The Reaction of Rice Growth to the Arsenic Contamination under Various Irrigation Methods
Abstract
:1. Introduction
2. Results
2.1. Plant Height (PH)
2.2. Dry Weight of the Above-Ground Biomass (BMDW)
2.3. Dry Weight of Roots (RDW)
2.4. Root Mass Ratio (R%)
2.5. Yield (Y) and Thousand Kernel Weight (TKW)
2.6. Fertile Percentage (F%)
2.7. Panicle Length (PL)
2.8. Principal Component Analyses (PCAs)
3. Discussion
3.1. Effects of As Toxicity on Growth and Yield of Rice
3.2. Genotypic Variations
3.3. Water Management Practices and As Uptake
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design and Treatment
- Flooded control (FC);
- Flooded with As treatment (FA);
- Intermittent flooding control (IC);
- Intermittent flooding with As treatment (IA);
- Aerobic control (AC);
- Aerobic conditions with As treatment (AA);
4.3. The Measured and Calculated Parameters
TKW = (100 − SMC)/86 × TKW
4.4. Data Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic Uptake and Metabolism in Plants. New Phytol. 2009, 181, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Ramanathan, A.L.; Rahman, M.M.; Naidu, R. Concentrations of Inorganic Arsenic in Groundwater, Agricultural Soils and Subsurface Sediments from the Middle Gangetic Plain of Bihar, India. Sci. Total Environ. 2016, 573, 1103–1114. [Google Scholar] [CrossRef]
- Raju, N.J. Arsenic in the Geo-Environment: A Review of Sources, Geochemical Processes, Toxicity and Removal Technologies. Environ. Res. 2022, 203, 111782. [Google Scholar] [CrossRef] [PubMed]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Abedin, M.J.; Cresser, M.S.; Meharg, A.A.; Feldmann, J.; Cotter-Howells, J. Arsenic Accumulation and Metabolism in Rice (Oryza sativa L.). Environ. Sci. Technol. 2002, 36, 962–968. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2023/915 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006.|FAOLEX. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC217510 (accessed on 3 January 2024).
- Norton, G.J.; Duan, G.; Dasgupta, T.; Islam, M.R.; Lei, M.; Zhu, Y.; Deacon, C.M.; Moran, A.C.; Islam, S.; Zhao, F.-J.; et al. Environmental and Genetic Control of Arsenic Accumulation and Speciation in Rice Grain: Comparing a Range of Common Cultivars Grown in Contaminated Sites across Bangladesh, China, and India. Environ. Sci. Technol. 2009, 43, 8381–8386. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-J.; Zhu, Y.-G.; Smith, F.A. Effects of Iron and Manganese Plaques on Arsenic Uptake by Rice Seedlings (Oryza sativa L.) Grown in Solution Culture Supplied with Arsenate and Arsenite. Plant Soil 2005, 277, 127–138. [Google Scholar] [CrossRef]
