Interactive Effects of LED Spectrum and Nitrogen Levels on Physiological Changes and Yield of Strawberry (Fragaria × ananassa Duch.)
Abstract
:1. Introduction
2. Results
2.1. Growth Indices of Strawberry Plants
Number of Leaves, Plant Height, Crown Growth and Biomass Accumulation
2.2. Physiological Responses of Strawberry to LED Color Combinations and Nitrogen Levels
2.2.1. Leaf Chlorophyll Index
2.2.2. Leaf Gas Exchange Attributes
2.3. Flower and Fruit Quality Characteristics
2.3.1. Flowering Characteristics
2.3.2. Fruiting Characteristics
2.4. Leaf Nutrient Contents
Total Nitrogen and Potassium Concentrations
3. Discussion
3.1. Growth Performance of Strawberry Plants
3.2. Photosynthesis
3.3. Flowering and Fruiting Characteristics
3.4. Nutrient Concentrations
4. Materials and Methods
4.1. Experimental Design and Setup
4.1.1. Treatments
4.1.2. Plant Growth Conditions
4.2. Growth, Yield, and Gas Exchange Determination
4.3. Nitrogen and Potassium Determination
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT, in Crops and Livestock Products. 2023, FAO. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 12 October 2024).
- Cianciosi, D.; Ansary, J.; Regolo, L.; Giampieri, F.; Forbes-Hernandez, T. The preventive effect of strawberries against the onset of common human diseases induced by oxidative stress. Acta Hortic. 2021, 1309, 917–924. [Google Scholar] [CrossRef]
- Taesuwan, S.; Jirarattanarangsri, W.; Wangtueai, S.; Hussain, M.A.; Ranadheera, S.; Ajlouni, S.; Zubairu, I.K.; Naumovski, N.; Phimolsiripol, Y. Unexplored Opportunities of Utilizing Food Waste in Food Product Development for Cardiovascular Health. Curr. Nutr. Rep. 2024, 13, 896–913. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Solís, C.I.; Cornejo-Manzo, S.; Murillo-Ortiz, B.O.; Guzmán-Barrón, M.M.; Ramírez-Emiliano, J. Strawberry polyphenols reduce oxidative stress in chronic diseases. Gac. Medica Mex. 2018, 154, 80–86. [Google Scholar] [CrossRef]
- Pipattanawong, N. Strawberry Production and the Royal Project Foundation, Thailand. J. Dev. Sustain. Agric. 2015, 10, 15–18. [Google Scholar] [CrossRef]
- Thammasophon, T.; Pusadee, T.; Bundithya, W.; Naphrom, D. Effects of Vernalization on Off–Season Flowering and Gene Expression in Sub-Tropical Strawberry cv. Pharachatan 80. Horticulturae 2023, 9, 87. [Google Scholar] [CrossRef]
- Bian, Z.; Jiang, N.; Grundy, S.; Lu, C. Uncovering LED light effects on plant growth: New angles and perspectives—LED light for improving plant growth, nutrition and energy-use efficiency. Acta Hortic. 2018, 1227, 491–498. [Google Scholar] [CrossRef]
- Simatupang, H.K.; Zahra, A.M.; Sutiarso, L.; Sinaga, A.N.K.; Pahlawan, M.F.R.; Annisa, H.N.; Nugroho, E.; Pitaloka, N.D.; Rahmawati, L. Investigating the response of green and red spinach microgreen yield and chlorophyll content in varied light-emitting diode and plant nutrient. In IOP Conference Series: Earth and Environmental Science; Institute of Physics: Bristol, UK, 2023. [Google Scholar] [CrossRef]
- Hidaka, K.; Dan, K.; Imamura, H.; Miyoshi, Y.; Takayama, T.; Sameshima, K.; Kitano, M.; Okimura, M. Effect of supplemental lighting from different light sources on growth and yield of strawberry. Environ. Control Biol. 2013, 51, 41–47. [Google Scholar] [CrossRef]
- Carotti, L.; Pennisi, G.; Pistillo, A.; Evangelista, G.; Mazzaferro, L.; Paucek, I.; Gianquinto, G.; Orsini, F. Growth analysis of lettuce seedlings adding green or far-red to an optimized red and blue LED light spectrum. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Advances in Vertical Farming, Angers, France, 14–20 August 2023; International Society for Horticultural Science: Leuven, Belgium, 2023. [Google Scholar] [CrossRef]
- Fraszczak, B. The effect of different doses of blue light on the biometric traits and photosynthesis of dill plants. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 34–40. [Google Scholar] [CrossRef]
- Kang, W.H.; Park, J.S.; Park, K.S.; Son, J.E. Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs). Hortic. Environ. Biotechnol. 2016, 57, 573–579. [Google Scholar] [CrossRef]
- Karimi, M.; Ahmadi, N.; Ebrahimi, M. Red LED light promotes biomass, flowering and secondary metabolites accumulation in hydroponically grown Hypericum perforatum L. (cv. Topas). Ind. Crop. Prod. 2021, 175, 114239. [Google Scholar] [CrossRef]
- Yudina, L.; Sukhova, E.; Mudrilov, M.; Nerush, V.; Pecherina, A.; Smirnov, A.A.; Dorokhov, A.S.; Chilingaryan, N.O.; Vodeneev, V.; Sukhov, V. Ratio of Intensities of Blue and Red Light at Cultivation Influences Photosynthetic Light Reactions, Respiration, Growth, and Reflectance Indices in Lettuce. Biology 2022, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Ruamrungsri, S.; Panjama, K.; Ohyama, T.; Inkham, C. Nitrogen in Flowers. 2021: IntechOpen, London. Available online: https://www.intechopen.com/chapters/76963 (accessed on 19 January 2024).
