Synthesis of Epoxyoxirenes: Phytotoxic Activity and Enzymatic Target Identification
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Biological Assays
2.2.1. Bidens pilosa
2.2.2. Lactuca sativa
2.2.3. Allium cepa
2.2.4. Cucumis sativus
2.2.5. Triticum aestivum
2.3. Molecular Docking
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Synthetic Procedures
3.2.1. Procedure for the Preparation of 1
3.2.2. Synthesis of Amides 2–7
3.2.3. Synthesis of Imides 8–13
3.2.4. Synthesis of Epoxides 14–17, and 19
3.2.5. Synthesis of Epoxy 18
3.3. Experimental Procedure for the Bioassay
3.4. Procedure for Molecular Docking
3.4.1. Pharmacophoric Search
3.4.2. Docking
3.4.3. Statistical Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horvath, D.P.; Clay, S.A.; Swanton, C.J.; Anderson, J.V.; Chao, W.S. Weed-Induced Crop Yield Loss: A New Paradigm and New Challenges. Trends Plant Sci. 2023, 28, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Colbach, N.; Adeux, G.; Cordeau, S.; Moreau, D. Weed-Induced Yield Loss through Resource Competition Cannot Be Sidelined. Trends Plant Sci. 2023, 28, 1329–1330. [Google Scholar] [CrossRef]
- Gharde, Y.; Singh, P.K.; Dubey, R.P.; Gupta, P.K. Assessment of Yield and Economic Losses in Agriculture Due to Weeds in India. Crop Prot. 2018, 107, 12–18. [Google Scholar] [CrossRef]
- Kubiak, A.; Wolna-Maruwka, A.; Niewiadomska, A.; Pilarska, A.A. The Problem of Weed Infestation of Agricultural Plantations vs. the Assumptions of the European Biodiversity Strategy. Agronomy 2022, 12, 1808. [Google Scholar] [CrossRef]
- Das, T.K.; Behera, B.; Nath, C.P.; Ghosh, S.; Sen, S.; Raj, R.; Ghosh, S.; Sharma, A.R.; Yaduraju, N.T.; Nalia, A.; et al. Herbicides Use in Crop Production: An Analysis of Cost-Benefit, Non-Target Toxicities and Environmental Risks. Crop Prot. 2024, 181, 106691. [Google Scholar] [CrossRef]
- Gwatidzo, V.O.; Chipomho, J.; Parwada, C. Understanding Mechanisms of Herbicide Selectivity in Agro-Ecosystems: A Review. Adv. Chem. Res. 2023, 2, 79–88. [Google Scholar] [CrossRef]
- Peterson, M.A.; Collavo, A.; Ovejero, R.; Shivrain, V.; Walsh, M.J. The Challenge of Herbicide Resistance around the World: A Current Summary. Pest Manag. Sci. 2018, 74, 2246–2259. [Google Scholar] [CrossRef]
- Lan, Y.; Sun, Y.; Liu, Z.; Wei, S.; Huang, H.; Cao, Y.; Li, W.; Huang, Z. Mechanism of Resistance to Pyroxsulam in Multiple-Resistant Alopecurus Myosuroides from China. Plants 2022, 11, 1645. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: http://www.weedscience.org/ (accessed on 15 May 2025).