- Mawia, A.M.; Hui, S.; Zhou, L.; Li, H.; Tabassum, J.; Lai, C.; Wang, J.; Shao, G.; Wei, X.; Tang, S.; et al. Inorganic Arsenic Toxicity and Alleviation Strategies in Rice. J. Hazard. Mater. 2021, 408, 124751. [Google Scholar] [CrossRef] [PubMed]
- Panaullah, G.M.; Alam, T.; Hossain, M.B.; Loeppert, R.H.; Lauren, J.G.; Meisner, C.A.; Ahmed, Z.U.; Duxbury, J.M. Arsenic Toxicity to Rice (Oryza sativa L.) in Bangladesh. Plant Soil 2009, 317, 31–39. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Y.; Gao, A.; Ji, Y.; Yang, B.; Wang, P.; Tang, Z.; Zhao, F.-J. Dimethylarsinic Acid Is the Causal Agent Inducing Rice Straighthead Disease. J. Exp. Bot. 2020, 71, 5631–5644. [Google Scholar] [CrossRef]
- Khan, M.A.; Stroud, J.L.; Zhu, Y.-G.; McGrath, S.P.; Zhao, F.-J. Arsenic Bioavailability to Rice Is Elevated in Bangladeshi Paddy Soils. Environ. Sci. Technol. 2010, 44, 8515–8521. [Google Scholar] [CrossRef] [PubMed]
- Abedin, M.J.; Cotter-Howells, J.; Meharg, A.A. Arsenic Uptake and Accumulation in Rice (Oryza sativa L.) Irrigated with Contaminated Water. Plant Soil 2002, 240, 311–319. [Google Scholar] [CrossRef]
- Manawasinghe, S.; Chandrajith, R. Growth Responses of Genetically Diverse Rice (Oryza sativa L.) Cultivars to Arsenic Stress. Ceylon J. Sci. 2023, 52, 381–389. [Google Scholar] [CrossRef]
- Kaur, S.; Sharma, S.; Singla, P. Selenium Treatment Alters the Accumulation of Osmolytes in Arsenic-Stressed Rice (Oryza sativa L.). Environ. Sci. Pollut. Res. 2024, 31, 10545–10564. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nowroz, F.; Raihan, M.R.; Siddika, A.; Alam, M.; Prasad, P.V.V. Application of Biochar and Humic Acid Improves the Physiological and Biochemical Processes of Rice (Oryza sativa L.) in Conferring Plant Tolerance to Arsenic-Induced Oxidative Stress. Environ. Sci. Pollut. Res. 2023, 31, 1562–1575. [Google Scholar] [CrossRef] [PubMed]
- Hare, V.; Chowdhary, P. Changes in Growth Responses in Rice Plants Grown in the Arsenic Affected Area: Implication of As Resistant Microbes in Mineral Content and Translocation. SN Appl. Sci. 2019, 1, 882. [Google Scholar] [CrossRef]
- Wang, L.; Gao, S.; Yin, X.; Yu, X.; Luan, L. Arsenic Accumulation, Distribution and Source Analysis of Rice in a Typical Growing Area in North China. Ecotoxicol. Environ. Saf. 2019, 167, 429–434. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H.; Rahman, M.M.; Rahman, M.A.; Miah, M.A.M. Accumulation of Arsenic in Tissues of Rice Plant (Oryza sativa L.) and Its Distribution in Fractions of Rice Grain. Chemosphere 2007, 69, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Pillai, T.R.; Yan, W.; Agrama, H.A.; James, W.D.; Ibrahim, A.M.H.; McClung, A.M.; Gentry, T.J.; Loeppert, R.H. Total Grain-Arsenic and Arsenic-Species Concentrations in Diverse Rice Cultivars under Flooded Conditions. Crops Sci. 2010, 50, 2065–2075. [Google Scholar] [CrossRef]