- Hykkerud, A.; Woznicki, T.; Sønsteby, A.; Martinussen, I. Effect of nitrogen fertilization on flowering of strawberry (Fragaria × ananassa ‘Sonata’). Acta Hortic. 2023, 1381, 271–275. [Google Scholar] [CrossRef]
- Katel, S.; Mandal, H.R.; Timsina, S.; Katuwal, A.; Sah, S.K.; Yadav, B.; Yadav, S.P.S.; Adhikari, N. Assessing the impact of varied nitrogen dosages on the vegetative and reproductive parameters of ‘Sweet Sensation’ and ‘Rubygem’ strawberry in Morang, Nepal. Heliyon 2023, 9, e16334. [Google Scholar] [CrossRef] [PubMed]
- Marcellini, M.; Raffaelli, D.; Pergolotti, V.; Balducci, F.; Marcellini, M.; Capocasa, F.; Mezzetti, B.; Mazzoni, L. Growth and Yield of Strawberry Cultivars under Low Nitrogen Supply in Italy. Horticulturae 2023, 9, 1165. [Google Scholar] [CrossRef]
- Agehara, S. Characterizing early-season nitrogen fertilization rate effects on growth, yield, and quality of strawberry. Agronomy 2021, 11, 905. [Google Scholar] [CrossRef]
- Andriolo, J.L.; Erpen, L.; Cardoso, F.L.; Cocco, C.; Casagrande, G.S.; I Jänisch, D. Nitrogen levels in the cultivation of strawberries in soilless culture. Hortic. Bras. 2011, 29, 516–519. [Google Scholar] [CrossRef]
- Anh, H.N.T.; Thuong, K.D.; Trang, V.B. The Effects of Blue and Red Light on the Hill Reaction of isolated Chloroplasts, Photosynthesis and Saponin Accumulation in Fenugreek Leaves (Trigonella foenum-graecum L.). Res. J. Biotechnol. 2023, 18, 74–81. [Google Scholar] [CrossRef]
- Roosta, H.R.; Bikdeloo, M.; Ghorbanpour, M. The growth, nutrient uptake and fruit quality in four strawberry cultivars under different Spectra of LED supplemental light. BMC Plant Biol. 2024, 24, 179. [Google Scholar] [CrossRef]
- Iatrou, M.; Papadopoulos, A. Influence of nitrogen nutrition on yield and growth of an everbearing strawberry cultivar (cv. Evie II). J. Plant Nutr. 2015, 39, 1499–1505. [Google Scholar] [CrossRef]
- Dong, T.; Zhang, P.; Hakeem, A.; Liu, Z.; Su, L.; Ren, Y.; Pei, D.; Xuan, X.; Li, S.; Fang, J. Integrated transcriptome and metabolome analysis reveals the physiological and molecular mechanisms of grape seedlings in response to red, green, blue, and white LED light qualities. Environ. Exp. Bot. 2023, 213, 105441. [Google Scholar] [CrossRef]
- Ren, M.; Liu, S.; Mao, G.; Tang, C.; Gai, P.; Guo, X.; Zheng, H.; Wang, W.; Tang, Q. Simultaneous Application of Red and Blue Light Regulate Carbon and Nitrogen Metabolism, Induces Antioxidant Defense System and Promote Growth in Rice Seedlings under Low Light Stress. Int. J. Mol. Sci. 2023, 24, 10706. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, Q.; Xin, Y.; Mei, Z.; Gao, A.; Liu, W.; Yu, L.; Chen, X.; Chen, Z.; Wang, N. Analyses of the photosynthetic characteristics, chloroplast ultrastructure, and transcriptome of apple (Malus domestica) grown under red and blue lights. BMC Plant Biol. 2021, 21, 483. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Cossani, C.M.; Sadras, V.O.; Yang, Q.; Wang, Z. The Interaction Between Nitrogen Supply and Light Quality Modulates Plant Growth and Resource Allocation. Front. Plant Sci. 2022, 13, 864090. [Google Scholar] [CrossRef] [PubMed]
