A High-Quality Phased Genome Assembly of Stinging Nettle (Urtica dioica ssp. dioica)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Genome Sequencing and Assembly
2.2. Genome Structure
2.3. Genes and Repeats Landscape
2.4. Genome Evolution
2.5. Putative Neurotoxic Nettle Sting Peptides
3. Materials and Methods
3.1. Plant Materials and Sequencing
3.2. De Novo Assembly and Quality Evaluation
3.3. Genome Annotation and Visualization
3.4. Comparative Genomics
3.5. Identification of Sting Genes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, K. Biological Flora of the British Isles: Urtica dioica L. J. Ecol. 2009, 97, 1436–1458. [Google Scholar] [CrossRef]
- Rejlová, L.; Chrtek, J.; Trávníček, P.; Lučanová, M.; Vít, P.; Urfus, T. Polyploid Evolution: The Ultimate Way to Grasp the Nettle. PLoS ONE 2019, 14, e0218389. [Google Scholar] [CrossRef]
- Harwood, J.; Edom, G. Nettle Fibre: Its Prospects, Uses and Problems in Historical Perspective. Text. Hist. 2012, 43, 107–119. [Google Scholar] [CrossRef]
- Viotti, C.; Albrecht, K.; Amaducci, S.; Bardos, P.; Bertheau, C.; Blaudez, D.; Bothe, L.; Cazaux, D.; Ferrarini, A.; Govilas, J.; et al. Nettle, a Long-Known Fiber Plant with New Perspectives. Materials 2022, 15, 4288. [Google Scholar] [CrossRef] [PubMed]
- Bhusal, K.K.; Magar, S.K.; Thapa, R.; Lamsal, A.; Bhandari, S.; Maharjan, R.; Shrestha, S.; Shrestha, J. Nutritional and Pharmacological Importance of Stinging Nettle (Urtica dioica L.): A Review. Heliyon 2022, 8, e09717. [Google Scholar] [CrossRef]
- Xu, X.; Backes, A.; Legay, S.; Berni, R.; Faleri, C.; Gatti, E.; Hausman, J.-F.; Cai, G.; Guerriero, G. Cell Wall Composition and Transcriptomics in Stem Tissues of Stinging Nettle (Urtica dioica L.): Spotlight on a Neglected Fibre Crop. Plant Direct 2019, 3, e00151. [Google Scholar] [CrossRef] [PubMed]
- Man, S.M.; Paucean, A.; Chis, M.S.; Muste, S.; Pop, A.; Muresan, A.E.; Martis, G. Effect of Nettle Leaves Powder (Urtica dioica L.) Addition on the Quality of Bread. Hop Med. Plants 2019, 27, 104–112. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M.; Isasa, M.E.T. Fatty Acids and Carotenoids from Stinging Nettle (Urtica dioica L.). J. Food Compos. Anal. 2003, 16, 111–119. [Google Scholar] [CrossRef]
- Devkota, H.P.; Paudel, K.R.; Khanal, S.; Baral, A.; Panth, N.; Adhikari-Devkota, A.; Jha, N.K.; Das, N.; Singh, S.K.; Chellappan, D.K.; et al. Stinging Nettle (Urtica Dioica L.): Nutritional Composition, Bioactive Compounds, and Food Functional Properties. Molecules 2022, 27, 5219. [Google Scholar] [CrossRef]
- Fu, H.A.N.Y.I.; Chen, S.J.; Chen, R.F.; Ding, W.H.; Kuo-Huang, L.L.; Huang, R.N.A.N. Identification of Oxalic Acid and Tartaric Acid as Major Persistent Pain-Inducing Toxins in the Stinging Hairs of the Nettle, Urtica thunbergiana. Ann. Bot. 2006, 98, 57–65. [Google Scholar] [CrossRef]
- Xie, J.; Robinson, S.D.; Gilding, E.K.; Jami, S.; Deuis, J.R.; Rehm, F.B.H.; Yap, K.; Ragnarsson, L.; Chan, L.Y.; Hamilton, B.R.; et al. Neurotoxic and Cytotoxic Peptides Underlie the Painful Stings of the Tree Nettle Urtica ferox. J. Biol. Chem. 2022, 298, 102218. [Google Scholar] [CrossRef]
- Gilding, E.K.; Jami, S.; Deuis, J.R.; Israel, M.R.; Harvey, P.J.; Poth, A.G.; Rehm, F.B.H.; Stow, J.L.; Robinson, S.D.; Yap, K.; et al. Neurotoxic Peptides from the Venom of the Giant Australian Stinging Tree. Sci. Adv. 2020, 6, eabb8828. [Google Scholar] [CrossRef] [PubMed]
