Novel Study on Chemical Characterization and Antimicrobial, Antioxidant, and Anticholinesterase Activity of Essential Oil from Ecuadorian Bryophyte Syzygiella rubricaulis (Nees) Stephani
Abstract
:1. Introduction
2. Results
2.1. GC/MS Analysis of Essential Oil
2.2. Antimicrobial Activity of Essential Oil
2.3. Scavenging Radical Capacity of Essential Oil
2.4. AChE Analysis of Essential Oil
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Essential Oil Isolation
4.3. Chemical Characterization of Essential Oil
4.3.1. Sample Preparation
4.3.2. Qualitative and Quantitative Analyses
4.4. Broth Microdilution Assay
4.5. Radical Scavenging Capacity
4.5.1. 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Assay
4.5.2. 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Assay
4.6. Cholinesterase Assay
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunathilaka, M. A Review of Bryophytes; Evolution, Value and Threats. Int. J. Sci. Res. Publ. 2019, 9, 8946. [Google Scholar] [CrossRef]
- Levin, S.A. Encyclopedia of Biodiversity, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2013; ISBN 9780123847195. [Google Scholar]
- Ludwiczuk, A.; Asakawa, Y. Bryophytes as a source of bioactive volatile terpenoids—A review. Food Chem. Toxicol. 2019, 132, 110649. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y.; Ludwiczuk, A.; Nagashima, F. Chemical constituents of the bryophytes. Bio- and chemical diversity, biological activity, and chemosystematics. Prog. Chem. Org. Nat. Prod. 2013, 95, 1–796. [Google Scholar] [PubMed]
- Ludwiczuk, A.; Asakawa, Y. Fingerprinting of Secondary Metabolites of Liverworts: Chemosystematic Approach. J. AOAC Int. 2014, 97, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Tosun, G.; Yaylı, B.; Özdemir, T.; Batan, N.; Bozdeveci, A.; Yaylı, N. Volatiles and Antimicrobial Activity of the Essential Oils of the Mosses Pseudoscleropodium purum, Eurhynchium striatum, and Eurhynchium angustirete Grown in Turkey. Rec. Nat. Prod. 2015, 9, 237–242. [Google Scholar]
- Alam, A. Antifungal activity of Plagiochasma rupestre (Forst.) Steph. Extracts. Research 2012, 4, 3. [Google Scholar]
- Klavina, L.; Springe, G.; Nikolajeva, V.; Martsinkevich, I.; Nakurte, I.; Dzabijeva, D.; Steinberga, I. Chemical Composition Analysis, Antimicrobial Activity and Cytotoxicity Screening of Moss Extracts (Moss Phytochemistry). Molecules 2015, 20, 17221–17243. [Google Scholar] [CrossRef] [PubMed]
- Valarezo, E.; Tandazo, O.; Galán, K.; Rosales, J.; Benítez, Á. Volatile Metabolites in Liverworts of Ecuador. Metabolites 2020, 10, 92. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S.; Nath, V.; Sahu, V.; Singh Rawat, A.K. Antibacterial activity of some bryophytes used traditionally for the treatment of burn infections. Pharm. Biol. 2011, 49, 526–530. [Google Scholar] [CrossRef]
- Valarezo, E.; Vidal, V.; Calva, J.; Jaramillo, S.P.; Febres, J.D.; Benitez, A. Essential oil constituents of mosses species from Ecuador. J. Essent. Oil Bear. Plants 2018, 21, 189–197. [Google Scholar] [CrossRef]
- Marchi, D.; Soares, J.; Inácio, M.; De Almeida, L.; Fernandes, D. Briófitas da Reserva Particular do Patrimônio Natural da Serra do Caraça, Estado de Minas Gerais, Brasil. Hoehnea 2018, 45, 484–508. [Google Scholar]
