Proposal of Critical Nutrient Levels in Soil and Citrus Leaves Using the Boundary Line Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil, Leaf and Production Analyses
2.3. Establishing Diagnostic Norms
3. Results
3.1. Soil Fertility Attributes
3.2. Critical Levels and Soil Fertility Classes
3.3. Leaf Nutrient Contents
3.4. Critical Levels and Leaf Sufficiency Ranges
4. Discussion
4.1. Relationships Between Soil Fertility and Yield
4.2. Relationships Between Leaf Nutrient Contents and Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT—Food and Agriculture Organization of the United Nations. Crops and Livestock Products 2023. Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 20 January 2025).
- Mattos, D., Jr.; Kadyampakeni, D.M.; Oliver, A.Q.; Boaretto, R.M.; Morgan, K.T.; Quaggio, J.A. Soil and nutrition interactions. In The Genus Citrus, 1st ed.; Talon, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 311–331. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Srivastava, A.K.; Raiesi, T. Citrus nutrition in Iran: Lessons from calcareous soils. J. Plant Nutr. 2024, 47, 3367–3392. [Google Scholar] [CrossRef]
- Krug, A.V.; Papalia, D.G.; Marques, A.L.L.; Hindersmann, J.; Soares, V.M.; Grando, D.L.; Moura-Bueno, J.M.; Trapp, T.; Rozane, D.E.; Natale, W.; et al. Proposition of critical levels of nutrients in citrus leaves, grown in a subtropical climate, for fresh market fruit production. Sci. Hortic. 2023, 317, 112047. [Google Scholar] [CrossRef]
- Stefanello, L.; Schwalbert, R.; Schwalbert, R.; Tassinari, A.; Garlet, L.; De Conti, L.; Ciotta, M.; Ceretta, C.; Ciampitti, I.; Brunetto, G. Phosphorus critical levels in soil and grapevine leaves for South Brazil vineyards: A Bayesian approach. Eur. J. Agron. 2023, 144, 126752. [Google Scholar] [CrossRef]
- Brunetto, G.; Ceretta, C.A.; Kaminski, J.; Melo, G.W.B.; Welter, P.D.; Girotto, E.; Lorenzi, C.R.; Vieira, R.C.B.; De Conti, L.; Tiecher, T.L. Annual urea nitrogen contribution to the nutrition of Cabernet Sauvignon grapevine grown in sandy and clayey soil. Agronomy 2024, 14, 101. [Google Scholar] [CrossRef]
- Labaied, M.B.; Serra, A.P.; Mimoun, M.B. Establishment of nutrients optimal range for nutritional diagnosis of mandarins based on DRIS and CND methods. Commun. Soil Sci. Plant Anal. 2018, 49, 2557–2570. [Google Scholar] [CrossRef]
- Chen, Y.W.; Li, F.F.; Wu, Y.C.; Zhou, T.; Chang, Y.Y.; Lian, X.F.; Yin, T.; Ye, L.; Li, Y.S.; Lu, X.P. Profiles of citrus orchard nutrition and fruit quality in Hunan Province, China. Int. J. Fruit Sci. 2022, 22, 779–793. [Google Scholar] [CrossRef]
- Ahmad, N.; Hussain, S.; Ali, M.A.; Minhas, A.; Waheed, W.; Danish, S.; Fahad, S.; Ghafoor, U.; Baig, K.S.; Sultan, H.; et al. Correlation of soil characteristics and citrus leaf nutrients contents in current scenario of Layyah district. Horticulturae 2022, 8, 61. [Google Scholar] [CrossRef]