- Williams, P.N.; Price, A.H.; Raab, A.; Hossain, S.A.; Feldmann, J.; Meharg, A.A. Variation in Arsenic Speciation and Concentration in Paddy Rice Related to Dietary Exposure. Environ. Sci. Technol. 2005, 39, 5531–5540. [Google Scholar] [CrossRef]
- Norton, G.J.; Islam, M.R.; Deacon, C.M.; Zhao, F.-J.; Stroud, J.L.; McGrath, S.P.; Islam, S.; Jahiruddin, M.; Feldmann, J.; Price, A.H. Identification of Low Inorganic and Total Grain Arsenic Rice Cultivars from Bangladesh. Environ. Sci. Technol. 2009, 43, 6070–6075. [Google Scholar] [CrossRef] [PubMed]
- Samal, A.C.; Bhattacharya, P.; Biswas, P.; Maity, J.P.; Bundschuh, J.; Santra, S.C. Variety-Specific Arsenic Accumulation in 44 Different Rice Cultivars (O. sativa L.) and Human Health Risks Due to Co-Exposure of Arsenic-Contaminated Rice and Drinking Water. J. Hazard. Mater. 2021, 407, 124804. [Google Scholar] [CrossRef]
- Geng, C.-N.; Zhu, Y.-G.; Tong, Y.-P.; Smith, S.E.; Smith, F.A. Arsenate (As) Uptake by and Distribution in Two Cultivars of Winter Wheat (Triticum aestivum L.). Chemosphere 2006, 62, 608–615. [Google Scholar] [CrossRef]
- Saini, H.; Panthri, M.; Khan, E.; Saxena, S.; Pandey, A.; Gupta, M. Metabolomic Profiling Reveals Key Factors and Associated Pathways Regulating the Differential Behavior of Rice (Oryza sativa L.) Genotypes Exposed to Geogenic Arsenic. Environ Monit Assess 2024, 196, 119. [Google Scholar] [CrossRef]
- Mondal, N.K.; Debnath, P.; Mishra, D. Impact of Inorganic Arsenic (III and V) on Growth and Development of Rice (Oryza sativa L.) with Special Emphasis on Root and Coleoptile Growth. Environ. Processes. 2022, 9, 31. [Google Scholar] [CrossRef]
- Ahmed, Z.U.; Panaullah, G.M.; Gauch, H.; McCouch, S.R.; Tyagi, W.; Kabir, M.S.; Duxbury, J.M. Genotype and Environment Effects on Rice (Oryza sativa L.) Grain Arsenic Concentration in Bangladesh. Plant Soil 2011, 338, 367–382. [Google Scholar] [CrossRef]
- Farooq, M.A.; Islam, F.; Ali, B.; Najeeb, U.; Mao, B.; Gill, R.A.; Yan, G.; Siddique, K.H.M.; Zhou, W. Arsenic Toxicity in Plants: Cellular and Molecular Mechanisms of Its Transport and Metabolism. Environ. Exp. Bot. 2016, 132, 42–52. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Chan, W.F.; Wu, C.; Wu, F.; Wu, S.; Wong, M.H. Arsenite Transporters Expression in Rice (Oryza sativa L.) Associated with Arbuscular Mycorrhizal Fungi (AMF) Colonization under Different Levels of Arsenite Stress. Chemosphere 2012, 89, 1248–1254. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Xu, X.-Y.; Su, Y.-H.; McGrath, S.P.; Zhao, F.-J. Transporters of Arsenite in Rice and Their Role in Arsenic Accumulation in Rice Grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931–9935. [Google Scholar] [CrossRef]
