Crop Diversity in Agroecosystems for Pest Management and Food Production
Abstract
:1. Context
- To summarize some of the arguments promoting species diversity in fields for stability under biotic stress;
- To highlight the existence of natural plant monodominance as an adaptation to abiotic stresses;
- To present arguments for the maintenance of monodominance through adaptation to biotic stress (evolved resistance, augmented by targeted crop improvement for pest resistance);
- To explain a major form of plant monodominance after separation from co-evolved pests and diseases (escape response obtained by trans-continental crop introduction supported by quarantine); and
- To explore the role of crop-associated biodiversity in managing pests with emphasis on field margins and monoculture irrigated rice agroecosystems.
2. Definitions
3. The Promotion of Species Diversity in Fields for Stability under Biotic Stress
4. Existence of Stable Plant Monodominance under Abiotic Stress
- Seasonally naturally flooded wetland vegetation, eventually leading to floodwater farming, of special importance for rice; and
- The probable role of natural grassland fires in the ecology of wild relatives of the first cereals—wheat and barley—in and around the Fertile Crescent.
5. Maintenance of Monodominance by Adaptation to Biotic Stresses (Genetic Resistance Response)
6. Maintenance of Monodominance by Removal from Co-Evolved Pests and Disease through Plant Introduction (Escape Response)
7. The Role of Crop-Associated Biodiversity in Managing Pests
7.1. Role of Field Margins in Pest Management in Agroecosystems
7.2. Natural Pest Management in Irrigated Monoculture Rice Systems
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wood, D. Agroecology: Searching in the wrong place. Outl. Agric. 2023, 52, 254–263. [Google Scholar] [CrossRef]
- Altieri, M.A. How best can we use biodiversity in agroecosystems? Outl. Agric. 1991, 20, 15–23. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosys. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef]
- Altieri, M.; Nicholls, C.I. Biodiversity and Pest Management in Agroecosystems, 2nd ed.; Haworth Press: Binghampton, NY, USA, 2004. [Google Scholar] [CrossRef]
- Barrios, E.; Gemmill-Herren, B.; Bicksler, A. The 10 elements of agroecology: Enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosyst. People 2020, 16, 230–247. [Google Scholar] [CrossRef]
- Frison, E.A. From Uniformity to Diversity: A Paradigm Shift from Industrial Agriculture to Diversified Agroecological Food Systems; International Panel of Experts on Sustainable Food Systems: Brussels, Belgium, 2016. [Google Scholar] [CrossRef]
- Reid, W.V. Beyond protected areas: Changing perceptions of ecological management objectives. In Biodiversity in Managed Landscapes; Szaro, R.C., Johnston, D.W., Eds.; Oxford University Press: New York, NY, USA, 1996; pp. 442–453. [Google Scholar]
- Sumberg, J.; Giller, K.E. What is ‘conventional’ agriculture? Glob. Food Sec. 2022, 32, 100617. [Google Scholar] [CrossRef]
- Lenné, J.M.; Wood, D. (Eds.) Utilization of crop diversity for food security. In Agrobiodiversity Management for Food Security: A Critical Review; CAB International: Wallingford, UK, 2011; pp. 64–86. [Google Scholar]
- Lenné, J.; Wood, D. Monodominant natural vegetation provides models for nature-based cereal production. Outl. Agric. 2022, 51, 11–21. [Google Scholar] [CrossRef]
- Conway, G. The Doubly Green Revolution: Food for All in the Twenty-First Century; Penguin Books: London, UK, 1997. [Google Scholar]
- Wood, D. Ecological principles in agricultural policy: But which principles? Food Policy 1998, 23, 371–381. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology: A new research and development paradigm for world agriculture. Agric. Ecosys. Environ. 1989, 27, 37–46. [Google Scholar] [CrossRef]
- Fowler, C.; Mooney, P. The Threatened Gene: Food, Politics the Loss of Genetic Diversity; The Lutterworth Press: Cambridge, UK, 1990. [Google Scholar] [CrossRef]
- Wood, D. Crop introduction and agrobiodiversity management. In Agrobiodiversity Management for Food Security: A Critical Review; Lenné, J.M., Wood, D., Eds.; CABI: Wallingford, UK, 2011; pp. 53–63. [Google Scholar] [CrossRef]
- Wood, D.; Lenné, J.M. A natural adaptive syndrome as a model for the origins of cereal agriculture. Proc. R. Soc. B 2018, 285, 20180277. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, W.; Bianchi, F. Options for diversifying agricultural systems to reduce pesticide use: Can we learn from nature? Outl. Agric. 2022, 51, 105–113. [Google Scholar] [CrossRef]