- Quaggio, J.A.; Cantarella, H.; Van Raij, B. Phosphorus and potassium soil test and nitrogen leaf analysis as a base for citrus fertilization. Nutr. Cycl. Agroecosyst. 1998, 52, 67–74. [Google Scholar] [CrossRef]
- Tassinari, A.; Stefanello, L.O.; Schwalbert, R.A.; Vitto, B.B.; Kulmann, M.S.S.; Santos, J.P.J.; Arruda, W.S.; Schwalbert, R.; Tiecher, T.L.; Ceretta, C.A.; et al. Nitrogen critical level in leaves in ‘Chardonnay’ and ‘Pinot Noir’ grapevines to adequate yield and quality must. Agronomy 2022, 12, 1132. [Google Scholar] [CrossRef]
- Andrade, C.B.; Comin, J.J.; Moura-Bueno, J.M.; Brunetto, G. Obtaining reference values for nutrients in vineyard soils through boundary line approach using Bayesian segmented quantile regression on commercial farm data. Eur. J. Agron. 2023, 150, 126928. [Google Scholar] [CrossRef]
- Rozane, D.E.; Mattos, D., Jr.; Parent, S.É.; Natale, W.; Parent, L.E. Meta-Analysis in the selection of groups in varieties of citrus. Commun. Soil Sci. Plant Anal. 2015, 46, 1948–1959. [Google Scholar] [CrossRef]
- Yamane, D.R.; Parent, S.-É.; Natale, W.; Cecílio Filho, A.B.; Rozane, D.E.; Nowaki, R.H.D.; Mattos Junior, D.; Parent, L.E. Site-Specific Nutrient Diagnosis of Orange Groves. Horticulturae 2022, 8, 1126. [Google Scholar] [CrossRef]
- Lima Neto, A.J.; Natale, W.; Deus, J.A.L.; Rozane, D.E. Establishment of critical nutrient levels in the soil and leaf of ‘Prata’ banana using the boundary line. Sci. Hortic. 2024, 328, 112923. [Google Scholar] [CrossRef]
- Webb, R. Use of the boundary line in the analysis of biological data. J. Hortic. Sci. 1972, 47, 309–319. [Google Scholar] [CrossRef]
- Walworth, J.L.; Letzsch, W.S.; Sumner, M.E. Use of boundary lines in establishing diagnostic norms. Soil Sci. Soc. Am. J. 1986, 50, 123–128. [Google Scholar] [CrossRef]
- Lima Neto, A.J.; Neves, J.C.L.; Martinez, H.E.P.; Sousa, J.S.; Fernandes, L.V. Establishment of critical nutrient levels in soil and plant for eucalyptus. Rev. Bras. Ciênc. Solo 2020, 44, e0190150. [Google Scholar] [CrossRef]
- Evanylo, G.K.; Sumner, M.E. Utilization of the boundary line approach in the development of soil nutrient norms for soybean production. Commun. Soil Sci. Plant Anal. 1987, 18, 1379–1401. [Google Scholar] [CrossRef]
- Manorama, K.; Behera, S.K.; Suresh, K. Establishing optimal nutrient norms in leaf and soil for oil palm in India. Ind. Crops Prod. 2021, 174, 114223. [Google Scholar] [CrossRef]
- Guimarães, G.G.F.; Deus, J.A.L.; Lima Neto, A.J. Boundary line method to update critical soil phosphorus and potassium levels in banana plantations in Santa Catarina. Rev. Bras. Frutic. 2023, 45, e-979. [Google Scholar] [CrossRef]