- Clavijo-Herrera, J.; Van Santen, E.; Gómez, C. Growth, water-use efficiency, stomatal conductance, and nitrogen uptake of two lettuce cultivars grown under different percentages of blue and red light. Horticulturae 2018, 4, 16. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W.; Tong, Y.; Yang, Q. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016, 7, 250. [Google Scholar] [CrossRef] [PubMed]
- Kharshiing, E.; Sinha, S.P. Deficiency in phytochrome A alters photosynthetic activity, leaf starch metabolism and shoot biomass production in tomato. J. Photochem. Photobiol. B Biol. 2016, 165, 157–162. [Google Scholar] [CrossRef]
- Anuar, N.; Ibrahim, N.; Awang, Y. Different combinations of light spectrum of LED and nitrogen affect the growth and yield of lettuce (Lactuca sativa). In Proceedings of the III International Conference on Agricultural and Food Engineering, Budapest, Hungary, 23–25 August 2016; International Society for Horticultural Science: Leuven, Belgium, 2017. [Google Scholar] [CrossRef]
- Liu, W.K.; Zhang, Y.B.; Zha, L.Y. Effect of LED Red and Blue Continuous Lighting before Harvest on Growth and Nutrient Absorption of Hydroponic Lettuce Cultivated under Different Nitrogen Forms and Light Qualities. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc. Spectr. Anal. 2020, 40, 2215–2221. [Google Scholar]
- Fan, L.; Zhang, X.; Li, Q.; Liu, Y.; Wang, H.; Zang, S. Removal of Nitrogen and Phosphorus in Low Polluted Wastewater by Aquatic Plants: Impact of Monochromatic Light Radiation. Water 2024, 16, 2002. [Google Scholar] [CrossRef]
- Soufi, H.R.; Roosta, H.R.; Hamidpour, M. The plant growth, water and electricity consumption, and nutrients uptake are influenced by different light spectra and nutrition of lettuce. Sci. Rep. 2023, 13, 20766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.C.; Yu, X.F.; Ma, Y.F. Effect of nitrogen application and elevated CO2 on photosynthetic gas exchange and electron transport in wheat leaves. Photosynthetica 2013, 51, 593–602. [Google Scholar] [CrossRef]
- Koning, L.A.; Veste, M.; Freese, D.; Lebzien, S. Effects of nitrogen and phosphate fertilization on leaf nutrient content, photosynthesis, and growth of the novel bioenergy crop Fallopia sachalinensis cv. ‘Igniscum Candy’. J. Appl. Bot. Food Qual. 2015, 88, 22–28. [Google Scholar] [CrossRef]
- Liao, Z.; Zeng, H.; Fan, J.; Lai, Z.; Zhang, C.; Zhang, F.; Wang, H.; Cheng, M.; Guo, J.; Li, Z.; et al. Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching. Agric. Water Manag. 2022, 268, 107688. [Google Scholar] [CrossRef]
- García-López, J.V.; Redondo-Gómez, S.; Flores-Duarte, N.J.; Zunzunegui, M.; Rodríguez-Llorente, I.D.; Pajuelo, E.; Mateos-Naranjo, E. Exploring through the use of physiological and isotopic techniques the potential of a PGPR-based biofertilizer to improve nitrogen fertilization practices efficiency in strawberry cultivation. Front. Plant Sci. 2023, 14, 1243509. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Lian, H.-F.; Liu, S.-Q.; Sun, Y.-L.; Yu, X.-H.; Guo, H.-P. Effects of different LED light qualities on photosynthetic characteristics, fruit production and quality of strawberry. Chin. J. Appl. Ecol. 2015, 26, 1743–1750. [Google Scholar]