- Cronk, Q.; Hidalgo, O.; Pellicer, J.; Percy, D.; Leitch, I.J. Salix Transect of Europe: Variation in Ploidy and Genome Size in Willow-Associated Common Nettle, Urtica dioica L. Sens. Lat., from Greece to Arctic Norway. Biodivers. Data J. 2016, 4, e10003. [Google Scholar] [CrossRef]
- Bassett, I.J.; Crompton, C.W.; Woodland, D.W. The Biology of Canadian Weeds.: 21. Urtica dioica L. Can. J. Plant Sci. 1977, 57, 491–498. [Google Scholar] [CrossRef]
- Grosse-Veldmann, B.; Nürk, N.M.; Smissen, R.; Breitwieser, I.; Quandt, D.; Weigend, M. Pulling the Sting out of Nettle Systematics—A Comprehensive Phylogeny of the Genus Urtica L. (Urticaceae). Mol. Phylogenet. Evol. 2016, 102, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Christenhusz, M.J.M.; Twyford, A.D.; Royal Botanic Gardens Kew Genome Acquisition Lab; Plant Genome Sizing Collective; Darwin Tree of Life Barcoding Collective; Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory Team; Wellcome Sanger Institute Scientific Operations: Sequencing Operations; Wellcome Sanger Institute Tree of Life Core Informatics Team; Tree of Life Core Informatics Collective; Darwin Tree of Life Consortium. The Genome Sequence of the Small Nettle, Urtica urens L. (Urticaceae). Wellcome Open Res. 2024, 9, 639. [Google Scholar] [CrossRef] [PubMed]
- Christenhusz, M.J.M.; Royal Botanic Gardens Kew Genome Acquisition Lab; Plant Genome Sizing Collective; Darwin Tree of Life Barcoding Collective; Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory Team; Wellcome Sanger Institute Scientific Operations: Sequencing Operations; Wellcome Sanger Institute Tree of Life Core Informatics Team; Tree of Life Core Informatics Collective; Darwin Tree of Life Consortium. The Genome Sequence of Pellitory-of-the-Wall, Parietaria judaica L. (Urticaceae). Wellcome Open Res. 2024, 9, 608. [Google Scholar] [CrossRef]
- Darwin Tree of Life Project Consortium Sequence Locally, Think Globally: The Darwin Tree of Life Project. Proc. Natl. Acad. Sci. USA 2022, 119, e2115642118. [CrossRef]
- Sun, H.; Ding, J.; Piednoël, M.; Schneeberger, K. FindGSE: Estimating Genome Size Variation within Human and Arabidopsis Using k-Mer Frequencies. Bioinformatics 2018, 34, 550–557. [Google Scholar] [CrossRef]
- Mérot, C.; Oomen, R.A.; Tigano, A.; Wellenreuther, M. A Roadmap for Understanding the Evolutionary Significance of Structural Genomic Variation. Trends Ecol. Evol. 2020, 35, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Alonge, M.; Wang, X.; Benoit, M.; Soyk, S.; Pereira, L.; Zhang, L.; Suresh, H.; Ramakrishnan, S.; Maumus, F.; Ciren, D.; et al. Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato. Cell 2020, 182, 145–161.e23. [Google Scholar] [CrossRef]
- Battlay, P.; Wilson, J.; Bieker, V.C.; Lee, C.; Prapas, D.; Petersen, B.; Craig, S.; van Boheemen, L.; Scalone, R.; de Silva, N.P.; et al. Large Haploblocks Underlie Rapid Adaptation in the Invasive Weed Ambrosia artemisiifolia. Nat. Commun. 2023, 14, 1717. [Google Scholar] [CrossRef]