- Heap, I. Global Perspective of Herbicide-Resistant Weeds. Pest Manag. Sci. 2014, 70, 1306–1315. [Google Scholar] [CrossRef]
- Alvarenga, E.S.; Macías, F.A.; Ferreira, S.S.; Galindo, J.C.G.; Molinillo, J.M.G. Exploring Sesquiterpene Lactones from Saussurea lappa: Isolation, Structural Modifications, and Herbicide Bioassay Evaluation. Plants 2025, 14, 1111. [Google Scholar] [CrossRef]
- Mantilla Afanador, J.G.; Araujo, S.H.C.; Teixeira, M.G.; Lopes, D.T.; Cerceau, C.I.; Andreazza, F.; Oliveira, D.C.; Bernardi, D.; Moura, W.S.; Aguiar, R.W.S.; et al. Novel Lactone-Based Insecticides and Drosophila suzukii Management: Synthesis, Potential Action Mechanisms and Selectivity for Non-Target Parasitoids. Insects 2023, 14, 697. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.S.; Araujo, A.F.; Baia, V.C.; Demuner, A.J.; Alvarenga, E.S. Asymmetric Synthesis of a Chiral Cyclic Imide: Structure Elucidation via Spectrometric Methods and DFT Calculations, and Biological Assay. J. Mol. Struct. 2025, 1327, 141179. [Google Scholar] [CrossRef]
- Torrent, K.B.A.; Alvarenga, E.S. Synthesis and Identification of Epoxy Derivatives of 5-Methylhexahydroisoindole-1,3-Dione and Biological Evaluation. Molecules 2021, 26, 1923. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.F.; Alvarenga, E.S.; Baia, V.C.; Oliveira, D.F. N-Phenylnorbornenesuccinimide Derivatives, Agricultural Defensive, and Enzymatic Target Selection. Pest Manag. Sci. 2024, 80, 3278–3292. [Google Scholar] [CrossRef] [PubMed]
- Ramos, D.; Alvarenga, E.; Silva, J.; Cerceau, C.; Sartori, S.; Carneiro, V.; Oliveira, D. Study of the Interference in Target Seed Germination Caused by Dienamides and Epoxy Derivatives, in the Search for New Herbicides. J. Braz. Chem. Soc. 2024, 35, e20230113. [Google Scholar] [CrossRef]
- Alvarenga, E.S.; Carneiro, V.M.T.; Silva, S.A.; Siqueira, R.P.; Bressan, G.C. Synthesis of Novel Amides, Characterization by Spectrometric Methods, Cytotoxic Activity and Theoretical Calculations. J. Mol. Struct. 2019, 1191, 6–16. [Google Scholar] [CrossRef]
- De Alvarenga, E.S.; Carneiro, V.M.T.; Resende, G.C.; Picanço, M.C.; Farias, E.D.S.; Lopes, M.C. Synthesis and Insecticidal Activity of an Oxabicyclolactone and Novel Pyrethroids. Molecules 2012, 17, 13989–14001. [Google Scholar] [CrossRef]
- Kouame, K.B.-J.; Savin, M.C.; Willett, C.D.; Bertucci, M.B.; Butts, T.R.; Grantz, E.; Roma-Burgos, N. S-Metolachlor Persistence in Soil as Influenced by within-Season and Inter-Annual Herbicide Use. Environ. Adv. 2022, 9, 100318. [Google Scholar] [CrossRef]
- Carvalho-Moore, P.; Norsworthy, J.K.; González-Torralva, F.; Hwang, J.-I.; Patel, J.D.; Barber, L.T.; Butts, T.R.; McElroy, J.S. Unraveling the Mechanism of Resistance in a Glufosinate-Resistant Palmer Amaranth (Amaranthus palmeri) Accession. Weed Sci. 2022, 70, 370–379. [Google Scholar] [CrossRef]
- Walsh, K.D.; Soltani, N.; Shropshire, C.; Sikkema, P.H. Weed Control in Soybean with Imazethapyr Applied Alone or in Tank Mix with Saflufenacil/Dimethenamid-P. Weed Sci. 2015, 63, 329–335. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Houk, K.N.; Liu, F.; Yang, Z.; Seeman, J.I. Evolution of the Diels–Alder Reaction Mechanism since the 1930s: Woodward, Houk with Woodward, and the Influence of Computational Chemistry on Understanding Cycloadditions. Angew. Chem. Int. Ed. 2021, 60, 12660–12681. [Google Scholar] [CrossRef]
- Gregoritza, M.; Brandl, F.P. The Diels–Alder Reaction: A Powerful Tool for the Design of Drug Delivery Systems and Biomaterials. Eur. J. Pharm. Biopharm. 2015, 97, 438–453. [Google Scholar] [CrossRef]
- Chen, G.; Gao, J.; Huang, W.; Li, Z.; Zhao, Y. Synthesis and Bioactivity Evaluation of 5,6-Epoxynorcantharidin Mono-Amide and Imide Derivatives. Monatshefte Chem.-Chem. Mon. 2022, 153, 359–367. [Google Scholar] [CrossRef]
- Salvati, M.E.; Balog, A.; Shan, W.; Wei, D.D.; Pickering, D.; Attar, R.M.; Geng, J.; Rizzo, C.A.; Gottardis, M.M.; Weinmann, R.; et al. Structure Based Approach to the Design of Bicyclic-1H-Isoindole-1,3(2H)- Dione Based Androgen Receptor Antagonists. Bioorg. Med. Chem. Lett. 2005, 15, 271–276. [Google Scholar] [CrossRef]
- Worldwide Protein Data Bank (wwPDB). Full wwPDB X-Ray Structure Validation Report for PDB ID 2DPZ; wwPDB: 2023; pp. 1–12. Available online: https://www.rcsb.org/structure/2DPZ (accessed on 10 February 2025).