- Kadowaki, M.; Yano, A.; Ishizu, F.; Tanaka, T.; Noda, S. Effects of Greenhouse Photovoltaic Array Shading on Welsh Onion Growth. Biosyst. Eng. 2012, 111, 290–297. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Xue, J.; Ren, X.; Zhai, Y.; Zhang, X. The red/blue light ratios from light-emitting diodes affect growth and flower quality of Hippeastrum hybridum ‘Red Lion’. Front. Plant Sci. 2022, 13, 1048770. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; He, Y.Y.; Wei, X.T.; Li, Y.Q.; Yang, L.; Chen, W.R.; Liao, F.; Guo, W. Effects of LED supplemental light on the growth and development of blueberry in greenhouse. Acta Hortic. Sin. 2020, 47, 1183–1193. [Google Scholar] [CrossRef]
- Runkle, E.; Meng, Q.; Park, Y. LED applications in greenhouse and indoor production of horticultural crops. In Proceedings of the XXX International Horticultural Congress IHC2018: International Symposium on Ornamental Horticulture and XI International, Istanbul, Turkey, 12–16 August 2019; International Society for Horticultural Science: Leuven, Belgium. [Google Scholar] [CrossRef]
- Park, Y.G.; Jeong, B.R. Night interruption light quality changes morphogenesis, flowering, and gene expression in Dendranthema grandiflorum. Hortic. Environ. Biotechnol. 2019, 60, 167–173. [Google Scholar] [CrossRef]
- Song, Y.H.; Kubota, A.; Kwon, M.S.; Covington, M.F.; Lee, N.; Taagen, E.R.; Cintrón, D.L.; Hwang, D.Y.; Akiyama, R.; Hodge, S.K.; et al. Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat. Plants 2018, 4, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Guo, Z.; Jiang, X.; Ahammed, G.J.; Zhou, Y. Light regulation of horticultural crop nutrient uptake and utilization. Hortic. Plant J. 2021, 7, 367–379. [Google Scholar] [CrossRef]
- Trivellini, A.; Toscano, S.; Romano, D.; Ferrante, A. The Role of Blue and Red Light in the Orchestration of Secondary Metabolites, Nutrient Transport and Plant Quality. Plants 2023, 12, 2026. [Google Scholar] [CrossRef] [PubMed]
- Sakuraba, Y.; Yanagisawa, S. Light signalling-induced regulation of nutrient acquisition and utilisation in plants. Semin. Cell Dev. Biol. 2018, 83, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Burow, M. Nitrogen—Essential macronutrient and signal controlling flowering time. Physiol. Plant. 2017, 162, 251–260. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Ma, X.; Du, G. Response of plant first flowering and biomass allocation to nitrogen addition in an alpine meadow. Pratacultural Sci. 2023, 40, 916–924. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Li, K.; Yan, M.; Zhang, J.; Yu, M.; Tang, S.; Wang, L.; Qu, H.; Luo, L.; et al. Nitrogen Mediates Flowering Time and Nitrogen Use Efficiency via Floral Regulators in Rice. Curr. Biol. 2020, 31, 671–683.e5. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Z.; Du, G. Response of dominant and common species flowering phenology to nitrogen addition in an alpine meadow. Pratacultural Sci. 2021, 38, 1240–1249. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Tsay, Y.-F. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. J. Exp. Bot. 2017, 68, 2603–2609. [Google Scholar] [CrossRef] [PubMed]
- Chawla, R.; Sharma, S.K. Nitrogen fertilization of stone fruits: A comprehensive review. J. Plant Nutr. 2024, 17, 1–41. [Google Scholar] [CrossRef]