- Ali, A.M. Nutrient sufficiency ranges in mango using boundary-line approach and compositional nutrient diagnosis norms in El-Salhiya, Egypt. Commun. Soil Sci.Plant Anal. 2018, 49, 188–201. [Google Scholar] [CrossRef]
- Ali, A.M. Establishment of nutrient sufficiency ranges in olive using boundary-line approach. J. Plant Nutr. 2023, 46, 453–461. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Bohnen, H. Análises de solo, Plantas e Outros Materiais, 2nd ed.; Departamento de solo da UFRGS: Porto Alegre, Brazil, 1995. [Google Scholar]
- Quaggio, J.A.; Mattos, D., Jr.; Boaretto, R.M. Citros. In Boas Práticas Para o uso Eficiente de Fertilizantes; Prochnow, L.I., Casarin, W., Stipp, S.R., Eds.; International Plant Nutrition Institute: Piracicaba, Brazil, 2010; pp. 371–409. [Google Scholar]
- Murphy, J.; Riley, J. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Krug, F.J.; Mortatti, J.; Pessenda, L.; Zagatto, E.A.G.; Bergamin, H. Flow injection spectrophotometric determination of boron in plant material with azomethine-H. Anal. Chim. Acta 1981, 125, 29–35. [Google Scholar] [CrossRef]
- Gaines, T.P.; Mitchell, G.A. Boron determination in plant tissue by the Azomethine H method. Commun. Soil Sci. Plant Anal. 1979, 10, 1099–1108. [Google Scholar] [CrossRef]
- Pimentel-Gomes, F. Curso de Estatística Experimental, 15th ed.; Fealq: Piracicaba, Brazil, 2009. [Google Scholar]
- CQFS-RS/SC—Comissão de Química e Fertilidade do Solo RS e SC. Manual de Calagem e Adubação Para os Estados do Rio Grande do Sul e Santa Catarina, 11th ed.; Sociedade Brasileira de Ciência do Solo, Núcleo Regional Sul: Porto Alegre, Brazil, 2016. [Google Scholar]
- CQFS-RS/SC—Comissão de Química e Fertilidade do Solo RS e SC. Manual de Calagem e Adubação Para os Estados do Rio Grande do Sul e Santa Catarina, 10th ed.; Sociedade Brasileira de Ciência do Solo, Núcleo Regional Sul: Porto Alegre, Brazil, 2004. [Google Scholar]
- Griebeler, S.R.; Gonzatto, M.P.; Scivittaro, W.B.; Oliveira, R.P.; Schwarz, S.F. Diagnóstico nutricional de pomares de laranjeiras da Fronteira Oeste do Rio Grande do Sul. Pesqui. Agropecu. Gaúch. 2020, 26, 114–130. [Google Scholar] [CrossRef]
- Griebeler, S.R.; Gonzatto, M.P.; Schwarz, S.F.; Böettcher, G.N.; Pauletti, G.F.; Rota, L.D. Nutritional diagnosis of ‘Montenegrina’ mandarin orchards at the Southern Brazil. Rev. Ceres 2023, 70, 69–77. [Google Scholar] [CrossRef]
- Fidalski, J.; Auler, P.A.M. Alterações químicas temporais nas faixas de adubação e entrelinhas do pomar, nutrição e produção de laranja após calagem superficial. Rev. Bras. Cienc. Solo 2008, 32, 689–696. [Google Scholar] [CrossRef]
- Auler, P.A.M.; Neves, C.S.V.J.; Fidalski, J.; Pavan, M.A. Calagem e desenvolvimento radicular, nutrição e produção de laranja “Valência” sobre porta-enxertos e sistemas de preparo do solo. Pesqui. Agropecu. Bras. 2011, 46, 254–261. [Google Scholar] [CrossRef]