- Li, R.Y.; Stroud, J.L.; Ma, J.F.; McGrath, S.P.; Zhao, F.J. Mitigation of Arsenic Accumulation in Rice with Water Management and Silicon Fertilization. Environ. Sci. Technol. 2009, 43, 3778–3783. [Google Scholar] [CrossRef] [PubMed]
- Arao, T.; Kawasaki, A.; Baba, K.; Mori, S.; Matsumoto, S. Effects of Water Management on Cadmium and Arsenic Accumulation and Dimethylarsinic Acid Concentrations in Japanese Rice. Environ. Sci. Technol. 2009, 43, 9361–9367. [Google Scholar] [CrossRef]
- Szalóki, T.; Székely, Á.; Valkovszki, N.J.; Tarnawa, Á.; Jancsó, M. Evaluation of Arsenic Content of Four Temperate Japonica Rice Varieties in a Greenhouse Experiment. In Proceedings of the 1st International Conference on Agricultural and Food Chain Safety Development, Jahorina, Bosnia and Herzegovina, 6–9 October 2022; pp. 48–52. [Google Scholar]
- Bouman, B.A.M.; Lampayan, R.M.; Toung, T.P. Water Management in Irrigated Rice: Coping with Water Scarcity; Int. Rice Res. Inst.: Los Banos, Philippines, 2007; ISBN 978-971-22-0219-3. [Google Scholar]
- Monaco, S.; Volante, A.; Orasen, G.; Cochrane, N.; Oliver, V.; Price, A.H.; Teh, Y.A.; Martínez-Eixarch, M.; Thomas, C.; Courtois, B.; et al. Effects of the Application of a Moderate Alternate Wetting and Drying Technique on the Performance of Different European Varieties in Northern Italy Rice System. Field Crops Res. 2021, 270, 108220. [Google Scholar] [CrossRef]
- Norton, G.J.; Travis, A.J.; Talukdar, P.; Hossain, M.; Islam, M.R.; Douglas, A.; Price, A.H. Genetic Loci Regulating Arsenic Content in Rice Grains When Grown Flooded or under Alternative Wetting and Drying Irrigation. Rice 2019, 12, 54. [Google Scholar] [CrossRef]
- Spanu, A.; Valente, M.; Langasco, I.; Leardi, R.; Orlandoni, A.M.; Ciulu, M.; Deroma, M.A.; Spano, N.; Barracu, F.; Pilo, M.I.; et al. Effect of the Irrigation Method and Genotype on the Bioaccumulation of Toxic and Trace Elements in Rice. Sci. Total Environ. 2020, 748, 142484. [Google Scholar] [CrossRef]
- Han, R.; Wang, Z.; Wang, S.; Sun, G.; Xiao, Z.; Hao, Y.; Nriagu, J.; Teng, H.H.; Li, G. A Combined Strategy to Mitigate the Accumulation of Arsenic and Cadmium in Rice (Oryza sativa L.). Sci. Total Environ. 2023, 896, 165226. [Google Scholar] [CrossRef]
- Befani, M.R.; Quintero, C.E.; Panozzo, J.A.; de los Ángeles ZAMERO, M.; Risso, L.F.; Sansó, M.C.; Hernández, J.P. Agronomic Strategies to Reduce the Arsenic Content in Rice in Environments Conducive to High Arsenic in Grains from Argentina. Pedosphere 2023. [Google Scholar] [CrossRef]