- Harringmeyer, O.S.; Hoekstra, H.E. Chromosomal Inversion Polymorphisms Shape the Genomic Landscape of Deer Mice. Nat. Ecol. Evol. 2022, 6, 1965–1979. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Legay, S.; Berni, R.; Hausman, J.F.; Guerriero, G. Transcriptomic Changes in Internode Explants of Stinging Nettle during Callogenesis. Int. J. Mol. Sci. 2021, 22, 12319. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.; Chen, J.; Jiang, N. Assessing Genome Assembly Quality Using the LTR Assembly Index (LAI). Nucleic Acids Res. 2018, 46, e126. [Google Scholar] [CrossRef]
- Elphinstone, C.; Elphinstone, R.; Todesco, M.; Rieseberg, L. RepeatOBserver: Tandem Repeat Visualization and Centromere Detection. bioRxiv 2023. 2023.12.30.573697. [Google Scholar] [CrossRef]
- Naish, M.; Alonge, M.; Wlodzimierz, P.; Tock, A.J.; Abramson, B.W.; Schmücker, A.; Mandáková, T.; Jamge, B.; Lambing, C.; Kuo, P.; et al. The Genetic and Epigenetic Landscape of the Arabidopsis Centromeres. Science 2024, 374, eabi7489. [Google Scholar] [CrossRef]
- Xuan, Y.; Ma, B.; Li, D.; Tian, Y.; Zeng, Q.; He, N. Chromosome Restructuring and Number Change during the Evolution of Morus notabilis and Morus alba. Hortic. Res. 2022, 9, uhab030. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; He, Q.; Bao, Z.; Zeng, Z.; An, D.; Zhang, T.; Yan, L.; Wang, H.; Zhu, S.; et al. Genomic Analyses Provide Comprehensive Insights into the Domestication of Bast Fiber Crop Ramie (Boehmeria nivea). Plant J. 2021, 107, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Rice, A.; Glick, L.; Abadi, S.; Einhorn, M.; Kopelman, N.M.; Salman-Minkov, A.; Mayzel, J.; Chay, O.; Mayrose, I. The Chromosome Counts Database (CCDB)—A Community Resource of Plant Chromosome Numbers. New Phytol. 2015, 206, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.L.; Mehra, P.N. Chromosome Numbers in Some East Himalayan Urticaceae. Cytologia 1979, 44, 799–803. [Google Scholar] [CrossRef]
- de Lange, P.J.; Murray, B.G. Contributions to a Chromosome Atlas of the New Zealand Flora—37. Miscellaneous Families. N. Z. J. Bot. 2002, 40, 1–23. [Google Scholar] [CrossRef]
- Huang, X.; Deng, T.; Moore, M.J.; Wang, H.; Li, Z.; Lin, N.; Yusupov, Z.; Tojibaev, K.S.; Wang, Y.; Sun, H. Tropical Asian Origin, Boreotropical Migration and Long-Distance Dispersal in Nettles (Urticeae, Urticaceae). Mol. Phylogenet. Evol. 2019, 137, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Monro, A.K.; Milne, R.I.; Wang, H.; Yi, T.S.; Liu, J.; Li, D.Z. Molecular Phylogeny of the Nettle Family (Urticaceae) Inferred from Multiple Loci of Three Genomes and Extensive Generic Sampling. Mol. Phylogenet. Evol. 2013, 69, 814–827. [Google Scholar] [CrossRef]
- Pollard, A.J.; Briggs, D. Genecological Studies of Urtica dioca L. New Phytol. 1984, 97, 507–522. [Google Scholar] [CrossRef]
- Emmelin, N.; Feldberg, W. The Mechanism of the Sting of the Common Nettle (Urtica urens). J. Physiol. 1947, 106, 440–455. [Google Scholar] [CrossRef]
- Collier, H.O.J.; Chesher, G.B. Identification of 5-Hydroxytryptamine in the Sting of the Nettle (Urtica dioica). Br. J. Pharmacol. Chemother. 1956, 11, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Stec, B. Plant Thionins—The Structural Perspective. Cell. Mol. Life Sci. 2006, 63, 1370–1385. [Google Scholar] [CrossRef]
- Doležel, J.; Greilhuber, J.; Suda, J. Estimation of Nuclear DNA Content in Plants Using Flow Cytometry. Nat. Protoc. 2007, 2, 2233–2244. [Google Scholar] [CrossRef]