- Locascio, S.J.; Wiltbank, W.J.; Gull, D.D.; Maynard, D.N. Fruit and vegetable quality as affected by nitrogen nutrition. In Nitrogen in Crop Production; Wiley Online Library: Hoboken, NJ, USA, 2015; pp. 617–626. [Google Scholar] [CrossRef]
- Chen, Q.; Ding, N.; Peng, L.; Ge, S.F.; Jiang, Y.M. Effects of different nitrogen application rates on 15N-urea absorption, utilization, loss and fruit yield and quality of dwarf apple. Chin. J. Appl. Ecol. 2017, 28, 2247–2253. [Google Scholar] [CrossRef]
- Bashir, S.S.; Siddiqi, T.O.; Kumar, D.; Ahmad, A. Physio-biochemical, agronomical, and gene expression analysis reveals different responsive approach to low nitrogen in contrasting rice cultivars for nitrogen use efficiency. Mol. Biol. Rep. 2022, 50, 1575–1593. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Cai, B.; Zhang, X.; Zhang, B.; Feng, J.; Zhou, D.; Chen, Y.; Zhang, M.; Qi, D.; Wang, W.; et al. Physiological and Transcriptional Characteristics of Banana Seedlings in Response to Nitrogen Deficiency Stress. Horticulturae 2024, 10, 290. [Google Scholar] [CrossRef]
- Cao, X.; Li, W.; Wang, P.; Ma, Z.; Mao, J.; Chen, B. New Insights into MdSPS4-Mediated Sucrose Accumulation under Different Nitrogen Levels Revealed by Physiological and Transcriptomic Analysis. Int. J. Mol. Sci. 2022, 23, 16073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, J.; Zhou, X.; Zhao, J.; Liu, X.; Jiang, Q.; Ren, F. Transcriptome and Metabolome Studies on Pre-Harvest Nitrogen Impact on Fruit Yield and Quality of Peach (Prunus persica L.). Metabolites 2022, 12, 905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, J.; Ren, F.; Jiang, Q.; Zhou, X.; Zhao, J.; Liu, X. Integrated Physiological, Transcriptomic, and Metabolomic Analyses of the Response of Peach to Nitrogen Levels during Different Growth Stages. Int. J. Mol. Sci. 2022, 23, 10876. [Google Scholar] [CrossRef] [PubMed]
- Maevskaya, S.N.; Bukhov, N.G. Effect of light quality on nitrogen metabolism of radish plants. Russ. J. Plant Physiol. 2005, 52, 304–310. [Google Scholar] [CrossRef]
- Son, K.-H.; Oh, M.-M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 2013, 48, 988–995. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Xin, G.; Wei, M.; Yang, Q.; Mi, Q. Effects of Red and Blue Light Quality on Nitrogen Levels, Activities and Gene Expression of Key Enzymes Involved in Nitrogen Metabolism from Leaves of Tomato Seedlings. Acta Hortic. Sin. 2017, 44, 768–777. [Google Scholar] [CrossRef]
- Li, J.; Wu, T.; Huang, K.; Liu, Y.; Liu, M.; Wang, J. Effect of LED Spectrum on the Quality and Nitrogen Metabolism of Lettuce Under Recycled Hydroponics. Front. Plant Sci. 2021, 12, 678197. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.; Seckin, S.D. Effects of different LED light and nitrogen application on growth of lettuce plants and leaf nitrate content. J. Plant Nutr. 2022, 45, 2523–2533. [Google Scholar] [CrossRef]
- Naznin, M.; Lefsrud, M.; Gravel, V.; Hao, X. Using different ratios of red and blue LEDs to improve the growth of strawberry plants. Acta Hortic. 2016, 1134, 125–130. [Google Scholar] [CrossRef]
- Guiamba, H.D.S.S.; Zhang, X.; Sierka, E.; Lin, K.; Ali, M.M.; Ali, W.M.; Lamlom, S.F.; Kalaji, H.M.; Telesiński, A.; Yousef, A.F.; et al. Enhancement of photosynthesis efficiency and yield of strawberry (Fragaria ananassa Duch.) plants via LED systems. Front. Plant Sci. 2022, 13, 918038. [Google Scholar] [CrossRef] [PubMed]