- Shaibur, M.; Kitajima, N.; SUGAWARA, R.; Kondo, T.; Huq, S.M.; Kawai, S. Physiological and Mineralogical Properties of Arsenic-Induced Chlorosis in Rice Seedlings Grown Hydroponically. Soil Sci. Plant Nutr. 2006, 52, 691–700. [Google Scholar] [CrossRef]
- Azad, M.A.K.; Islam, M.N.; Alam, A.; Mahmud, H.; Islam, M.A.; Rezaul Karim, M.; Rahman, M. Arsenic Uptake and Phytotoxicity of T-Aman Rice (Oryza sativa L.) Grown in the As-Amended Soil of Bangladesh. Environmentalist 2009, 29, 436–440. [Google Scholar] [CrossRef]
- Begum, M.; Akter, J.; Jahiruddin, M.R.; Islam, M.R. Effects of Arsenic and Its Interaction with Phosphorus on Yield and Arsenic Accumulation in Rice. J. Bangladesh Agric. Univ. 2008, 6, 277–284. [Google Scholar] [CrossRef]
- Hossain, M.B.; Jahiruddin, M.; Loeppert, R.H.; Panaullah, G.M.; Islam, M.R.; Duxbury, J.M. The Effects of Iron Plaque and Phosphorus on Yield and Arsenic Accumulation in Rice. Plant Soil 2009, 317, 167–176. [Google Scholar] [CrossRef]
- Shri, M.; Kumar, S.; Chakrabarty, D.; Trivedi, P.K.; Mallick, S.; Misra, P.; Shukla, D.; Mishra, S.; Srivastava, S.; Tripathi, R.D. Effect of Arsenic on Growth, Oxidative Stress, and Antioxidant System in Rice Seedlings. Ecotoxicol. Environ. Saf. 2009, 72, 1102–1110. [Google Scholar] [CrossRef]
- Abedin, M.J.; Meharg, A.A. Relative Toxicity of Arsenite and Arsenate on Germination and Early Seedling Growth of Rice (Oryza sativa L.). Plant Soil 2002, 243, 57–66. [Google Scholar] [CrossRef]
- Vromman, D.; Lutts, S.; Lefèvre, I.; Somer, L.; De Vreese, O.; Šlejkovec, Z.; Quinet, M. Effects of Simultaneous Arsenic and Iron Toxicities on Rice (Oryza sativa L.) Development, Yield-Related Parameters and As and Fe Accumulation in Relation to As Speciation in the Grains. Plant Soil 2013, 371, 199–217. [Google Scholar] [CrossRef]
- Imamul Huq, S.M.; Sultana, S.; Chakraborty, G.; Chowdhury, M.T.A. A Mitigation Approach to Alleviate Arsenic Accumulation in Rice through Balanced Fertilization. Appl. Environ. Soil Sci. 2011, 2011, 835627. [Google Scholar] [CrossRef]
- Székely, Á.; Szalóki, T.; Pauk, J.; Lantos, C.; Ibadzade, M.; Jancsó, M. Salinity Tolerance Characteristics of Marginally Located Rice Varieties in the Northernmost Rice-Growing Area in Europe. Agronomy 2022, 12, 652. [Google Scholar] [CrossRef]
- Talukder, A.; Meisner, C.A.; Sarkar, M.A.R.; Islam, M.S.; Sayre, K.D.; Duxbury, J.M.; Lauren, J.G. Effect of Water Management, Arsenic and Phosphorus Levels on Rice in a High-Arsenic Soil–Water System: II. Arsenic Uptake. Ecotoxicol. Environ. Saf. 2012, 80, 145–151. [Google Scholar] [CrossRef]
