.; Ait Barka, E.; Bosquez-Molina, E.; Wilson, C.L. Chitosan as a Potential Natural Compound to Control Pre and Postharvest Diseases of Horticultural Commodities. Crop Prot. 2006, 25, 108–118. [Google Scholar] [CrossRef]
- Stasińska-Jakubas, M.; Hawrylak-Nowak, B.; Wójciak, M.; Dresler, S. Comparative Effects of Two Forms of Chitosan on Selected Phytochemical Properties of Plectranthus amboinicus (Lour.). Molecules 2023, 28, 376. [Google Scholar] [CrossRef]
- Di Benedetto, A. Alternative Substrates for Potted Ornamental Plants Based on Argentinean Peat and Argentinean River Waste: A Review. Floric. Plant Ornam. Biotechnol. 2007, 1, 90–101. [Google Scholar]
- Fascella, G.; Fascella, G. Growing Substrates Alternative to Peat for Ornamental Plants. In Soilless Culture—Use of Substrates for the Production of Quality Horticultural Crops; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef]
- Kern, J.; Tammeorg, P.; Shanskiy, M.; Sakrabani, R.; Knicker, H.; Kammann, C.; Tuhkanen, E.M.; Smidt, G.; Prasad, M.; Tiilikkala, K.; et al. Synergistic Use of Peat and Charred Material in Growing Media–an Option to Reduce the Pressure on Peatlands? J. Environ. Eng. Landsc. Manag. 2017, 25, 160–174. [Google Scholar] [CrossRef]
- Chen, F.; Wang, G.; Zhang, C.; Zeng, D. Effects of Adding Peat on Amelioration of Aeolian Sandy Soil and Vegetable Growth. Acta Genet. Sin. 2003, 22, 16–19. [Google Scholar]
- Nava, E.; Michelena, G.; Iliná, A.; Martínez, J. Microencapsulación de Componentes Bioactivos. Investig. Cienc. Univ. Autónoma Aguascalientes 2015, 66, 64–70. [Google Scholar] [CrossRef]
- Aleksandrowicz-Trzcinska, M.; Bogusiewicz, A.; Szkop, M.; Drozdowski, S. Effect of Chitosan on Disease Control and Growth of Scots Pine (Pinus sylvestris L.) in a Forest Nursery. Forests 2015, 6, 3165–3176. [Google Scholar] [CrossRef]
- Song, Q.; Xu, L.; Long, W.; Guo, J.; Zhang, X. Quality Assessment and Nutrient Uptake and Utilization in Luohan Pine (Podocarpus macrophyllus) Seedlings Raised by Chitosan Spraying in Varied LED Spectra. PLoS ONE 2022, 17, e0267632. [Google Scholar] [CrossRef] [PubMed]
- UNE EN 13037:2012; Soil Improvers and Growing Media. Determination of PH. European Committee for Standardization: Brussels, Belgium, 2012.
- UNE EN 13038:2012; Soil Improvers and Growing Media. Determination of Electrical Conductivity. European Committee for Standardization: Brussels, Belgium, 2012.
- UNE EN 13039:2012; Soil Improvers and Growing Media. Determination of Organic Matter Content and Ash. European Committee for Standardization: Brussels, Belgium, 2012.
- TMECC Method 05.07. Organic Matter. In Test Methods for the Examination of Composing and Compost; The United States Composting Council: New York, NY, USA, 2001.
- TMECC Method 04.02. Nitrogen. In Test Methods for the Examination of Composing and Compost; The United States Composting Council: New York, NY, USA, 2002.
- TMECC Method 03.03. Bulk Density. In Test Methods for the Examination of Composing and Compost; The United States Composting Council: New York, NY, USA, 2001.
- TMECC Method 04.03. Total Phosphorous. In Test Methods for the Examination of Composing and Compost; The United States Composting Council: New York, NY, USA, 2002.
- TMECC Method 04.04. Total Potasium. In Test Methods for the Examination of Composing and Compost; The United States Composting Council: New York, NY, USA, 2001.
- Escobar-Avello, D.; Avendaño-Godoy, J.; Santos, J.; Mardones, C.; Von Baer, D.; Luengo, J.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Gómez-Gaete, C. Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying. Antioxidants 2021, 10, 1130. [Google Scholar] [CrossRef] [PubMed]
- UNE EN 16086-1:2011; Soil Improvers and Growing Media. Determination of Plant Response. Part 1: Pot Growth Test with Chinese Cabbage. European Committee for Standardization: Brussels, Belgium, 2011.