- Sun, C.; Robl, J.A.; Wang, T.C.; Huang, Y.; Kuhns, J.E.; Lupisella, J.A.; Beehler, B.C.; Golla, R.; Sleph, P.G.; Seethala, R.; et al. Discovery of Potent, Orally-Active, and Muscle-Selective Androgen Receptor Modulators Based on an N-Aryl-Hydroxybicyclohydantoin Scaffold. J. Med. Chem. 2006, 49, 7596–7599. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, J.; Kuhns, J.E.; Lupisella, J.A.; Manfredi, M.C.; Beehler, B.C.; Krystek, S.R.; Bi, Y.; Sun, C.; Seethala, R.; Golla, R.; et al. Pharmacological and X-Ray Structural Characterization of a Novel Selective Androgen Receptor Modulator: Potent Hyperanabolic Stimulation of Skeletal Muscle with Hypostimulation of Prostate in Rats. Endocrinology 2007, 148, 4–12. [Google Scholar] [CrossRef]
- Crichlow, G.V.; Lubetsky, J.B.; Leng, L.; Bucala, R.; Lolis, E.J. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions. Biochemistry 2009, 48, 132–139. [Google Scholar] [CrossRef]
- DeVore, N.M.; Smith, B.D.; Urban, M.J.; Scott, E.E. Key Residues Controlling Phenacetin Metabolism by Human Cytochrome P450 2A Enzymes. Drug Metab. Dispos. 2008, 36, 2582–2590. [Google Scholar] [CrossRef]
- Chen, Y.; Shoichet, B.K. Molecular Docking and Ligand Specificity in Fragment-Based Inhibitor Discovery. Nat. Chem. Biol. 2009, 5, 358–364. [Google Scholar] [CrossRef]
- Ahmed-Belkacem, A.; Colliandre, L.; Ahnou, N.; Nevers, Q.; Gelin, M.; Bessin, Y.; Brillet, R.; Cala, O.; Douguet, D.; Bourguet, W.; et al. Fragment-Based Discovery of a New Family of Non-Peptidic Small-Molecule Cyclophilin Inhibitors with Potent Antiviral Activities. Nat. Commun. 2016, 7, 12777. [Google Scholar] [CrossRef]
- Lee, S.; Park, E.H.; Ko, H.J.; Bang, W.G.; Kim, H.Y.; Kim, K.H.; Choi, I.G. Crystal Structure Analysis of a Bacterial Aryl Acylamidase Belonging to the Amidase Signature Enzyme Family. Biochem. Biophys. Res. Commun. 2015, 467, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Unterlass, J.E.; Baslé, A.; Blackburn, T.J.; Tucker, J.; Cano, C.; Noble, M.E.M.; Curtin, N.J. Validating and Enabling Phosphoglycerate Dehydrogenase (PHGDH) as a Target for Fragment-Based Drug Discovery in PHGDH-Amplified Breast Cancer. Oncotarget 2018, 9, 13139–13153. [Google Scholar] [CrossRef]
- McIntyre, P.J.; Collins, P.M.; Vrzal, L.; Birchall, K.; Arnold, L.H.; Mpamhanga, C.; Coombs, P.J.; Burgess, S.G.; Richards, M.W.; Winter, A.; et al. Characterization of Three Druggable Hot-Spots in the Aurora-A/TPX2 Interaction Using Biochemical, Biophysical, and Fragment-Based Approaches. ACS Chem. Biol. 2017, 12, 2906–2914. [Google Scholar] [CrossRef]
- Worldwide Protein Data Bank (wwPDB). Full wwPDB X-Ray Structure Validation Report for PDB ID 5QHU; wwPDB: 2024; pp. 1–13. Available online: https://www.rcsb.org/structure/5QHU (accessed on 10 February 2025).
- Worldwide Protein Data Bank (wwPDB). Full wwPDB X-Ray Structure Validation Report for PDB ID 5QPV; wwPDB: 2024; pp. 1–17. Available online: https://www.rcsb.org/structure/5QPV (accessed on 10 February 2025).