- Baack, E.J.; Whitney, K.D.; Rieseberg, L.H. Hybridization and Genome Size Evolution: Timing and Magnitude of Nuclear DNA Content Increases in Helianthus Homoploid Hybrid Species. New Phytol. 2005, 167, 623–630. [Google Scholar] [CrossRef]
- Stoffel, K.; van Leeuwen, H.; Kozik, A.; Caldwell, D.; Ashrafi, H.; Cui, X.; Tan, X.; Hill, T.; Reyes-Chin-Wo, S.; Truco, M.-J.; et al. Development and Application of a 6.5 Million Feature Affymetrix Genechip® for Massively Parallel Discovery of Single Position Polymorphisms in Lettuce (Lactuca spp.). BMC Genom. 2012, 13, 185. [Google Scholar] [CrossRef] [PubMed]
- Rohland, N.; Reich, D. Cost-Effective, High-Throughput DNA Sequencing Libraries for Multiplexed Target Capture. Genome Res. 2012, 22, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Todesco, M.; Owens, G.L.; Bercovich, N.; Légaré, J.S.; Soudi, S.; Burge, D.O.; Huang, K.; Ostevik, K.L.; Drummond, E.B.M.; Imerovski, I.; et al. Massive Haplotypes Underlie Ecotypic Differentiation in Sunflowers. Nature 2020, 584, 602–607. [Google Scholar] [CrossRef]
- Padmarasu, S.; Himmelbach, A.; Mascher, M.; Stein, N. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions. In Plant Long Non-Coding RNAs: Methods and Protocols; Chekanova, J.A., Wang, H.-L.V., Eds.; Springer: New York, NY, USA, 2019; pp. 441–472. ISBN 978-1-4939-9045-0. [Google Scholar]
- Wang, N.; Liu, C. Study of Cell-Type-Specific Chromatin Organization: In Situ Hi-C Library Preparation for Low-Input Plant Materials. In Plant Epigenetics and Epigenomics: Methods and Protocols; Spillane, C., McKeown, P., Eds.; Springer US: New York, NY, USA, 2020; pp. 115–127. ISBN 978-1-0716-0179-2. [Google Scholar]
- Rhie, A.; Walenz, B.P.; Koren, S.; Phillippy, A.M. Merqury: Reference-Free Quality, Completeness, and Phasing Assessment for Genome Assemblies. Genome Biol. 2020, 21, 245. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat. Methods 2021, 18, 170–175. [Google Scholar] [CrossRef]
- Durand, N.C.; Shamim, M.S.; Machol, I.; Rao, S.S.P.; Huntley, M.H.; Lander, E.S.; Aiden, E.L. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst. 2016, 3, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Dudchenko, O.; Batra, S.S.; Omer, A.D.; Nyquist, S.K.; Hoeger, M.; Durand, N.C.; Shamim, M.S.; Machol, I.; Lander, E.S.; Aiden, A.P.; et al. De Novo Assembly of the Aedes aegypti Genome Using Hi-C Yields Chromosome-Length Scaffolds. Science 2017, 356, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Durand, N.C.; Robinson, J.T.; Shamim, M.S.; Machol, I.; Mesirov, J.P.; Lander, E.S.; Aiden, E.L. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst. 2016, 3, 99–101. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Li, H. New Strategies to Improve Minimap2 Alignment Accuracy. Bioinformatics 2021, 37, 4572–4574. [Google Scholar] [CrossRef]
- Goel, M.; Sun, H.; Jiao, W.B.; Schneeberger, K. SyRI: Finding Genomic Rearrangements and Local Sequence Differences from Whole-Genome Assemblies. Genome Biol. 2019, 20, 277. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Rhie, A.; Hansen, N.F.; Koren, S.; Phillippy, A.M. Long-Read Mapping to Repetitive Reference Sequences Using Winnowmap2. Nat. Methods 2022, 19, 705–710. [Google Scholar] [CrossRef]