Category | Property | Raw Material (%) | Extracted Fiber (%) | Difference (%) |
---|---|---|---|---|
Chemical Composition | pH | 6.0 | 5.5 | −8.3% |
Electrical Conductivity (μS/cm) | 316.0 | 124.0 | −60.7% | |
Organic Matter | 93.7 | 94.5 | 0.9% | |
Organic Carbon | 52.8 | 53.3 | 0.9% | |
Total Nitrogen | 0.4 | 0.2 | −48.8% | |
C/N Ratio | 123.0 | 242.0 | 96.7% | |
Moisture | Humidity (%) | 11.1 | 6.6 | −40.3% |
Ash Content | Ash (%) | 6.3 | 5.5 | −13.0% |
Nitrogen Fractions (mg/Kg) | N-NH4 | 574.0 | 119.0 | −79.3% |
N-NO3 | 133.0 | 112.0 | −15.8% | |
NH4/NO3 Ratio | 4.3 | 1.1 | −74.4% | |
Minerals (%) | P2O5 | 0.2 | 0.1 | −50.0% |
K2O | 0.4 | 0.1 | −68.4% | |
CaO | 1.4 | 1.4 | 0.7% | |
MgO | 0.3 | 0.2 | −31.2% |
Properties | Particle Size (mm) | Bulk Density (g/mL) | Pore Space (%) | Free Air Space (%) | WRC (%v/v) | |||
---|---|---|---|---|---|---|---|---|
<2 | 2–4 | 4–16 | ||||||
Raw material | Eucalyptus fiber bark | 37 | 28 | 35 | 0.030 | 98 | 39 | 59 |
Eucalyptus fiber bark extracted | 37 | 29 | 34 | 0.028 | 97 | 32 | 65 |
Mixture | Germination Rate, GR (%) | |||
---|---|---|---|---|
Q. saponaria | P. radiata | |||
NEB | EEB | NEB | EEB | |
E | 100 Aa | 100 Aa | 67 Aa | 67 Aa |
75E-25C | 67 Aa | 33 Aa | 33 Aa | 0 Aa |
50E-50C | 100 Aa | 100 Aa | 33 Aa | 100 Aa |
25E-75C | 100 Aa | 67 Aa | 67 Aa | 33 Aa |
75E-25M | 100 Aa | 100 Aa | 33 Aa | 33 Aa |
50E-50M | 100 Aa | 100 Aa | 0 Aa | 33 Aa |
25E-75M | 67 Aa | 100 Aa | 33 Aa | 67 Aa |
75E-25P | 100 Aa | 100 Aa | 33 Aa | 100 Aa |
50E-50P | 100 Aa | 100 Aa | 67 Aa | 33 Aa |
25E-75P | 100 Aa | 100 Aa | 67 Aa | 67 Aa |
75E-25CP | 100 Aa | 100 Aa | 67 Aa | 67 Aa |
50E-50CP | 67 Aa | 100 Aa | 33 Aa | 33 Aa |
25E-75CP | 67 Aa | 67 Aa | 0 Aa | 67 Aa |
C | 100 A | 33 A | ||
M | 100 A | 67 A | ||
P | 67 A | 67 A | ||
CP | 100 A | 100 A |
Mixture | Mean Fresh Weight (mg pot−1) | Mean Dry Weight (mg pot−1) | |||
---|---|---|---|---|---|
Q. saponaria | P. radiata | Q. saponaria | P. radiata | ||
NEB | |||||
NEB | 18.0 A | 97.9 A | 8.4 A | 30.5 A | |
75E-25C | 30.2 Aa | 170.8 Ba | 6.9 Aa | 18.2 Ba | |
50E-50C | 45.4 Aa | 109.0 Ab | 7.7 Aa | 11.3 Ba | |
25E-75C | 27.7 Aa | 226.1 Bc | 8.0 Aa | 23.0 Aa | |
75E-25M | 43.3 Aa | 200.7 Ba | 6.3 Aa | 36.0 Aa | |
50E-50M | 43.8 Aa | 0 Bb | 7.7 Aa | 0 Bb | |
25E-75M | 41.7 Aa | 57.7 Bc | 7.0 Aa | 14.9 Bc | |
75E-25P | 40.9 Aa | 197.6 Ba | 6.5 Aa | 10.8 Ba | |
50E-50P | 34.6 Aa | 138.7 Ab | 8.1 Aa | 24.9 Aa | |
25E-75P | 39.8 Aa | 114.9 Ab | 9.3 Aa | 24.5 Aa | |
75E-25CP | 16.3 Aa | 115.1 Aa | 10.1 Aa | 30.5 Aa | |
50E-50CP | 34.6 Aa | 139.4 Aa | 5.3 Aa | 24.4 Ab | |