- Hu, P.; Li, Z.; Yuan, C.; Ouyang, Y.; Zhou, L.; Huang, J.; Huang, Y.; Luo, Y.; Christie, P.; Wu, L. Effect of Water Management on Cadmium and Arsenic Accumulation by Rice (Oryza sativa L.) with Different Metal Accumulation Capacities. J. Soils Sediments 2013, 13, 916–924. [Google Scholar] [CrossRef]
- Hua, B.; Yan, W.; Wang, J.; Deng, B.; Yang, J. Arsenic Accumulation in Rice Grains: Effects of Cultivars and Water Management Practices. Environ. Eng. Sci. 2011, 28, 591–596. [Google Scholar] [CrossRef]
- Carracelas, G.; Hornbuckle, J.; Verger, M.; Huertas, R.; Riccetto, S.; Campos, F.; Roel, A. Irrigation Management and Variety Effects on Rice Grain Arsenic Levels in Uruguay. J. Agric. Food Res. 2019, 1, 100008. [Google Scholar] [CrossRef]
- Majumdar, A.; Kumar, J.S.; Bose, S. Agricultural Water Management Practices and Environmental Influences on Arsenic Dynamics in Rice Field. In Arsenic in Drinking Water and Food; Springer: Berlin/Heidelberg, Germany, 2020; pp. 425–443. [Google Scholar]
Variable | SS | df | F | Sig. | Source | SS | df | F | Sig. | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | PH | 623 | 3 | 10.14 | 0.00 | Genotype | PL | 844 | 3 | 193.23 | 0.00 |
BMDW | 1562 | 3 | 10.58 | 0.00 | F% | 376 | 3 | 0.82 | 0.48 | ||
RDW | 1944 | 3 | 56.02 | 0.00 | Y | 1137 | 3 | 25.55 | 0.00 | ||
R% | 5857 | 3 | 104.01 | 0.00 | TKW | 1824 | 3 | 176.12 | 0.00 | ||
Treat | PH | 2448 | 1 | 119.47 | 0.00 | Treat | PL | 48 | 1 | 33.04 | 0.00 |
BMDW | 662 | 1 | 13.45 | 0.00 | F% | 848 | 1 | 5.59 | 0.02 | ||
RDW | 8 | 1 | 0.65 | 0.42 | Y | 999 | 1 | 67.37 | 0.00 | ||
R% | 319 | 1 | 16.99 | 0.00 | TKW | 172 | 1 | 49.77 | 0.00 | ||
Irrigation | PH | 12,446 | 2 | 303.73 | 0.00 | Irrigation | PL | 21 | 2 | 7.32 | 0.00 |
BMDW | 458 | 2 | 4.66 | 0.01 | F% | 7053 | 2 | 23.24 | 0.00 | ||
RDW | 721 | 2 | 31.16 | 0.00 | Y | 1426 | 2 | 48.08 | 0.00 | ||
R% | 1849 | 2 | 49.25 | 0.00 | TKW | 736 | 2 | 106.61 | 0.00 | ||
Year | PH | 3426 | 1 | 167.21 | 0.00 | Year | PL | 10 | 1 | 7.12 | 0.01 |
BMDW | 11,809 | 1 | 239.98 | 0.00 | F% | 12 | 1 | 0.08 | 0.78 | ||
RDW | 344 | 1 | 29.77 | 0.00 | Y | 253 | 1 | 17.09 | 0.00 | ||
R% | 906 | 1 | 48.26 | 0.00 | TKW | 165 | 1 | 47.73 | 0.00 |
Variety | Treatment 1 | |||||
---|---|---|---|---|---|---|
FC | FA | IC | IA | AC | AA | |
BMDW (g): 2021 | ||||||
‘M 488’ | 25.06 ± 6.66 aA | 28.92 ± 7.85 abA | 42.76 ± 12.93 bA | 24.44 ± 7.09 aA | 36.92 ± 7.07 abA | 42.08 ± 8.46 bB |
‘Janka’ | 46.90 ± 12.18 bBC | 29.56 ± 4.30 aA | 33.80 ± 6.08 abA | 30.58 ± 10.50 aA | 32.22 ± 7.53 abA | 29.34 ± 4.74 aAB |
‘Szellő’ | 33.68 ± 4.76 bAB | 17.44 ± 6.88 aA | 27.30 ± 10.93 abA | 22.88 ± 7.15 abA | 26.42 ± 6.72 abA | 26.74 ± 8.72 abA |