- Alonge, M.; Soyk, S.; Ramakrishnan, S.; Wang, X.; Goodwin, S.; Sedlazeck, F.J.; Lippman, Z.B.; Schatz, M.C. RaGOO: Fast and Accurate Reference-Guided Scaffolding of Draft Genomes. Genome Biol. 2019, 20, 224. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive Visualization of de Novo Genome Assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. In Proceedings of the 9th Annual Genomics of Energy & Environment Meeting, Walnut Creek, CA, USA, 17–20 March 2014. [Google Scholar]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Girgis, H.Z. Red: An Intelligent, Rapid, Accurate Tool for Detecting Repeats de-Novo on the Genomic Scale. BMC Bioinform. 2015, 16, 227. [Google Scholar] [CrossRef]
- Ranallo-Benavidez, T.R.; Jaron, K.S.; Schatz, M.C. GenomeScope 2.0 and Smudgeplot for Reference-Free Profiling of Polyploid Genomes. Nat. Commun. 2020, 11, 1432. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Marçais, G.; Kingsford, C. A Fast, Lock-Free Approach for Efficient Parallel Counting of Occurrences of k-Mers. Bioinformatics 2011, 27, 764–770. [Google Scholar] [CrossRef]
- Brůna, T.; Hoff, K.J.; Lomsadze, A.; Stanke, M.; Borodovsky, M. BRAKER2: Automatic Eukaryotic Genome Annotation with GeneMark-EP+ and AUGUSTUS Supported by a Protein Database. NAR Genom. Bioinform. 2021, 3, lqaa108. [Google Scholar] [CrossRef]
- Gabriel, L.; Brůna, T.; Hoff, K.J.; Ebel, M.; Lomsadze, A.; Borodovsky, M.; Stanke, M. BRAKER3: Fully Automated Genome Annotation Using RNA-Seq and Protein Evidence with GeneMark-ETP, AUGUSTUS and TSEBRA. bioRxiv 2023. 2023.06.10.544449. [Google Scholar] [CrossRef] [PubMed]
- Hoff, K.J.; Lange, S.; Lomsadze, A.; Borodovsky, M.; Stanke, M. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 2016, 32, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Waterhouse, R.M.; Tegenfeldt, F.; Li, J.; Zdobnov, E.M.; Kriventseva, E. V OrthoDB: A Hierarchical Catalog of Animal, Fungal and Bacterial Orthologs. Nucleic Acids Res. 2013, 41, D358–D365. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, D.; Tegenfeldt, F.; Manni, M.; Seppey, M.; Berkeley, M.; Kriventseva, E.V.; Zdobnov, E.M. OrthoDB V11: Annotation of Orthologs in the Widest Sampling of Organismal Diversity. Nucleic Acids Res. 2023, 51, D445–D451. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.; Su, W.; Liao, Y.; Chougule, K.; Agda, J.R.A.; Hellinga, A.J.; Lugo, C.S.B.; Elliott, T.A.; Ware, D.; Peterson, T.; et al. Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline. Genome Biol. 2019, 20, 275. [Google Scholar] [CrossRef]
- Krzywinski, M.I.; Schein, J.E.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An Information Aesthetic for Comparative Genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Lovell, J.T.; Sreedasyam, A.; Schranz, M.E.; Wilson, M.; Carlson, J.W.; Harkess, A.; Emms, D.; Goodstein, D.M.; Schmutz, J. GENESPACE Tracks Regions of Interest and Gene Copy Number Variation across Multiple Genomes. Elife 2022, 11, e78526. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic Orthology Inference for Comparative Genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; DeBarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Li, H. Protein-to-Genome Alignment with Miniprot. Bioinformatics 2023, 39, btad014. [Google Scholar] [CrossRef] [PubMed]
- Bourque, G.; Burns, K.H.; Gehring, M.; Gorbunova, V.; Seluanov, A.; Hammell, M.; Imbeault, M.; Izsvák, Z.; Levin, H.L.; Macfarlan, T.S.; et al. Ten Things You Should Know about Transposable Elements. Genome Biol. 2018, 19, 199. [Google Scholar] [CrossRef]