25E-75CP | 34.2 Aa | 0 Bb | 6.1 Aa | 0 Bc | |
C | 35.1 A | 111.8 A | 7.5 A | 43.6 B | |
M | 48.6 A | 107.3 A | 8.3 A | 51.9 B | |
P | 31.1 A | 121.9 A | 6.9 A | 32.1 A | |
CP | 32.9 A | 82.9 A | 9.5 A | 35.6 A | |
EEB | |||||
EEB | 46.5 A | 160.1 A | 6.7 A | 12.1 B | |
75E-25C | 55.5 Aa | 0 Ba | 7.4 Aa | 0 Ba | |
50E-50C | 46.2 Ab | 167.9 Ab | 8.0 Aa | 21.3 Ab | |
25E-75C | 102.8 Bc | 152.7 Ab | 5.9 Aa | 22.2 Ab | |
75E-25M | 51.8 Aa | 170.8 Aa | 5.6 Aa | 32.2 Aa | |
50E-50M | 49.5 Aa | 155.2 Aa | 5.0 Aa | 39.5 Ab | |
25E-75M | 32.7 Aa | 145.7 Aa | 5.4 Aa | 15.6 Bc | |
75E-25P | 50.7 Aa | 178.2 Ba | 5.2 Aa | 32.9 Aa | |
50E-50P | 51.5 Aa | 175.3 Ba | 6.0 Aa | 11.7 Bb | |
25E-75P | 46.2 Aa | 152.7 Aa | 6.2 Aa | 28.7 Aa | |
75E-25CP | 48.5 Aa | 168.8 Aa | 6.5 Aa | 21.0 Aa | |
50E-50CP | 67.7 Ba | 169.9 Aa | 11.8 Aa | 34.8 Ab | |
25E-75CP | 55.5 A | 135.3 Ba | 6.3 Aa | 16.6 Ba |
Sample | Germination Rate (%) | |||||||
---|---|---|---|---|---|---|---|---|
75E-25C | 75E-25M | 75E-25P | 75E-25CP | |||||
Q. saponaria | P. radiata | Q. saponaria | P. radiata | Q. saponaria | P. radiata | Q. saponaria | P. radiata | |
Water | 100 A | 67 A | 100 A | 33 A | 33 A | 33 A | 100 A | 67 A |
CS1 | 33 A | 67 A | 0 B | 67 A | 67 A | 67 A | 100 A | 33 A |
CS2 | 67 A | 67 A | 0 B | 67 A | 0 A, | 33 A | 100 A | 33 A |
CS3 | 67 A | 100 A | 0 B | 67 A | 67 A | 67 A | 100 A | 100 A |
FAue1 | 100 A | 67 A | 100 A | 33 A | 100 A | 33 A | 100 A | 67 A |
FAue2 | 100 A | 33 A | 100 A | 0 A | 67 A | 33 A | 100 A | 33 A |
FAue3 | 100 A | 67 A | 100 A | 67 A | 67 A | 33 A | 100 A | 0 A |
FAe1 | 100 A | 67 A | 67 A | 33 A | 100 A | 0 A | 67 A | 67 A |
FAe2 | 100 A | 67 A | 100 A | 33 A | 67 A | 67 A | 100 A | 100 A |
FAe3 | 100 A | 67 A | 100 A | 67 A | 100 A | 67 A | 67 A | 0 A |
Phytostimulant | Fresh and Dry Mean Weight (mg pot−1) | |||||||
---|---|---|---|---|---|---|---|---|
75E-25C | 75E-25M | 75E-25P | 75E-25CP | |||||
Fresh | Dry | Fresh | Dry | Fresh | Dry | Fresh | Dry | |
Water | 42.5 A | 4.9 A | 52.9 A | 8.1 A | 65.7 A | 8.2 A | 37.8 A | 7.7 A |
CS1 | 29.0 Aa | 5.4 Aa | 0 B | 0 B | 26.9 Ba | 6.4 Aa | 36.8 Aa | 4.9 Aa |
CS2 | 35.4 Aa | 5.6 Aa | 0 B | 0 B | 0 Bb | 0 Bb | 35.8 Aa | 5.1 Aa |
CS3 | 46.9 Aa | 7.2 Aa | 0 B | 0 B | 25.1 Ba | 6.9 Aa | 48.1 Aa | 6.3 Aa |
FAue1 | 53.0 Aa | 7.9 Aa | 58.4 Aa | 7.7 Aa | 61.7 Aa | 8.1 Aa | 43.2 Aa | 6.2 Aa |
FAue2 | 50.3 Aa | 6.1 Aa | 57.7 Aa | 6.9 Aa | 48.5 Aa | 7.0 Aa | 45.9 Aa | 7.8 Aa |
FAue3 | 56.4 Aa | 6.3 Aa | 31.9 Bb | 6.1 Aa | 50.4 Aa | 8.9 Aa | 29.0 Aa | 7.0 Aa |
FAe1 | 54.7 Aa | 7.2 Aa | 43.5 Aa | 7.9 Aa | 47.4 Aa | 7.4 Aa | 49.1 Aa | 6.9 Aa |