‘Nembo’ | 56.00 ± 18.60 bC | 27.22 ± 14.59 aA | 32.88 ± 5.03 abA | 25.75 ± 5.63 aA | 34.93 ± 10.33 abA | 40.36 ± 8.48 abAB |
BMDW (g): 2022 | ||||||
‘M 488’ | 19.84 ± 3.17 bcA | 24.54 ± 4.94 cA | 23.10 ± 2.95 cB | 23.66 ± 4.75 cA | 14.48 ± 4.20 abA | 10.68 ± 3.44 aAB |
‘Janka’ | 16.16 ± 2.73 abA | 23.02 ± 5.17 bA | 21.62 ± 4.29 bB | 23.60 ± 2.64 bA | 17.52 ± 4.97 abA | 13.08 ± 2.02 aAB |
‘Szellő’ | 18.86 ± 3.81 bA | 20.50 ± 4.11 bA | 13.88 ± 5.08 abA | 17.82 ± 5.16 abA | 13.68 ± 3.01 abA | 9.90 ± 1.14 aA |
‘Nembo’ | 20.28 ± 2.50 abcA | 20.88 ± 4.04 bcA | 22.20 ± 4.16 cB | 18.64 ± 4.29 abcA | 13.86 ± 2.54 aA | 14.78 ± 2.06 abB |
Variety | Treatment 1 | |||||
---|---|---|---|---|---|---|
FC | FA | IC | IA | AC | AA | |
Mean yield (g) in 2021 | ||||||
‘M 488’ | 32.44 ± 10.43 cB | 15.34 ± 8.89 abcA | 16.54 ± 6.17 bcA | 4.34 ± 2.21 abA | 3.35 ± 2.44 aA | 2.08 ± 1.60 aA |
‘Janka’ | 12.14 ± 4.51 bA | 1.64 ± 1.13 aA | 17.56 ± 6.41 bA | 5.45 ± 3.69 abA | 2.40 ± 1.40 aA | 1.10 ± 1.47 aA |
‘Szellő’ | 11.87 ± 2.45 bA | 1.04 ± 0.66 aA | 6.72 ± 3.78 abA | 2.35 ± 2.53 aA | 1.41 ± 0.80 aA | 0.60 ± 0.40 aA |
‘Nembo’ | 13.08 ± 5.44 bA | 2.00 ± 1.70 aA | 16.40 ± 11.11 abA | 3.65 ± 3.26 aA | 2.58 ± 2.55 aA | 0.30 ± 0.07 aA |
Mean yield (g) in 2022 | ||||||
‘M 488’ | 9.02 ± 3.12 aB | 11.97 ± 6.27 aA | 6.69 ± 2.37 aA | 4.70 ± 2.69 aAB | 5.55 ± 2.10 aA | 4.76 ± 3.83 aA |
‘Janka’ | 2.57 ± 1.47 aA | 2.35 ± 2.79 aA | 5.09 ± 0.81 aA | 5.35 ± 3.25 aAB | 4.02 ± 3.38 aA | 2.34 ± 2.33 aA |
‘Szellő’ | 3.24 ± 1.80 aA | 2.96 ± 1.67 aA | 4.87 ± 1.43 aA | 3.90 ± 1.02 aA | 2.53 ± 1.20 aA | 2.73 ± 0.71 aA |
‘Nembo’ | 5.15 ± 2.28 aAB | 5.28 ± 2.39 aA | 11.98 ± 1.54 bB | 10.79 ± 3.65 abB | 4.01 ± 2.07 aA | 3.72 ± 1.42 aA |
Thousand kernel weight (g) in 2021 | ||||||
‘M 488’ | 24.84 ± 0.60 cA | 22.22 ± 1.39 bcA | 21.93 ± 0.29 bA | 19.11 ± 1.50 abA | 18.82 ± 2.17 abA | 17.74 ± 1.19 aA |
‘Janka’ | 28.74 ± 2.70 bAB | 20.64 ± 3.67 aA | 27.07 ± 1.64 abB | 23.35 ± 2.27 abAB | 23.81 ± 2.13 abA | 23.98 ± 0.75 abC |
‘Szellő’ | 25.58 ± 0.50 bA | 21.32 ± 2.56 abA | 20.75 ± 1.56 aA | 19.76 ± 4.61 abA | 19.34 ± 1.47 aA | 20.93 ± 1.00 aB |
‘Nembo’ | 32.39 ± 0.83 cB | 29.22 ± 0.18 bB | 29.34 ± 0.88 bB | 28.39 ± 0.39 bB | 21.83 ± 2.27 aA | 21.42 ± 0.33 aB |
Thousand kernel weight (g) in 2022 | ||||||
‘M 488’ | 24.33 ± 1.28 bA | 23.81 ± 1.33 bA | 23.53 ± 0.68 bA | 21.77 ± 1.24 abA | 20.46 ± 0.81 aA | 19.39 ± 1.53 aA |
‘Janka’ | 26.81 ± 1.42 bA | 24.72 ± 1.75 abA | 27.68 ± 1.76 bB | 26.54 ± 2.05 abB | 26.89 ± 4.19 abAB | 21.39 ± 2.05 aAB |
‘Szellő’ | 24.91 ± 0.87 bA | 24.08 ± 1.44 abA | 23.69 ± 0.84 abA | 22.93 ± 0.61 abAB | 21.17 ± 1.79 aA | 21.17 ± 1.76 abAB |