- Maciel, A.; Gaspar, E.; Da Conceicao, F.; Dias do Santo, N.; Pinheiro da Costa, D. Reproductive biology of Syzygiella rubricaulis (Nees) Steph. (Adelanthaceae, Marchantiophyta), a liverwort disjunctly distributed in high-altitude Neotropical mountains. Plant Biol. 2016, 18, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.P.; Amado-Filho, G.M.; Pereira, R.C.; Paradas, W.C.; Miyataka, H.; Okamoto, Y.; Asakawa, Y. Diversity of secondary metabolites in the liverwort Syzygiella rubricaulis (Nees) Stephani (Jamesoniellaceae, Marchantiophyta) from neotropical high mountains. Chem. Biodivers. 2018, 15, e1800239. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-193263321. [Google Scholar]
- Andrade, J.M.; Pachar, P.; Trujillo, L.; Cartuche, L. Suillin: A Mixed-type acetylcholinesterase inhibitor from Suillus luteus which is used by Saraguros Indigenous, Southern Ecuador. PLoS ONE 2022, 17, e0268292. [Google Scholar] [CrossRef] [PubMed]
- Galán Chamba, K.C. Extracción y Caracterización Química de Aceites Esenciales de Especies Briofitas de la Región sur del Ecuador. Bachelor’s Thesis, Universidad Técnica Particular de Loja, Loja, Ecuador, 2016. [Google Scholar]
- Nagashima, F.; Murakami, Y.; Asakawa, Y. Aromatic compounds from the Ecuadorian liverwort Marchesinia brachiata: A revision. Phytochemistry 1999, 51, 1101–1104. [Google Scholar] [CrossRef]
- Nagashima, F.; Nishioka, E.; Kameo, K.; Nakagawa, C.; Asakawa, Y. Terpenoids and aromatic compounds from selected Ecuadorian liverworts. Phytochemistry 1991, 30, 215–217. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Asakawa, Y. Biologically active compounds from bryophytes. Pure Appl. Chem. 2007, 79, 557–580. [Google Scholar] [CrossRef]
- Chen, F.; Ludwiczuk, A.; Wei, G.; Chen, X.; Crandall, B.; Bowman, J. Terpenoid Secondary Metabolites in Bryophytes: Chemical Diversity, Biosynthesis and Biological Functions. CRC Crit. Rev. Plant Sci. 2018, 37, 210–231. [Google Scholar] [CrossRef]
- Quenon, C.; Hennebelle, T.; Butaud, J.F.; Ho, R.; Samaillie, J.; Neut, C.; Lehartel, T.; Rivière, C.; Siah, A.; Bonneau, N.; et al. Antimicrobial Properties of Compounds Isolated from Syzygium malaccense (L.) Merr. and L.M. Perry and Medicinal Plants Used in French Polynesia. Life 2022, 12, 733. [Google Scholar] [CrossRef] [PubMed]
- Bukvicki, D.; Gottardi, D.; Veljic, M.; Marin, P.D.; Vannini, L.; Guerzoni, M.E. Identification of Volatile Components of Liverwort (Porella cordaeana) Extracts Using GC/MS-SPME and Their Antimicrobial Activity. Molecules 2012, 17, 6982–6995. [Google Scholar] [CrossRef] [PubMed]
- Yucel, T.B. Chemical composition and antimicrobial and antioxidant activities of essential oils of Polytrichum commune (Hedw.) and Antitrichia curtipendula (Hedw.) Brid. Grown in Turkey. Int. J. Second. Metab. 2021, 8, 272–283. [Google Scholar] [CrossRef]
- Gahtori, D.; Chaturvedi, P. ‘Bryophytes: A Potential Source of Antioxidants’. In Bryophytes; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Jan-Peter, F. Recent Developments of Commercial Products from Bryophytes. Bryologist 2004, 107, 277–283. [Google Scholar]
- Gupta, A.; Thakur, S.S.; Uniyal, P.L.; Gupta, R. A survey of bryophytes for presence of cholinesterase activity. Am. J. Bot. 2001, 88, 2133–2135. [Google Scholar] [CrossRef]