FAe2 | 34.8 Aa | 5.7 Aa | 44.1 Aa | 5.5 Aa | 49.2 Aa | 6.6 Aa | 47.8 Aa | 6.7 Aa |
FAe3 | 36.6 Aa | 5.6 Aa | 47.5 Aa | 5.8 Aa | 52.8 Aa | 6.9 Aa | 45.6 Aa | 7.0 Aa |
Phytostimulant | Fresh and Dry Mean Weight (mg pot−1) | |||||||
---|---|---|---|---|---|---|---|---|
75E-25C | 75E-25M | 75E-25P | 75E-25CP | |||||
Fresh | Dry | Fresh | Dry | Fresh | Dry | Fresh | Dry | |
Water | 205.2 A | 33.9 A | 128.0 A | 14.5 A | 92.9 A | 11.4 A | 170.3 A | 18.5 A |
CS1 | 141.1 Ba | 15.7 Ba | 154.8 Ba | 15.6 Aa | 129.6 Ba | 13.8 Aa | 91.7 Ba | 15.7 Aa |
CS2 | 142.1 Ba | 15.8 Ba | 182.5 Bb | 18.2 Aa | 149.4 Ba | 16.8 Aab | 109.3 Ba | 19.1 Aa |
CS3 | 175.3 Bb | 19.2 Ba | 183.0 Bb | 20.1 Aa | 191.4 Bb | 23.6 Bb | 107.8 Ba | 12.4 Aa |
FAue1 | 172.9 Ba | 18.7 Ba | 92.7 Ba | 12.8 Aa | 238.3 Ba | 25.3 Ba | 170.2 Aa | 20.3 Aa |
FAue2 | 138.1 Bb | 14.6 Ba | 0 Bb | 0 Bb | 181.1 Bb | 19.7 Ba | 142.8 Bb | 20.1 Aa |
FAue3 | 150.4 Bab | 17.5 Ba | 160.3 Bc | 19.5 Ac | 216.7 Ba | 24.8 Ba | 0 Bc | 0 Bb |
FAe1 | 167.9 Ba | 17.3 Ba | 150.8 Aa | 16.4 Aa | 0 Ba | 0 Ba | 157.6 Aa | 18.4 Aa |
FAe2 | 159.9 Ba | 37.8 Ab | 210.5 Bb | 22.6 Bab | 154.1 Bb | 16.3 Ab | 123.5 Bb | 18.1 Aa |
FAe3 | 209.4 Ab | 23.5 Bac | 171.2 Ba | 28.5 Bb | 165.7 Bb | 17.2 Ab | 0 Bc | 0 Bb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrer-Villasmil, V.; Fuentealba, C.; Reyes-Contreras, P.; Rubilar, R.; Cabrera-Barjas, G.; Bravo-Arrepol, G.; Escobar-Avello, D. Extracted Eucalyptus globulus Bark Fiber as a Potential Substrate for Pinus radiata and Quillaja saponaria Germination. Plants 2024, 13, 789. https://doi.org/10.3390/plants13060789
Ferrer-Villasmil V, Fuentealba C, Reyes-Contreras P, Rubilar R, Cabrera-Barjas G, Bravo-Arrepol G, Escobar-Avello D. Extracted Eucalyptus globulus Bark Fiber as a Potential Substrate for Pinus radiata and Quillaja saponaria Germination. Plants. 2024; 13(6):789. https://doi.org/10.3390/plants13060789
Chicago/Turabian StyleFerrer-Villasmil, Víctor, Cecilia Fuentealba, Pablo Reyes-Contreras, Rafael Rubilar, Gustavo Cabrera-Barjas, Gastón Bravo-Arrepol, and Danilo Escobar-Avello. 2024. "Extracted Eucalyptus globulus Bark Fiber as a Potential Substrate for Pinus radiata and Quillaja saponaria Germination" Plants 13, no. 6: 789. https://doi.org/10.3390/plants13060789
APA StyleFerrer-Villasmil, V., Fuentealba, C., Reyes-Contreras, P., Rubilar, R., Cabrera-Barjas, G., Bravo-Arrepol, G., & Escobar-Avello, D. (2024). Extracted Eucalyptus globulus Bark Fiber as a Potential Substrate for Pinus radiata and Quillaja saponaria Germination. Plants, 13(6), 789. https://doi.org/10.3390/plants13060789