- Petersen, K.B.; Kellogg, E.A. Diverse ecological functions and the convergent evolution of grass awns. Am. J. Bot. 2022, 109, 1331–1345. [Google Scholar] [CrossRef] [PubMed]
- Blatter, E.; McCann, C. Revision of the flora of the Bombay presidency part V gramineae. J. Bomb. Nat. Hist. Soc. 1928, 32, 408–435. [Google Scholar]
- Rivaben, R.C.; Pott, A.; Bueno, M.L. Do fire and flood interact to determine forest islet structure and diversity in a Neotropical wetland? Flora Morphol. Distrib. Funct. Ecol. Plants 2021, 281, 151874. [Google Scholar] [CrossRef]
- Janzen, D.H. The unexploited tropics. Bull. Ecol. Soc. Am. 1970, 51, 4–7. [Google Scholar]
- Janzen, D.H. Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica 1974, 6, 69–103. [Google Scholar] [CrossRef]
- May, R.M. Stability in ecosystems: Some comments. In Unifying Concepts in Ecology; van Dooben, W.H., Lowe-McConnell, R.H., Eds.; W. Junk, B.V.: The Hague, The Netherlands, 1975; pp. 161–168. [Google Scholar]
- Bazzaz, F.A. Experimental studies on the evolution of niche in successional plant populations. In Colonization, Succession and Stability; Gray, A.J., Crawley, M.J., Edwards, P.J., Eds.; Blackwell Scientific: Oxford, UK, 1987; pp. 245–272. [Google Scholar]
- Grime, J.P. Biodiversity and ecosystem function: The debate deepens. Science 1997, 277, 1260–1261. [Google Scholar] [CrossRef]
- Dover, M.; Talbot, L.M. To Feed the Earth: Agro-Ecology for Sustainable Development; World Resources Institute: Washington, DC, USA, 1987. [Google Scholar]
- Graham, N.A.J.; Wilson, S.K.; Jennings, S. Dynamic fragility of oceanic coral reef systems. Proc. Natl. Acad. Sci. USA 2006, 103, 8425–8429. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.J. Anthropogenic impacts on tropical forest biodiversity: A network structure and ecosystem functioning perspective. Philos. Trans. R. Soc. B 2010, 365, 3709–3718. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Chave, J.; Frison, P.-L. Increasing and widespread vulnerability of intact tropical rain forests to repeated droughts. Proc. Natl. Acad. Sci. USA 2022, 119, e2116626119. [Google Scholar] [CrossRef]
- Grime, J.P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef] [PubMed]
- Fedoroff, N.V.; Cohen, J.E. Plants and population: Is there time? Proc. Natl. Acad. Sci. USA 1999, 96, 5903–5907. [Google Scholar] [CrossRef] [PubMed]
- Ridley, H.N. The Dispersal of Plants throughout the World; Reeve: Ashford, UK, 1930. [Google Scholar]
- Janzen, D.H. Promising directions of study in tropical animal-plant interactions. Ann. Miss. Botan. Gard. 1977, 64, 706–736. [Google Scholar] [CrossRef]
- Clayton, W.D.; Renvoize, S.A. Genera Graminum: Grasses of the World; HMSO: London, UK, 1986. [Google Scholar]
- Coley, P.D.; Barone, J.A. Herbivory and plant defenses in tropical forests. Ann. Rev. Ecol. System. 1996, 27, 305–335. [Google Scholar] [CrossRef]
- Douglas, A.E. Strategies for enhanced crop resistance to insect pests. Ann. Rev. Plant Biol. 2018, 69, 637–660. [Google Scholar] [CrossRef] [PubMed]
- Yactayo-Chang, J.P.; Tang, H.V.; Mendoza, J. Plant defense chemicals against insect pests. Agronomy 2020, 10, 1156. [Google Scholar] [CrossRef]
- Smith, C.M. Conventional breeding on insect resistant crop plants: Still the best way to feed the world population. Curr. Opin. Insect Sci. 2021, 45, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, R.M.; Pelek, M.; Gerasymenko, I. Insect pest management in the age of synthetic biology. Plant Biotech. J. 2022, 20, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Boivin, N.; Fuller, D.Q.; Crowther, A. Old World globalization and the Columbian exchange: Comparison and contrast. World Archaeol. 2012, 44, 452–469. [Google Scholar] [CrossRef]
- Crosby, A.W. The Columbian Exchange: Biological and Cultural Consequences of 1492; Greenwood Publishing Group: Westport, CT, USA, 1972. [Google Scholar]
- Wood, D. Introduced crops in developing countries: A sustainable agriculture? Food Policy 1988, 13, 167–177. [Google Scholar] [CrossRef]
- Anderson, E. Plants, Man and Life; Melrose: London, UK, 1954; p. 160. [Google Scholar]
- Purseglove, J.W. Tropical Crops: Dicotyledons; Longman: London, UK, 1968; pp. 12–16. [Google Scholar]
- Jennings, P.R.; Cock, J.H. Centres of origin of crops and their productivity. Econ. Bot. 1977, 31, 51–54. [Google Scholar] [CrossRef]
- Janzen, D.H. Herbivores and the number of tree species in tropical forests. Am. Nat. 1970, 104, 501–528. [Google Scholar] [CrossRef]
- USDA. USDA Foreign Agricultural Service 2023. Available online: https://fas.usda.gov/data/production/commodity/2222000 (accessed on 30 March 2024).