‘Nembo’ | 33.03 ± 0.92 cB | 32.37 ± 1.38 cAB | 31.72 ± 0.49 bcC | 31.76 ± 1.32 cC | 26.16 ± 2.71 abB | 25.32 ± 2.09 aB |
Variety | Treatment 1 | |||||
---|---|---|---|---|---|---|
FC | FA | IC | IA | AC | AA | |
Panicle length (cm) | ||||||
‘M 488’ | 11.99 ± 1.15 bA | 10.99 ± 1.19 abA | 10.07 ± 0.47 aA | 10.02 ± 0.98 aA | 10.75 ± 1.19 abA | 11.44 ± 0.95 bA |
‘Janka’ | 13.94 ± 1.39 abB | 12.35 ± 1.22 aA | 13.68 ± 1.20 abB | 12.74 ± 1.08 abB | 14.64 ± 1.63 bB | 13.77 ± 2.01 abB |
‘Szellő’ | 18.74 ± 3.27 bC | 15.15 ± 1.78 aB | 15.99 ± 1.87 abC | 14.56 ± 2.36 aC | 16.21 ± 0.97 abC | 16.37 ± 2.10 bC |
‘Nembo’ | 13.70 ± 1.12 dAB | 12.43 ± 1.15 bcdA | 13.24 ± 0.87 cdB | 12.14 ± 1.00 bcB | 11.43 ± 1.08 abA | 10.41 ± 1.04 aA |
Soil Parameter | 2021 | 2022 |
---|---|---|
Soil texture | clay loam | clay loam |
Total soluble salts (m/m% dw) | 0.16 | 0.15 |
Humus (m/m% dw) | 1.04 | 1.71 |
Carbonated lime (m/m% dw) | 0.65 | 1.73 |
Nitrate + nitrite N (KCl) (mg/kg dw) | 8.30 | 14.18 |
Phosphorus (mg/kg dw) | 38.63 | 436.73 |
Potassium (mg/kg dw) | 75.33 | 123.03 |
Magnesium (mg/kg dw) | 265.50 | 235.10 |
Arsenic (HNO3/H2O2) (mg/kg dw) 1 | 3.87 | 4.10 |
Arsenic (HNO3/H2O2) (mg/kg dw) 2 | 43.05 | 23.96 |
2021 | Temperature (°C) | RH 1 | 2022 | Temperature (°C) | RH 1 | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Max | Min | % | Mean | Max | Min | % | ||
May | 14.8 | 28.8 | 2.3 | 76.5 | May | 18.0 | 31.4 | 4.8 | 67.5 |
June | 22.7 | 37.5 | 7.6 | 65.1 | June | 23.4 | 37.6 | 9.8 | 60.4 |
July | 25.1 | 37.5 | 14.5 | 67.8 | July | 24.4 | 39.9 | 9.5 | 56.9 |
August | 21.7 | 37.2 | 9.3 | 70.4 | August | 24.3 | 37.6 | 15.4 | 66.0 |
Mean | 21.1 | 35.3 | 8.4 | 70.0 | Mean | 22.5 | 36.6 | 9.9 | 62.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szalóki, T.; Székely, Á.; Valkovszki, N.J.; Tarnawa, Á.; Jancsó, M. The Reaction of Rice Growth to the Arsenic Contamination under Various Irrigation Methods. Plants 2024, 13, 1253. https://doi.org/10.3390/plants13091253
Szalóki T, Székely Á, Valkovszki NJ, Tarnawa Á, Jancsó M. The Reaction of Rice Growth to the Arsenic Contamination under Various Irrigation Methods. Plants. 2024; 13(9):1253. https://doi.org/10.3390/plants13091253
Chicago/Turabian StyleSzalóki, Tímea, Árpád Székely, Noémi J. Valkovszki, Ákos Tarnawa, and Mihály Jancsó. 2024. "The Reaction of Rice Growth to the Arsenic Contamination under Various Irrigation Methods" Plants 13, no. 9: 1253. https://doi.org/10.3390/plants13091253
APA StyleSzalóki, T., Székely, Á., Valkovszki, N. J., Tarnawa, Á., & Jancsó, M. (2024). The Reaction of Rice Growth to the Arsenic Contamination under Various Irrigation Methods. Plants, 13(9), 1253. https://doi.org/10.3390/plants13091253