- Hung Hung, N.H.; Quan, P.M.; Satyal, P.; Dai, D.N.; Hoa, V.V.; Huy, N.G.; Giang, L.D.; Ha, N.T.; Huong, L.T.; Hien, V.T.; et al. Acetylcholinesterase inhibitory activities of essential oils from Vietnamese traditional medicinal plants. Molecules 2022, 27, 7092. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Frezza, C.; Sciubba, F.; Serafini, M.; Bianco, A.; Cianfaglione, K.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Maggi, F. Volatile components, polar constituents and biological activity of tansy daisy (Tanacetum macrophyllum (Waldst. Et Kit.) Schultz Bip.). Ind. Crops Prod. 2018, 118, 225–235. [Google Scholar] [CrossRef]
- Trevizan, L.N.F.; do Nascimento, K.F.; Santos, J.A.; Kassuya, C.A.L.; Cardoso, C.A.L.; do Carmo Vieira, M.; Moreira, F.M.F.; Croda, J.; Formagio, A.S.N. Anti-inflammatory, antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. J. Ethnopharmacol. 2016, 192, 510–515. [Google Scholar] [CrossRef]
- Gialbert, M.; Marcinkevicius, K.; Andujar, S.; Schiavone, M.; Arena, M.E.; Bardón, A. Sesqui- and triterpenoids from the liverwort Lepidozia chordulifera inhibitors of bacterial biofilm and elastase activity of human pathogenic bacteria. Phytomedicine 2015, 22, 77–85. [Google Scholar] [CrossRef]
- Fernandes, F.H.; Guterres, Z.; Violante, I.M.P.; Lopes, T.F.S.; Garcez, W.S.; Garcez, F.R. Evaluation of Mutagenic and Antimicrobial Properties of Brown Propolis Essential Oil from the Brazilian Cerrado Biome. Toxicol Rep 2015, 2, 1482–1488. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-Liquid partition 387 chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Romero, D.; Cartuche, L.; Valarezo, E.; Cumbicus, N.; Morocho, V. Chemical Profiling, Anticholinesterase, Antioxidant, and Antibacterial Potential of the Essential Oil from Myrcianthes discolor (Kunth) McVaugh, an Aromatic Tree from Southern Ecuador. Antibiotics 2023, 12, 677. [Google Scholar] [CrossRef] [PubMed]
- Cartuche, L.; Calva, J.; Valarezo, E.; Chuchuca, N.; Morocho, V. Chemical and Biological Activity Profiling of Hedyosmum strigosum Todzia Essential Oil, an Aromatic Native Shrub from Southern Ecuador. Plants 2022, 11, 2832. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.; Courtney, D.; Andres, V.; Featherstone, R. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
N. | Compounds | DB5-MS | ||
---|---|---|---|---|
LRIcal a | LRIref b | % c | ||
1 | Bornyl acetate | 1283 | 1284 | 0.436 |
2 | Silphiperfol-5,7(14)-diene | 1362 | 1358 | 6.216 |
3 | α-Copaene | 1367 | 1374 | 2.002 |
4 | α-Gurjunene | 1403 | 1409 | 0.241 |
5 | E-Caryophyllene | 1415 | 1417 | 2.127 |
6 | β-Copaene | 1429 | 1430 | 0.398 |
7 | cis-Thujopsene | 1434 | 1429 | 2.762 |
8 | α-Guaiene | 1438 | 1437 | 3.883 |
9 | Myltayl-4(12)-ene | 1442 | 1445 | 1.282 |
10 | α-neo-Clovene | 1446 | 1452 | 1.13 |
11 | Sesquisabinene | 1452 | 1457 | 1.809 |
12 | cis-Cadina-1(6),4-diene | 1455 | 1461 | 2.273 |
13 | β-Acoradiene | 1469 | 1469 | 0.27 |
14 | γ-Muurolene | 1477 | 1478 | 2.65 |
15 | α-curcumene | 1481 | 1479 | 0.135 |
16 | cis-β-Guaiene | 1483 | 1492 | 1.827 |
17 | Viridiflorene | 1487 | 1496 | 4.65 |
18 | Bicyclogermacrene | 1491 | 1500 | 12.004 |
19 | δ-Selinene | 1502 | 1492 | 0.598 |
20 | γ-Cadinene | 1510 | 1513 | 0.496 |
21 | δ-Amorphene | 1515 | 1511 | 0.384 |
22 | Macrocarpene | 1526 | 1526 | 3.948 |
23 | Germacrene B | 1550 | 1559 | 0.199 |
24 | Selina-3,7(11)-diene | 1552 | 1545 | 0.395 |
