The Potential of Plants to Absorb Xenobiotics
1. Introduction
2. An Overview of Published Articles
2.1. Plant and Biomonitoring (3 Contributions)
2.2. Plant and Phytoremediation (5 Contributions)
2.3. Effects of Nutrients and Xenobiotic on Plants (4 Contributions)
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Zinicovscaia, I.; Hramco, C.; Chaligava, O.; Yushin, N.; Grozdov, D.; Vergel, K.; Duca, G. Accumulation of Potentially Toxic Elements in Mosses Collected in the Republic of Moldova. Plants 2021, 10, 471. https://doi.org/10.3390/plants10030471.
- Tkachenko, K.; Kosareva, I.; Frontasyeva, M. The Influence of Manganese on Growth Processes of Hordeum L. (Poaceae) Seedlings. Plants 2021, 10, 1009. https://doi.org/10.3390/plants10051009.
- Leitão, I.; Martins, L.; Carvalho, L.; Oliveira, M.; Marques, M.; Mourato, M. Acetaminophen Induces an Antioxidative Response in Lettuce Plants. Plants 2021, 10, 1152. https://doi.org/10.3390/plants10061152.
- Alhassan, A.; Aljahdali, M. Fractionation and Distribution of Rare Earth Elements in Marine Sediment and Bioavailability in Avicennia marina in Central Red Sea Mangrove Ecosystems. Plants 2021, 10, 1233. https://doi.org/10.3390/plants10061233.
- Sorrentino, M.; Capozzi, F.; Wuyts, K.; Joosen, S.; Mubiana, V.; Giordano, S.; Samson, R.; Spagnuolo, V. Mobile Biomonitoring of Atmospheric Pollution: A New Perspective for the Moss-Bag Approach. Plants 2021, 10, 2384. https://doi.org/10.3390/plants10112384.
- Verasoundarapandian, G.; Zakaria, N.; Shaharuddin, N.; Khalil, K.; Puasa, N.; Azmi, A.; Gomez-Fuentes, C.; Zulkharnain, A.; Wong, C.; Rahman, M.; Ahmad, S. Coco Peat as Agricultural Waste Sorbent for Sustainable Diesel-Filter System. Plants 2021, 10, 2468. https://doi.org/10.3390/plants10112468.
- Puasa, N.; Ahmad, S.; Zakaria, N.; Khalil, K.; Taufik, S.; Zulkharnain, A.; Azmi, A.; Gomez-Fuentes, C.; Wong, C.; Shaharuddin, N. Oil Palm’s Empty Fruit Bunch as a Sorbent Material in Filter System for Oil-Spill Clean Up. Plants 2022, 11, 127. https://doi.org/10.3390/plants11010127.
- El Berkaoui, M.; El Adnani, M.; Hakkou, R.; Ouhammou, A.; Bendaou, N.; Smouni, A. Assessment of the Transfer of Trace Metals to Spontaneous Plants on Abandoned Pyrrhotite Mine: Potential Application for Phytostabilization of Phosphate Wastes. Plants 2022, 11, 179. https://doi.org/10.3390/plants11020179.
- Sorrentino, M.; Giordano, S.; Capozzi, F.; Spagnuolo, V. Metals Induce Genotoxicity in Three Cardoon Cultivars: Relation to Metal Uptake and Distribution in Extra- and Intracellular Fractions. Plants 2022, 11, 475. https://doi.org/10.3390/plants11040475.
- Chamba-Eras, I.; Griffith, D.; Kalinhoff, C.; Ramírez, J.; Gázquez, M. Native Hyperaccumulator Plants with Differential Phytoremediation Potential in an Artisanal Gold Mine of the Ecuadorian Amazon. Plants 2022, 11, 1186. https://doi.org/10.3390/plants11091186.
- Kalinhoff, C.; Calderón, N. Mercury Phytotoxicity and Tolerance in Three Wild Plants during Germination and Seedling Development. Plants 2022, 11, 2046. https://doi.org/10.3390/plants11152046.
- Landi, S.; Santini, G.; Vitale, E.; Di Natale, G.; Maisto, G.; Arena, C.; Esposito, S. Photosynthetic, Molecular and Ultrastructural Characterization of Toxic Effects of Zinc in Caulerpa racemosa Indicate Promising Bioremediation Potentiality. Plants 2022, 11, 2868. https://doi.org/10.3390/plants11212868.
References
- Jain, P.; Jain, A.; Singhai, R.; Jain, S. Effect of bio-degradation and non degradable substances in environment. Int. J. Life Sci. 2017, 1, 58–64. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Yadav, D.; Varshney, S. Non-biodegradable waste—Its impact & safe disposal. Int. J. Adv. Technol. Eng. Sci. 2015, 3, 184–191. [Google Scholar]
- Kumari, P.; Kumar, A. Advanced oxidation process: A remediation technique for organic and non-biodegradable pollutant. Results Surf. Interfaces 2023, 11, 100122. [Google Scholar] [CrossRef]
- Soliman, M.M.; Hesselberg, T.; Mohamed, A.A.; Renault, D. Trophic transfer of heavy metals along a pollution gradient in a terrestrial agro-industrial food web. Geoderma 2022, 413, 115748. [Google Scholar] [CrossRef]
- Baumard, P.; Budzinski, H.; Garrigues, P.; Sorbe, J.C.; Burgeot, T.; Bellocq, J. Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level. Mar. Pollut. Bull. 1998, 36, 951–960. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capozzi, F.; Spagnuolo, V. The Potential of Plants to Absorb Xenobiotics. Plants 2024, 13, 922. https://doi.org/10.3390/plants13070922
Capozzi F, Spagnuolo V. The Potential of Plants to Absorb Xenobiotics. Plants. 2024; 13(7):922. https://doi.org/10.3390/plants13070922
Chicago/Turabian StyleCapozzi, Fiore, and Valeria Spagnuolo. 2024. "The Potential of Plants to Absorb Xenobiotics" Plants 13, no. 7: 922. https://doi.org/10.3390/plants13070922
APA StyleCapozzi, F., & Spagnuolo, V. (2024). The Potential of Plants to Absorb Xenobiotics. Plants, 13(7), 922. https://doi.org/10.3390/plants13070922