- Goto, N.; Honma, Y.; Yusa, M.; Sugeno, W.; Iwasaki, Y.; Suzuki, H.; Yoneda, T.; Hikosaka, S.; Isigami, Y.; Goto, E. Effects of using LED supplementary lighting to improve photosynthesis on growth and yield of strawberry forcing culture. Acta Hortic. 2018, 1227, 563–569. [Google Scholar] [CrossRef]
- Malekzadeh Shamsabad, M.R.; Esmaeilizadeh, M.; Roosta, H.R.; Dąbrowski, P.; Telesiński, A.; Kalaji, H.M. Supplemental light application can improve the growth and development of strawberry plants under salinity and alkalinity stress conditions. Sci. Rep. 2022, 12, 9272. Available online: https://www.nature.com/articles/s41598-022-12925-8.pdf (accessed on 6 September 2023). [CrossRef] [PubMed]
- Association of Official Analytical Chemists (AOAC), Official Methods of Analysis. Method 968.06: Combustion (Dumas) Nitrogen Determination Method, 15th ed.; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Mizukoshi, K.; Nishiwaki, T.; Ohtake, N.; Minagawa, R.; Kobayashi, K.; Ikarashi, T.; Ohyama, T. Determination of Tungstate Concentration in Plant Materials by HNO3-HC1O4 Digestion and Colorimetric Method Using Thiocyanate; Bulletin of the Faculty of Agriculture-Niigata University (Japan): Niigata, Japan, 1994. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
Factors | Number of Leaves | Height (cm) | Crowns per Plant | Fresh Weight (g) | Dry Weight (g) |
---|---|---|---|---|---|
LED spectra | |||||
L1 | 17.20 ± 7.41 c | 37.56 ± 4.47 c | 2.50 ± 1.15 b | 129.40 ± 41.67 c | 25.88 ± 1.70 c |
L2 | 22.35 ± 5.20 b | 41.65 ± 3.45 b | 2.70 ± 0.73 b | 241.50 ± 55.61 a | 48.40 ± 4.79 a |
L3 | 29.85 ± 6.61 a | 44.00 ± 2.78 a | 3.55 ± 1.28 a | 206.93 ± 34.76 b | 41.45 ± 1.36 b |
Sig. (p < 0.05) | * | * | * | * | * |
LSD | 0.52 | 1.01 | 0.300 | 3.01 | 1.75 |
N Levels | |||||
100 mg/L (N1) | 22.13 ± 7.36 b | 40.33 ± 4.56 b | 2.87 ± 0.89 | 184.76 ± 51.90 b | 37.05 ± 8.72 b |
200 mg/L (N2) | 24.13 ± 9.05 a | 41.80 ± 4.33 a | 2.97 ± 1.38 | 200.51 ± 75.94 a | 40.11 ± 11.25 a |
Sig. (p < 0.05) | * | * | ns | * | * |
LSD | 0.43 | 0.82 | 0.25 | 2.45 | 1.43 |
LED × N | |||||
L1 × N1 | 18.60 ± 8.60 e | 35.64 ± 4.06 d | 2.70 ± 1.06 bc | 127.56 ± 35.44 d | 25.45 ± 2.37 d |
L1 × N2 | 15.80 ± 6.14 f | 39.47 ± 4.24 c | 2.30 ± 1.25 c | 131.24 ± 51.40 d | 26.28 ± 0.71 d |
L2 × N1 | 20.80 ± 4.26 d | 42.51 ± 2.66 b | 2.50 ± 0.71 bc | 221.36 ± 16.84 b | 44.39 ± 1.42 b |
L2 × N2 | 23.90 ± 5.80 c | 40.78 ± 4.06 c | 2.90 ± 0.74 b | 261.80 ± 75.20 a | 52.40 ± 3.07 a |
L3 × N1 | 27.00 ± 6.34 b | 42.85 ± 2.63 b | 3.40 ± 0.70 a | 205.36 ± 39.94 c | 41.26 ± 1.40 c |
L3 × N2 | 32.70 ± 5.83 a | 45.14 ± 2.55 a | 3.70 ± 1.70 a | 208.50 ± 33.42 c | 41.64 ± 1.47 c |
Sig. (p < 0.05) | * | * | * | * | * |
CV (%) | 3.56 | 8.38 | 16.23 | 1.69 | 4.92 |
LSD | 0.74 | 1.42 | 0.42 | 4.25 | 2.48 |
Factors | SPAD | Pn (µmol m⁻2 s⁻1) | E (mol m⁻2 s⁻1) | Gs (mol m⁻2 s⁻1) | Ci (µmol mol⁻1) |
---|---|---|---|---|---|
LED spectra | |||||
L1 | 46.20 ± 3.13 | 2.61 ± 1.11 b | 1.40 ± 0.27 a | 0.15 ± 0.05 a | 232.89 ± 3.84 c |
L2 | 46.00 ± 3.30 | 3.80 ± 1.62 ab | 1.16 ± 0.22 b | 0.11 ± 0.04 b | 251.74 ± 4.16 a |
L3 | 46.72 ± 3.41 | 4.96 ± 2.11 a | 1.51 ± 0.29 a | 0.12 ± 0.04 b | 242.80 ± 4.00 b |