- Smith, J.F.N.; Hardie, A.G. Determination of foliar nutrient sufficiency ranges in cultivated rooibos tea using the boundary-line approach. S. Afr. J. Plant Soil 2022, 39, 226–233. [Google Scholar] [CrossRef]
- Wang, Y.; Long, Q.; Li, Y.; Kang, F.; Fan, Z.; Xiong, H.; Zhao, H.; Luo, Y.; Guo, R.; He, X.; et al. Mitigating magnesium deficiency for sustainable citrus production: A case study in Southwest China. Sci. Hortic. 2022, 295, 1083215. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, W.; Muneer, M.A.; Ji, Z.; Tong, L.; Zhang, X.; Li, X.; Wang, W.; Zhang, F.; Wu, L. Integrated use of lime with Mg fertilizer significantly improves the pomelo yield, quality, economic returns and soil physicochemical properties under acidic soil of southern China. Sci. Hortic. 2021, 290, 110502. [Google Scholar] [CrossRef]
- Wu, L.; Qin, M.; Muneer, M.A.; Bao, J.; Chen, X.; Yang, Y.; Huang, J.; Zhang, S.; Su, D.; Yan, X. Soil pH and organic matter: Key edaphic factors in sustaining optimum yield and quality of pomelo fruit. Sci. Hortic. 2024, 337, 113524. [Google Scholar] [CrossRef]
- Stefanello, L.O.; Schwalbert, R.; Schwalbert, R.A.; De Conti, L.; Kulmann, M.S.; Garlet, L.P.; Silveira, M.L.R.; Sautter, C.K.; Melo, G.W.B.; Rozane, D.E.; et al. Nitrogen supply method affects growth, yield and must composition of young grape vines (Vitis vinifera L. cv Alicante Bouschet) in southern Brazil. Sci. Hortic. 2020, 261, 108910. [Google Scholar] [CrossRef]
- Stefanello, L.O.; Schwalbert, R.; Schwalbert, R.A.; Drescher, G.L.; De Conti, L.; Pott, L.P.; Tassinari, A.; Kulmann, M.S.D.S.; Silva, I.C.B.; Brunetto, G. Ideal nitrogen concentration in leaves for the production of high-quality grapes cv ‘Alicante Bouschet’ (Vitis vinifera L.) subjected to modes of application and nitrogen doses. Eur. J. Agron. 2021, 123, 126200. [Google Scholar] [CrossRef]
- Grando, D.L.; Gatiboni, L.C.; Mumbach, G.L.; Dall’orsoletta, D.J.; Souza Junior, A.A.; Schmitt, D.E. Phosphorus in the runoff of soils with contrasting textures influenced by soil slope and pig slurry application. Agric. Water Manag. 2021, 258, 107178. [Google Scholar] [CrossRef]
- Lourenzi, C.R.; Ceretta, C.A.; Ciancio, N.H.R.; Tiecher, T.L.; Silva, L.O.S.; De Conti, L.; Girotto, E.; Ferreira, P.A.A.; Vidal, R.F.; Scopel, G.; et al. Forms of nitrogen and phosphorus transfer by runoff in soil under no-tillage with successive organic waste and mineral fertilizers applications. Agric. Water Manag. 2021, 248, 106779. [Google Scholar] [CrossRef]
- Silva, M.A.C.; Natale, W.; Prado, R.M.; Corrêa, M.C.M.; Stuchi, E.S.; Andrioli, I. Aplicação superficial de calcário em pomar de laranjeira ‘Pêra’ em produção. Rev. Bras. Frutic. 2007, 29, 606–612. [Google Scholar] [CrossRef]