- Huang, K.; Rieseberg, L.H. Frequency, Origins, and Evolutionary Role of Chromosomal Inversions in Plants. Front. Plant Sci. 2020, 11, 296. [Google Scholar] [CrossRef] [PubMed]
Haplotype 1 | Haplotype 2 | |||
---|---|---|---|---|
Parameters | Contig | Scaffold | Contig | Scaffold |
Total length (bp) | 574,934,600 | 521,157,583 | ||
Contig/Scaffold number | 1459 | 1598 | 376 | 248 |
N50 (Mbp) | 10.89 | 43.96 | 13.53 | 47.99 |
% main genome in scaffolds > 50 kbp | 92.59 | 98.98 | ||
% of genome anchored to 13 chromosomes | 89.52 | 97.83 | ||
BUSCO (C%) | 92.6 | 92.2 | ||
BUSCO (S%) | 90.5 | 90.1 | ||
BUSCO (D%) | 2.1 | 2.1 | ||
QV score (Merqury) | 42.05 | 44.45 | ||
kmer completeness (%; Merqury) | 81.72 | 81.61 | ||
Number of protein-coding genes annotated | 20,333 | 20,140 | ||
Protein BUSCO (Complete %) | 90.5 | 90.4 | ||
TE coverage (%) | 69.1 | 68.6 | ||
Whole genome LAI | 16.96 | 11.15 | ||
Heterozygosity (%) | 1.53 |
Peptide Name | Species Described | Nt. Length | Aa Length | Source | U. dioica Genome Position | Nt. Matches | Aa Matches | Annotated mRNA ID | ||
---|---|---|---|---|---|---|---|---|---|---|
Chr. | Start | End | ||||||||
Urthionin A (Δ-Uf1a) | Urtica ferox | 126 | 42 | [11] | 09_H1 | 19832138 | 19832264 | 108 | 36 | NA |
09_H1 | 19823191 | 19823317 | 108 | 36 | NA | |||||
09_H2 | 19679225 | 19679351 | 108 | 36 | NA | |||||
09_H2 | 19670282 | 19670408 | 108 | 36 | g13644.t1 | |||||
Urticatoxin (β/δ-Uf2a) | Urtica ferox | 189 | 63 | [11] | 06_H1 | 4057458 | 4057644 | 90 | 30 | NA |
06_H2 | 4669732 | 4669918 | 90 | 30 | NA | |||||
Urticatoxin (β/δ-Uf2b) | Urtica ferox | 189 | 63 | [11] | 06_H1 | 4057458 | 4057644 | 93 | 31 | NA |
06_H2 | 4669732 | 4669918 | 93 | 31 | NA | |||||
Urticatoxin (β/δ-De2a) | Dendrocnide excelsa | 180 | 60 | [11] | NA | |||||
Urticatoxin (β/δ-Dm2a) | Dendrocnide moroides | 183 | 61 | [11] | 09_H1 | 27999734 | 27999800 | 48 | 16 | g14471.t1 |
09_H2 | 27490551 | 27499780 | 78 | 26 | NA | |||||
Excelsatoxin A | Dendrocnide excelsa | 105 | 35 | [12] | NA | |||||
Moroidotoxin A | Dendrocnide moroides | 105 | 35 | [12] | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirabayashi, K.; Dumigan, C.R.; Kučka, M.; Percy, D.M.; Guerriero, G.; Cronk, Q.; Deyholos, M.K.; Todesco, M. A High-Quality Phased Genome Assembly of Stinging Nettle (Urtica dioica ssp. dioica). Plants 2025, 14, 124. https://doi.org/10.3390/plants14010124
Hirabayashi K, Dumigan CR, Kučka M, Percy DM, Guerriero G, Cronk Q, Deyholos MK, Todesco M. A High-Quality Phased Genome Assembly of Stinging Nettle (Urtica dioica ssp. dioica). Plants. 2025; 14(1):124. https://doi.org/10.3390/plants14010124
Chicago/Turabian StyleHirabayashi, Kaede, Christopher R. Dumigan, Matúš Kučka, Diana M. Percy, Gea Guerriero, Quentin Cronk, Michael K. Deyholos, and Marco Todesco. 2025. "A High-Quality Phased Genome Assembly of Stinging Nettle (Urtica dioica ssp. dioica)" Plants 14, no. 1: 124. https://doi.org/10.3390/plants14010124
APA StyleHirabayashi, K., Dumigan, C. R., Kučka, M., Percy, D. M., Guerriero, G., Cronk, Q., Deyholos, M. K., & Todesco, M. (2025). A High-Quality Phased Genome Assembly of Stinging Nettle (Urtica dioica ssp. dioica). Plants, 14(1), 124. https://doi.org/10.3390/plants14010124