- Nichols, C.; Ng, J.; Keshu, A.; Kelly, G.; Conte, M.R.; Marber, M.S.; Fraternali, F.; De Nicola, G.F. Mining the PDB for Tractable Cases Where X-Ray Crystallography Combined with Fragment Screens Can Be Used to Systematically Design Protein-Protein Inhibitors: Two Test Cases Illustrated by IL1β-IL1R and P38α-TAB1 Complexes. J. Med. Chem. 2020, 63, 7559–7568. [Google Scholar] [CrossRef]
- Douangamath, A.; Fearon, D.; Gehrtz, P.; Krojer, T.; Lukacik, P.; Owen, C.D.; Resnick, E.; Strain-Damerell, C.; Aimon, A.; Ábrányi-Balogh, P.; et al. Crystallographic and Electrophilic Fragment Screening of the SARS-CoV-2 Main Protease. Nat. Commun. 2020, 11, 5047. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, W.J.; Kennedy, E.C.; Moreira, T.; Smith, L.A.; Chalk, R.; Katis, V.L.; Benesch, J.L.P.; Brennan, P.E.; Murphy, E.J.; Gileadi, O. Regulation of Inositol 5-Phosphatase Activity by the C2 Domain of SHIP1 and SHIP2. Structure 2024, 32, 453–466.e6. [Google Scholar] [CrossRef] [PubMed]
- Worldwide Protein Data Bank (wwPDB). Full wwPDB X-Ray Structure Validation Report for PDB ID 5RYN; wwPDB: 2024; pp. 1–17. Available online: https://www.rcsb.org/structure/5RYN (accessed on 10 February 2025).
- Schuller, M.; Correy, G.J.; Gahbauer, S.; Fearon, D.; Wu, T.; Díaz, R.E.; Young, I.D.; Carvalho Martins, L.; Smith, D.H.; Schulze-Gahmen, U.; et al. Fragment Binding to the Nsp3 Macrodomain of SARS-CoV-2 Identified through Crystallographic Screening and Computational Docking. Sci. Adv. 2021, 7, 1–24. [Google Scholar] [CrossRef]
- Mühlethaler, T.; Gioia, D.; Prota, A.E.; Sharpe, M.E.; Cavalli, A.; Steinmetz, M.O. Comprehensive Analysis of Binding Sites in Tubulin. Angew. Chem.-Int. Ed. 2021, 60, 13331–13342. [Google Scholar] [CrossRef]
- Kany, A.M.; Sikandar, A.; Haupenthal, J.; Yahiaoui, S.; Maurer, C.K.; Proschak, E.; Köhnke, J.; Hartmann, R.W. Binding Mode Characterization and Early in Vivo Evaluation of Fragment-Like Thiols as Inhibitors of the Virulence Factor LasB from Pseudomonas aeruginosa. ACS Infect. Dis. 2018, 4, 988–997. [Google Scholar] [CrossRef]
- Simoben, C.V.; Robaa, D.; Chakrabarti, A.; Schmidtkunz, K.; Marek, M.; Lancelot, J.; Kannan, S.; Melesina, J.; Shaik, T.B.; Pierce, R.J.; et al. A Novel Class of Schistosoma Mansoni Histone Deacetylase 8 (HDAC8) Inhibitors Identified by Structure-Based Virtual Screening and in Vitro Testing. Molecules 2018, 23, 566. [Google Scholar] [CrossRef]
- Carcache, D.A.; Vulpetti, A.; Kallen, J.; Mattes, H.; Orain, D.; Stringer, R.; Vangrevelinghe, E.; Wolf, R.M.; Kaupmann, K.; Ottl, J.; et al. Optimizing a Weakly Binding Fragment into a Potent RORÎt Inverse Agonist with Efficacy in an in Vivo Inflammation Model. J. Med. Chem. 2018, 61, 6724–6735. [Google Scholar] [CrossRef] [PubMed]
- Wolter, M.; Valenti, D.; Cossar, P.J.; Levy, L.M.; Hristeva, S.; Genski, T.; Hoffmann, T.; Brunsveld, L.; Tzalis, D.; Ottmann, C. Fragment-Based Stabilizers of Protein–Protein Interactions through Imine-Based Tethering. Angew. Chem.-Int. Ed. 2020, 59, 21520–21524. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Mahy, W.; Willis, N.J.; Woodward, H.L.; Steadman, D.; Bayle, E.D.; Atkinson, B.N.; Sipthorp, J.; Vecchia, L.; Ruza, R.R.; et al. Structural Analysis and Development of Notum Fragment Screening Hits. ACS Chem. Neurosci. 2022, 13, 2060–2077. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Forouhar, F.; Lin, A.J.; Wang, Q.; Polychronidou, V.; Soni, R.K.; Xia, X.; Stockwell, B.R. Small-Molecule Allosteric Inhibitors of GPX4. Cell Chem. Biol. 2022, 29, 1680–1693.e9. [Google Scholar] [CrossRef]