- De Conti, L.; Ceretta, C.A.; Ferreira, P.A.A.; Lorensini, F.; Lourenzi, C.R.; Vidal, R.F.; Tassinari, A.; Brunetto, G. Effects of pig slurry application and crops on phosphorus content in soil and the chemical species in solution. Rev. Bras. Cienc. Solo 2015, 39, 774–787. [Google Scholar] [CrossRef]
Soil Fertility Attributes | Minimum | Maximum | Mean | SD | CV (%) |
---|---|---|---|---|---|
pH in H2O | 4.1 | 7.1 | 5.5 | 0.7 | 12.6 |
OM (%) | 0.7 | 2.0 | 1.2 | 0.3 | 21.6 |
P (mg dm−3) | 1.2 | 266.6 | 78.2 | 61.1 | 78.1 |
K (mg dm−3) | 16.0 | 590.0 | 156.6 | 142.1 | 90.7 |
Ca (cmolc dm−3) | 0.2 | 4.2 | 1.7 | 0.8 | 47.8 |
Mg (cmolc dm−3) | 0.1 | 0.9 | 0.4 | 0.2 | 39.2 |
SB (cmolc dm−3) | 0.5 | 5.2 | 2.6 | 0.9 | 35.3 |
CEC (cmolc dm−3) | 1.7 | 9.2 | 5.1 | 1.6 | 31.1 |
V (%) | 18.8 | 84.2 | 56.5 | 16.0 | 28.3 |
Relative Fruit Yield (RFY) | pH (H2O) | OM | P | K | Ca | Fertility Classes |
---|---|---|---|---|---|---|
% | % | - - - - - mg dm−3 - - - - - | cmolc dm−3 | |||
RFY < 70 | <4.7 | <0.7 | <19.6 | <40.5 | <0.5 | Low |
70 ≤ RFY < 90 | 4.7–5.1 | 0.7–1.0 | 19.6–65.8 | 40.5–161.4 | 0.5–0.9 | Medium |
90 ≤ RFY ≤ 100 | 5.1–5.6 | 1.0–1.4 | 65.8–129.0 | 161.4–326.0 | 0.9–1.4 | Adequate 1 |
RFY > 100 | >5.6 | >1.4 | >129.0 | >326.0 | >1.4 | High |
Relative fruit yield (RFY) | Mg | SB | CEC | V | Fertility Classes | |
% | - - - - - - - - - - - - - cmolc dm−3 - - - - - - - - - - - - | - - - % - - - | ||||
RFY < 70 | <0.13 | <1.1 | <3.5 | <31.3 | Low | |
70 ≤ RFY < 90 | 0.13–0.22 | 1.1–1.9 | 3.5–4.5 | 31.3–40.6 | Medium | |
90 ≤ RFY ≤ 100 | 0.22–0.34 | 1.9–2.9 | 4.5–5.8 | 40.6–53.2 | Adequate 1 | |
RFY > 100 | >0.34 | >2.9 | >5.8 | >53.2 | High |
Nutrients | Minimum | Maximum | Mean | SD | CV (%) |
---|---|---|---|---|---|
Fruit yield (kg plant−1) | 6.0 | 244.8 | 85.9 | 47.6 | 55.4 |
N (g kg−1) | 14.9 | 32.2 | 22.9 | 3.1 | 13.3 |
P (g kg−1) | 0.5 | 2.5 | 1.3 | 0.5 | 34.4 |
K (g kg−1) | 4.2 | 19.6 | 9.9 | 3.2 | 32.0 |
Ca (g kg−1) | 13.0 | 43.9 | 28.3 | 5.6 | 19.8 |
Mg (g kg−1) | 0.8 | 6.5 | 3.3 | 1.3 | 38.3 |
S (g kg−1) | 0.7 | 5.8 | 3.2 | 1.1 | 35.0 |
B (mg kg−1) | 13.4 | 224.1 | 115.8 | 48.1 | 41.5 |
Cu (mg kg−1) | 6.8 | 177.7 | 58.3 | 39.4 | 67.7 |
Fe (mg kg−1) | 36.7 | 243.7 | 98.4 | 44.6 | 45.4 |
Mn (mg kg−1) | 7.1 | 153.6 | 63.0 | 31.8 | 50.4 |
Zn (mg kg−1) | 6.6 | 39.7 | 17.7 | 7.6 | 42.9 |
Relative Fruit Yield (RFY) | N | P | K | Ca | Mg | S | Sufficiency Ranges | |
---|---|---|---|---|---|---|---|---|
% | - - - - - - - - - - - - - - - - - - - - - - - - - g kg−1 - - - - - - - - - - - - - - - - - - - - - - - - - | |||||||
RFY < 70 | <16.5 | <0.5 | <5.2 | <15.5 | <1.1 | <1.2 | Low | |
70 ≤ RFY < 90 | 16.5–19.1 | 0.5–0.8 | 5.2–7.8 | 15.5–20.9 | 1.1–2.0 | 1.2–2.0 | Medium | |
90 ≤ RFY ≤ 100 | 19.1–22.7 | 0.8–1.3 | 7.8–11.3 | 20.9–28.4 | 2.0–3.3 | 2.0–3.0 | Adequate 1 | |