Sig. (p < 0.05) | ns | * | * | * | * |
LSD | 1.53 | 1.2358 | 0.2003 | 0.0298 | 3.07 |
N Levels | |||||
100 mg/L | 46.34 ± 3.06 | 4.15 ± 1.77 | 1.35 ± 0.26 | 0.12 ± 0.04 | 238.49 ± 3.94 b |
200 mg/L | 46.27 ± 4.35 | 3.42 ± 1.46 | 1.36 ± 0.26 | 0.14 ± 0.04 | 246.46 ± 4.14 a |
Sig. (p < 0.05) | ns | ns | ns | ns | * |
LSD | 1.25 | 1.0090 | 0.1635 | 0.0244 | 2.51 |
LED × N Levels | |||||
L1 × N1 | 46.90 ± 3.52 ab | 2.40 ± 1.02 b | 1.34 ± 0.25 b | 0.15 ± 0.05 | 230.24 ± 3.80 |
L1 × N2 | 45.52 ± 2.70 ab | 2.82 ± 1.21 b | 1.46 ± 0.27 ab | 0.15 ± 0.05 | 235.53 ± 3.87 |
L2 × N1 | 44.93 ± 1.70 b | 3.75 ± 1.61 b | 1.00 ± 0.19 c | 0.08 ± 0.03 | 247.80 ± 4.09 |
L2 × N2 | 47.07 ± 3.60 ab | 3.82 ± 1.63 b | 1.32 ± 0.25 b | 0.13 ± 0.04 | 255.67 ± 4.34 |
L3 × N1 | 47.23 ± 3.42 a | 6.30 ± 2.68 a | 1.69 ± 0.31 a | 0.13 ± 0.04 | 237.43 ± 3.95 |
L3 × N2 | 46.21 ± 1.32 ab | 3.62 ± 1.54 b | 1.31 ± 0.24 b | 0.12 ± 0.04 | 248.17 ± 4.17 |
Sig. (p < 0.05) | * | * | * | ns | ns |
CV (%) | 5.22 | 42.5900 | 19.3200 | 30.3400 | 1.65 |
LSD | 2.17 | 1.7477 | 0.2833 | 0.0422 | 4.34 |
Factors | Days to First Bloom | Inflorescence per Plant | Flowers per Plant | Florets per Inflorescence |
---|---|---|---|---|
LED spectra | ||||
L1 | 39.80 ± 1.88 b | 2.20 ± 0.62 a | 17.35 ± 3.77 a | 8.23 ± 0.62 c |
L2 | 41.45 ± 7.00 a | 1.60 ± 0.50 b | 16.80 ± 0.77 a | 10.95 ± 2.06 a |
L3 | 38.90 ± 2.90 c | 1.55 ± 0.51 b | 13.55 ± 13.55 b | 9.55 ± 1.40 b |
Sig. (p < 0.05) | * | * | * | * |
LSD | 0.78 | 0.31 | 0.56 | 2.19 |
N Levels | ||||
100 mg/L | 37.40 ± 3.08 b | 1.67 ± 0.48 | 15.80 ± 1.67 | 10.58 ± 2.10 a |
200 mg/L | 42.70 ±4.24 a | 1.90 ± 0.71 | 16.00 ± 4.39 | 8.59 ± 0.71 b |
Sig. (p < 0.05) | * | ns | ns | * |
LSD | 0.64 | 0.26 | 0.46 | 0.36 |
LED × N | ||||
L1 × N1 | 41.10 ± 1.45 b | 1.80 ± 0.42 b | 13.80 ± 0.79 c | 8.20 ± 0.63 d |
L1 × N2 | 38.50 ± 1.27 c | 2.60 ± 0.52 a | 20.90 ± 1.20 a | 8.31 ± 0.64 d |
L2 × N1 | 34.70 ± 0.95 e | 1.50 ± 0.53 b | 17.10 ± 0.74 b | 12.85 ± 0.58 a |
L2 × N2 | 48.20 ± 0.79 a | 1.70 ± 0.48 b | 16.50 ± 0.71 b | 9.05 ± 0.76 c |
L3 × N1 | 36.40 ± 1.78 d | 1.70 ± 0.48 b | 16.50 ± 0.97 b | 10.70 ± 0.95 b |
L3 × N2 | 41.10 ± 0.84 b | 1.40 ± 0.53 b | 10.60 ± 0.84 d | 8.40 ± 0.52 d |
Sig. (p < 0.05) | * | * | * | * |
CV (%) | 3.07 | 27.62 | 5.60 | 7.24 |
LSD | 1.10 | 0.44 | 0.80 | 0.62 |
Factors | Fruits per Plant | Weight (g) | Yield/Plant (g) | Length (mm) | Width (mm) | TSS (°Brix) | Firmness (N) |
---|---|---|---|---|---|---|---|
LED | |||||||
L1 | 8.70 ± 0.48 b | 5.57 ± 0.67 c | 48.46 ± 6.63 b | 25.89 ± 2.45 b | 23.16 ± 1.95 b | 6.93 ± 0.48 c | 4.62 ± 0.22 a |
L2 | 9.40 ± 2.36 a | 7.57 ± 0.73 b | 71.28 ± 20.01 a | 24.86 ± 4.22 b | 25.93 ± 5.23 a | 7.34 ± 0.88 b | 4.07 ± 0.83 c |
L3 | 8.70 ± 3.30 b | 8.52 ± 0.93 a | 76.93 ± 38.00 a | 30.22 ± 1.50 a | 27.07 ± 0.74 a | 8.84 ± 0.69 a | 4.55 ± 0.24 b |
Sig. (p < 0.05) | * | * | * | * | * | * | * |
LSD | 0.43 | 0.58 | 9.26 | 1.17 | 1.36 | 0.31 | 0.06 |
N Levels | |||||||
100 mg/L | 10.80 ± 1.37 a | 7.55 ± 1.67 a | 83.46 ± 27.73 a | 28.85 ± 1.38 a | 27.30 ± 2.28 a | 8.14 ± 0.88 a | 4.68 ± 0.22 a |
200 mg/L | 7.07 ± 1.28 b | 6.89 ± 1.18 b | 47.65 ± 8.80 b | 25.13 ± 4.38 b | 23.47 ± 370 b | 7.30 ± 1.10 b | 4.14 ± 0.67 b |
Sig. (p < 0.05) | * | * | * | * | * | * | * |