- Padilla, S.; Ufer, D.J.; Morgan, S.; Link, N. US Export Competitiveness in Select Crop Markets; USDA Economic Research Service Report; USDA: Washington, DC, USA, 2023. [Google Scholar]
- McIntyre, B.D.; Herren, H.R.; Wakhungu, J. Agriculture at the Crossroads. Vol. III Latin America and the Caribbean (LAC); Report of the International Assessment of Agricultural Knowledge; Science and Technology; Island Press: Washington, DC, USA, 2009. [Google Scholar]
- Jank, L.; Barrios, S.; do Valle, C. The value of improved pastures to Brazilian beef production. Crop Past. Sci. 2014, 65, 1132–1137. [Google Scholar] [CrossRef]
- McDonald, P.M.; Laacke, R.J. Pinus radiata D. Don Monterey Pine; United States Department of Agriculture Forest Service Northeastern Area: Washington, DC, USA, 2003.
- Buddenhagen, I.W. Resistance and vulnerability of tropical crops in relation to their evolution and breeding. Ann. N. Y. Acad. Sci. 1977, 287, 309–326. [Google Scholar] [CrossRef]
- Allen, D.J.; Lenné, J.M.; Waller, J.M. Pathogen biodiversity: Its nature, characterisation and consequences. In Agrobiodiversity: Characterisation, Utilisation and Management; Wood, D., Lenné, J.M., Eds.; CAB International: Wallingford, UK, 1999; pp. 123–154. [Google Scholar]
- Neuenschwander, P. Biological control of the Cassava Mealybug in Africa: A review. Biol. Control 2001, 21, 214–229. [Google Scholar] [CrossRef]
- Lenné, J.M. Management of crop-associated biodiversity above-ground. In Agrobiodiversity Management for Food Security: A Critical Review; Lenné, J.M., Wood, D., Eds.; CAB International: Wallingford, UK, 2011; pp. 111–133. [Google Scholar]
- Ratnadass, A.; Fernandes, P.; Avelino, J. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agron. Sustain. Dev. 2012, 32, 273–303. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; O’Rourke, M.E.; Blitzer, E.J. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 2011, 14, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Wyckhuys, K.A.G.; Lu, Y.; Morales, H. Current status and potential of conservation biological control for agriculture in the developing world. Biol. Control 2013, 65, 153–167. [Google Scholar] [CrossRef]
- Karp, D.S.; Chaplin-Kramer, R.; Meehan, T.D. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. USA 2018, 115, E7863–E7870. [Google Scholar] [CrossRef] [PubMed]
- Wyckhuys, K.A.; Gonzalez-Chang, M.; Lavandero, B.; GC, Y.; Hadi, B.A.R. Legume integration for biological control deserves a firmer scientific base. Outl. Agric. 2023, 52, 281–293. [Google Scholar] [CrossRef]
- Holland, J.M.; Oaten, H.; Southway, S. The effectiveness of field margin enhancement for cereal aphid control by different natural enemy guilds. Biol. Control 2008, 47, 71–76. [Google Scholar] [CrossRef]
- Marshall, E.J.P. Introducing field margin ecology in Europe. Agric. Ecosys. Environ. 2002, 89, 1–4. [Google Scholar] [CrossRef]
- Segre, H.; Carmel, Y.; Segoli, M. Cost-effectiveness of uncultivated field margins and semi-natural patches in Mediterranean areas: A multi-taxa landscape scale approach. Biol. Conserv. 2013, 240, 108262. [Google Scholar] [CrossRef]
- Mikenda, P.A.; Ndakidemi, P.A.; Mbega, E. Multiple ecosystem services from field margin vegetation for ecological sustainability in agriculture: Scientific evidence and knowledge gaps. PeerJ 2019, 7, ae8091. [Google Scholar] [CrossRef] [PubMed]
- Crowder, L.I.; Wilson, K.; Wilby, A. The impact of field margins on biological pest control—A meta-analysis. Biocontrol 2023, 68, 367–396. [Google Scholar] [CrossRef]