RFY > 100 | >22.7 | >1.3 | >11.3 | >28.4 | >3.3 | >3.0 | High | |
Relative fruit yield (RFY) | B | Cu | Fe | Mn | Zn | Sufficiency ranges | ||
% | - - - - - - - - - - - - - - - - - - - - - - - - - - mg kg−1 - - - - - - - - - - - - - - - - - - - - - - - - - | |||||||
RFY < 70 | <48.3 | - | <39.1 | <31.1 | <7.8 | Low | ||
70 ≤ RFY < 90 | 48.3–88.8 | - | 39.1–74.3 | 31.1–55.7 | 7.8–10.9 | Medium | ||
90 ≤ RFY ≤ 100 | 88.8–127.5 | 28.3–73.6 | 74.3–122.5 | 55.7–89.3 | 10.9–15.6 | Adequate 1 | ||
RFY > 100 | >127.5 | >73.6 | >122.5 | >89.3 | >15.6 | High |
Reference | N | P | K | Ca | Mg | S |
---|---|---|---|---|---|---|
- - - - - - - - - - - - - - - - - - - - - - - - - - g kg−1 - - - - - - - - - - - - - - - - - - - - - - - - - - | ||||||
BL-Citrus | 19.1–22.7 | 0.8–1.3 | 7.8–11.3 | 20.9–28.4 | 2.0–3.3 | 2.0–3.0 |
[4] | 21–26 | 0.9–1.5 | 7–11 | 25–33 | 1.9–3.7 | 2.3–3.8 |
[31] | 23–27 | 1.2–1.6 | 10–15 | 35–45 | 3.0–4.0 | - |
[2] | 25–30 | 1.2–1.6 | 12–16 | 35–50 | 3.5–5.0 | 2.0–3.0 |
Reference | B | Cu | Fe | Mn | Zn | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - mg kg−1 - - - - - - - - - - - - - - - - - - - - - - - | ||||||
BL-Citrus | 88.8–127.5 | 28.3–73.6 | 74.3–122.5 | 55.7–89.3 | 10.9–15.6 | |
[4] | 85–149 | 7–83 | 50–145 | 38–94 | 8–29 | |
[31] | 50–100 | 4.1–10 | 50–120 | 35–50 | 35–50 | |
[2] | 75–150 | 10–20 | 50–150 | 35–70 | 50–75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima Neto, A.J.d.; Krug, A.V.; Moura-Bueno, J.M.; Rozane, D.E.; Natale, W.; Hindersmann, J.; Marques, A.L.L.; Stefanello, L.O.; Papalia, D.G.; Brunetto, G. Proposal of Critical Nutrient Levels in Soil and Citrus Leaves Using the Boundary Line Method. Plants 2025, 14, 1764. https://doi.org/10.3390/plants14121764
Lima Neto AJd, Krug AV, Moura-Bueno JM, Rozane DE, Natale W, Hindersmann J, Marques ALL, Stefanello LO, Papalia DG, Brunetto G. Proposal of Critical Nutrient Levels in Soil and Citrus Leaves Using the Boundary Line Method. Plants. 2025; 14(12):1764. https://doi.org/10.3390/plants14121764
Chicago/Turabian StyleLima Neto, Antonio João de, Amanda Veridiana Krug, Jean Michel Moura-Bueno, Danilo Eduardo Rozane, William Natale, Jacson Hindersmann, Ana Luiza Lima Marques, Lincon Oliveira Stefanello, Daniéle Gonçalves Papalia, and Gustavo Brunetto. 2025. "Proposal of Critical Nutrient Levels in Soil and Citrus Leaves Using the Boundary Line Method" Plants 14, no. 12: 1764. https://doi.org/10.3390/plants14121764
APA StyleLima Neto, A. J. d., Krug, A. V., Moura-Bueno, J. M., Rozane, D. E., Natale, W., Hindersmann, J., Marques, A. L. L., Stefanello, L. O., Papalia, D. G., & Brunetto, G. (2025). Proposal of Critical Nutrient Levels in Soil and Citrus Leaves Using the Boundary Line Method. Plants, 14(12), 1764. https://doi.org/10.3390/plants14121764