LSD | 0.35 | 0.48 | 7.56 | 0.95 | 1.11 | 0.65 | 0.05 |
LED × N | |||||||
L1 × N1 | 9.00 ± 0.00 b | 5.65 ± 0.83 c | 50.87 ± 7.50 c | 28.08 ± 0.39 b | 24.94 ± 0.61 c | 7.11 ± 0.28 c | 4.42 ± 0.10 c |
L1 × N2 | 8.40 ± 0.55 b | 5.50 ± 0.54 c | 46.04 ± 5.33 c | 23.69 ± 1.35 c | 21.37 ± 0.75 d | 6.75 ±c 0.58 cd | 4.83 ± 0.04 ab |
L2 × N1 | 11.60 ± 0.55 a | 7.65 ± 0.61 b | 88.89 ± 9.92 b | 28.15 ± 0.87 a | 29.73 ± 1.63 a | 8.20 ± 0.36 b | 4.87 ± 0.09 a |
L2 × N2 | 7.20 ± 0.45 c | 7.48 ± 0.90 b | 53.67 ± 5.18 c | 21.58 ± 3.58 d | 22.37 ± 4.80 d | 6.58 ± 0.26 d | 3.26 ± 0.11 d |
L3 × N1 | 11.80 ± 0.45 a | 9.35 ± 0.36 a | 110.62 ± 15.85 a | 30.31 ± 1.30 a | 27.23 ± 0.95 b | 9.11 ± 0.27 a | 4.76 ± 0.12 b |
L3 × N2 | 5.60 ± 0.55 d | 7.69 ± 0.32 b | 43.24 ± 11.95 c | 30.14 ± 1.76 a | 26.92 ± 0.45 b | 8.56 ± 0.87 b | 4.34 ± 0.12 c |
Sig. (p < 0.05) | * | * | * | * | * | * | * |
CV (%) | 5.21 | 8.75 | 9.30 | 6.82 | 8.47 | 6.35 | 2.23 |
LSD | 0.61 | 0.82 | 13.10 | 1.65 | 1.93 | 0.44 | 0.09 |
Factors | Total Nitrogen (%) | Total Potassium (%) |
---|---|---|
LED spectra | ||
L1 | 2.79 ± 0.08 a | 2.53 ± 0.22 b |
L2 | 2.72 ± 0.33 b | 2.73 ± 0.20 a |
L3 | 2.53 ± 0.09 c | 2.70 ± 0.14 a |
Sig. (p < 0.05) | * | * |
LSD | 0.05 | 0.15 |
N Levels | ||
100 mg/L | 2.76 ± 0.12 a | 2.76 ± 0.20 a |
200 mg/L | 2.60 ± 0.13 b | 2.54 ± 0.14 b |
Sig. (p < 0.05) | * | * |
LSD | 0.04 | 0.12 |
LED × N | ||
L1 × N1 | 2.83 ± 0.07 a | 2.67 ± 0.23 b |
L1 × N2 | 2.75 ± 0.07 b | 2.40 ± 0.12 c |
L2 × N1 | 2.83 ± 0.06 a | 2.91 ± 0.07 a |
L2 × N2 | 2.60 ± 0.03 c | 2.56 ± 0.08 bc |
L3 × N1 | 2.62 ± 0.03 c | 2.71 ± 0.21 ab |
L3 × N2 | 2.45 ± 0.02 d | 2.68 ± 0.05 b |
Sig. (p < 0.05) | * | ns |
CV (%) | 1.85 | 5.38 |
LSD | 0.07 | 0.21 |
Fertilizer Material | Concentration (g/L) | |
---|---|---|
N1 | N2 | |
NH4NO3 | 21.10 | 49.80 |
KH2PO4 | 44.00 | 44.00 |
KNO3 | 19.10 | 19.10 |
CaCl2 | 20.00 | 20.00 |
MgSO4·7H2O | 120.00 | 120.00 |
H3BO3 | 3.00 | 3.00 |
MnSO4·4H2O | 2.00 | 2.00 |
ZnSO4·7H2O | 0.22 | 0.22 |
CuSO4·5H2O | 0.05 | 0.05 |
NaMoO24·2H2O | 0.01 | 0.01 |
FeEDTA | 1.50 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salisu Jibia, S.; Panjama, K.; Inkham, C.; Sato, T.; Ohtake, N.; Ruamrungsri, S. Interactive Effects of LED Spectrum and Nitrogen Levels on Physiological Changes and Yield of Strawberry (Fragaria × ananassa Duch.). Plants 2025, 14, 89. https://doi.org/10.3390/plants14010089
Salisu Jibia S, Panjama K, Inkham C, Sato T, Ohtake N, Ruamrungsri S. Interactive Effects of LED Spectrum and Nitrogen Levels on Physiological Changes and Yield of Strawberry (Fragaria × ananassa Duch.). Plants. 2025; 14(1):89. https://doi.org/10.3390/plants14010089
Chicago/Turabian StyleSalisu Jibia, Sirajo, Kanokwan Panjama, Chaiartid Inkham, Takashi Sato, Norikuni Ohtake, and Soraya Ruamrungsri. 2025. "Interactive Effects of LED Spectrum and Nitrogen Levels on Physiological Changes and Yield of Strawberry (Fragaria × ananassa Duch.)" Plants 14, no. 1: 89. https://doi.org/10.3390/plants14010089
APA StyleSalisu Jibia, S., Panjama, K., Inkham, C., Sato, T., Ohtake, N., & Ruamrungsri, S. (2025). Interactive Effects of LED Spectrum and Nitrogen Levels on Physiological Changes and Yield of Strawberry (Fragaria × ananassa Duch.). Plants, 14(1), 89. https://doi.org/10.3390/plants14010089