- Settle, W.H.; Ariawan, H.; Astuti, E.T. Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 1996, 77, 1975–1988. [Google Scholar] [CrossRef]
- Barrion, A.T.; Litsinger, J.A. Riceland Spiders of South and South-East Asia; CAB International: Wallingford, UK, 1995. [Google Scholar]
- Baba, Y.G.; Ohno, S. Characteristics of spider assemblages of subtropical rice paddy fields in the Yaeyama Islands, Japan. J. Asia-Pacif. Entomol. 2024, 27, 102184. [Google Scholar] [CrossRef]
- Heong, K.L.; Aquino, G.B.; Barrion, A.T. Population dynamics of plant- and leafhoppers and their natural enemies in rice ecosystems in the Philippines. Crop Protect. 1992, 11, 371–379. [Google Scholar] [CrossRef]
- Schoenly, K.G.; Justo, H.G.; Barrion, A.T. Analysis of invertebrate biodiversity in a Philippine’s farmers irrigated rice field. Environ. Entomol. 1998, 27, 1125–1136. [Google Scholar] [CrossRef]
- Liu, J.; Sun, L.; Fu, D. Herbivore-induced rice volatiles attract and affect the predation ability of the wolf spiders, Pirata subpiraticus and Pardosa pseudoannulata. Insects 2022, 13, 90. [Google Scholar] [CrossRef] [PubMed]
- Barrion, A.T. Spiders: Natural biological control agents against insect pests in Philippine rice fields. Trans. Natl. Acad. Sci. Technol. Philipp. 2001, 23, 121–130. [Google Scholar]
- Settele, J.; Settle, W.H. Conservation biological control: Improving the science base. Proc. Natl. Acad. Sci. USA 2018, 115, 8241–8243. [Google Scholar] [CrossRef] [PubMed]
- Dominik, C.; Seppelt, R.; Horgan, F.G. Landscape composition, configuration, and trophic interactions shape arthropod communities in rice agroecosystems. J. Appl. Ecol. 2018, 55, 2461–2472. [Google Scholar] [CrossRef]
- Schoenly, K.G.; Cohen, J.E.; Heong, K.L. Fallowing did not disrupt invertebrate fauna in Philippine low-pesticide irrigated rice fields. J. Appl. Ecol. 2010, 47, 593–602. [Google Scholar] [CrossRef]
- Horgan, F.G.; Ramal, A.F.; Villegas, J.M. Effects of bund crops and insecticide treatments on arthropod diversity and herbivore regulation in tropical rice fields. J. Appl. Entomol. 2017, 141, 587–599. [Google Scholar] [CrossRef]
- Chen, A. The unsung heroes of the rice field. Rice Today 2008, 7, 30–31. [Google Scholar]
- Way, M.J. Significance of diversity in agroecosystems. In Proceedings of the Opening Session and Plenary Session Symposium, IXth International Congress of Plant Protection, Washington, DC, USA, 5–11 August 1979; pp. 9–12. [Google Scholar]
- Andow, D.A. Vegetational diversity and arthropod population response. Ann. Rev. Entomol. 1991, 36, 561–586. [Google Scholar] [CrossRef]
- Wood, D.; Lenné, J. Nature’s fields: A neglected model for increasing food production. Outl. Agric. 2001, 30, 161–170. [Google Scholar] [CrossRef]
- Tscharntke, T.; Karp, D.S.; Chaplin-Kramer, R. When natural habitat fails to enhance biological pest control—Five hypotheses. Biol. Conserv. 2016, 204, 449–458. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenné, J.; Wood, D. Crop Diversity in Agroecosystems for Pest Management and Food Production. Plants 2024, 13, 1164. https://doi.org/10.3390/plants13081164
Lenné J, Wood D. Crop Diversity in Agroecosystems for Pest Management and Food Production. Plants. 2024; 13(8):1164. https://doi.org/10.3390/plants13081164
Chicago/Turabian StyleLenné, Jillian, and David Wood. 2024. "Crop Diversity in Agroecosystems for Pest Management and Food Production" Plants 13, no. 8: 1164. https://doi.org/10.3390/plants13081164
APA StyleLenné, J., & Wood, D. (2024). Crop Diversity in Agroecosystems for Pest Management and Food Production. Plants, 13(8), 1164. https://doi.org/10.3390/plants13081164