25 | cis-Muurol-5-en-4-β-ol | 1558 | 1550 | 0.729 |
26 | Longipinanol | 1565 | 1567 | 1.697 |
27 | Spathulenol | 1573 | 1577 | 6.835 |
28 | α-Cedrene epoxide | 1577 | 1574 | 0.31 |
29 | Viridiflorol | 1582 | 1592 | 6.334 |
30 | Guaiol | 1590 | 1600 | 4.607 |
31 | cis-β-Elemenone (impure) | 1592 | 1589 | 1.841 |
32 | Globulol | 1599 | 1590 | 0.54 |
33 | Rosifoliol | 1603 | 1600 | 2.454 |
34 | β-Biotol | 1607 | 1612 | 6.075 |
35 | 1,3,5-Bisabolatrien-7-ol | 1610 | 1601 | 0.149 |
36 | Isolongifolan-7-α-ol | 1620 | 1618 | 1.91 |
37 | 5-Cedranone | 1623 | 1628 | 9.034 |
38 | allo-Aromadendrene epoxid | 1629 | 1638 | 0.638 |
39 | α-Cadinol | 1638 | 1632 | 0.224 |
40 | epi-α-Cadinol | 1641 | 1638 | 0.5 |
41 | 7-epi-α-Eudesmol | 1652 | 1662 | 0.124 |
42 | Cryptomerione | 1732 | 1724 | 1.417 |
43 | Xanthorrhizol | 1747 | 1751 | 0.396 |
44 | 14-hydroxy-α-Muurolene | 1769 | 1779 | 0.477 |
Hydrocarbon sesquiterpenes | 48.35 | |||
Oxygenated sesquiterpenes | 46.89 | |||
Others | 0.44 | |||
Total identified | 95.64 |
Microorganisms | S. rubricaulis Essential oil † | Antimicrobial Agent (Positive Control) † |
---|---|---|
Cocci Bacteria | Ampicillin (1 mg/mL) | |
Enterococcus faecalis | 4000 | 0.7812 |
Enterococcus faecium | 500 | <0.3906 |
Staphylococcus aureus | 4000 | <0.3906 |
Rod-shaped Bacteria | Ciprofloxacin (1 mg/mL) | |
Lysteria monocytogenes | 500 | 1.5625 |
Escherichia coli (O157:H7) | Non active | 1.5625 |
Pseudomonas aeruginosa | Non active | <0.3906 |
Salmonella enterica serovar Thypimurium | 4000 | <0.3906 |
Microaerophile Rod-shaped bacteria | Erithromycin (1 mg/mL) | |
Campylobacter jejuni | Non active | 15.625 |
Yeasts and sporulated fungi | Amphotericin B (250 µg/mL) | |
Candida albicans | 4000 | <0.098 |
Aspergillus niger | Non active | <0.098 |
EO | TEAC | ABTS | DPPH |
---|---|---|---|
S. rubricaulis | µM Trolox/g EO | SC50 ± SD (µg/mL—µM *) | |
96.74 ± 11.42 | 343.38 ± 0.41 | 2650.23 ± 25.42 | |
Trolox * | - | 24.72 ±1.03 | 28.97 ± 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morocho, V.; Benitez, Á.; Carrión, B.; Cartuche, L. Novel Study on Chemical Characterization and Antimicrobial, Antioxidant, and Anticholinesterase Activity of Essential Oil from Ecuadorian Bryophyte Syzygiella rubricaulis (Nees) Stephani. Plants 2024, 13, 935. https://doi.org/10.3390/plants13070935
Morocho V, Benitez Á, Carrión B, Cartuche L. Novel Study on Chemical Characterization and Antimicrobial, Antioxidant, and Anticholinesterase Activity of Essential Oil from Ecuadorian Bryophyte Syzygiella rubricaulis (Nees) Stephani. Plants. 2024; 13(7):935. https://doi.org/10.3390/plants13070935
Chicago/Turabian StyleMorocho, Vladimir, Ángel Benitez, Bárbara Carrión, and Luis Cartuche. 2024. "Novel Study on Chemical Characterization and Antimicrobial, Antioxidant, and Anticholinesterase Activity of Essential Oil from Ecuadorian Bryophyte Syzygiella rubricaulis (Nees) Stephani" Plants 13, no. 7: 935. https://doi.org/10.3390/plants13070935
APA StyleMorocho, V., Benitez, Á., Carrión, B., & Cartuche, L. (2024). Novel Study on Chemical Characterization and Antimicrobial, Antioxidant, and Anticholinesterase Activity of Essential Oil from Ecuadorian Bryophyte Syzygiella rubricaulis (Nees) Stephani. Plants, 13(7), 935. https://doi.org/10.3390/plants13070935