- St. Denis, J.D.; Chessari, G.; Cleasby, A.; Cons, B.D.; Cowan, S.; Dalton, S.E.; East, C.; Murray, C.W.; O’Reilly, M.; Peakman, T.; et al. X-Ray Screening of an Electrophilic Fragment Library and Application toward the Development of a Novel ERK 1/2 Covalent Inhibitor. J. Med. Chem. 2022, 65, 12319–12333. [Google Scholar] [CrossRef]
- Atkinson, B.N.; Willis, N.J.; Zhao, Y.; Patel, C.; Frew, S.; Costelloe, K.; Magno, L.; Svensson, F.; Jones, E.Y.; Fish, P.V. Designed Switch from Covalent to Non-Covalent Inhibitors of Carboxylesterase Notum Activity. Eur. J. Med. Chem. 2023, 251, 115132. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Wang, X.; Patterson, J.; Winter, P.; Graham, K.; Ghosh, S.; Lee, J.C.; Katsetos, C.D.; Mackey, J.R.; et al. Novel Mutations Involving ΒI-, ΒIIA-, or ΒIVB-Tubulin Isotypes with Functional Resemblance to ΒIII-Tubulin in Breast Cancer. Protoplasma 2017, 254, 1163–1173. [Google Scholar] [CrossRef]
- Hammond, J.W.; Cai, D.; Verhey, K.J. Tubulin Modifications and Their Cellular Functions. Curr. Opin. Cell Biol. 2008, 20, 71–76. [Google Scholar] [CrossRef]
- Wasteneys, G.O. Microtubule Organization in the Green Kingdom: Chaos or Self-Order? J. Cell Sci. 2002, 115, 1345–1354. [Google Scholar] [CrossRef]
- Morejohn, L.C.; Bureau, T.E.; Molè-Bajer, J.; Bajer, A.S.; Fosket, D.E. Oryzalin, a Dinitroaniline Herbicide, Binds to Plant Tubulin and Inhibits Microtubule Polymerization in Vitro. Planta 1987, 172, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Hugdahl, J.D.; Morejohn, L.C. Rapid and Reversible High-Affinity Binding of the Dinitroaniline Herbicide Oryzalin to Tubulin from Zea mays L. Plant Physiol. 1993, 102, 725–740. [Google Scholar] [CrossRef]
- Giles, N.L.; Armson, A.; Reid, S.A. Characterization of Trifluralin Binding with Recombinant Tubulin from Trypanosoma brucei. Parasitol. Res. 2009, 104, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Powles, S.B. Glyphosate: A Once-in-a-Century Herbicide. Pest Manag. Sci. 2008, 63, 1100–1106. [Google Scholar] [CrossRef]
- Tresch, S.; Plath, P.; Grossmann, K. Herbicidal Cyanoacrylates with Antimicrotubule Mechanism of Action. Pest Manag. Sci. 2005, 61, 1052–1059. [Google Scholar] [CrossRef]
- Nyporko, A.Y.; Blume, Y.B. Structural Mechanisms of Interaction of Cyanolcrylates with Plant Tubulin. Cytol. Genet. 2014, 48, 7–14. [Google Scholar] [CrossRef]
- Prota, A.E.; Danel, F.; Bachmann, F.; Bargsten, K.; Buey, R.M.; Pohlmann, J.; Reinelt, S.; Lane, H.; Steinmetz, M.O. The Novel Microtubule-Destabilizing Drug BAL27862 Binds to the Colchicine Site of Tubulin with Distinct Effects on Microtubule Organization. J. Mol. Biol. 2014, 426, 1848–1860. [Google Scholar] [CrossRef]
- Ravelli, R.B.G.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into Tubulin Regulation from a Complex with Colchicine and a Stathmin-like Domain. Nature 2004, 428, 198–202. [Google Scholar] [CrossRef]
- Ranaivoson, F.M.; Gigant, B.; Berritt, S.; Joullié, M.; Knossow, M. Structural Plasticity of Tubulin Assembly Probed by Vinca-Domain Ligands. Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 927–934. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Gigant, B.; Yu, Y.; Wu, Y.; Chen, X.; Lai, Q.; Yang, Z.; Chen, Q.; Yang, J. Structures of a Diverse Set of Colchicine Binding Site Inhibitors in Complex with Tubulin Provide a Rationale for Drug Discovery. FEBS J. 2016, 283, 102–111. [Google Scholar] [CrossRef]
- Canela, M.D.; Noppen, S.; Bueno, O.; Prota, A.E.; Bargsten, K.; Sáez-Calvo, G.; Jimeno, M.L.; Benkheil, M.; Ribatti, D.; Velázquez, S.; et al. Antivascular and Antitumor Properties of the Tubulin-Binding Chalcone TUB091. Oncotarget 2017, 8, 14325–14342. [Google Scholar] [CrossRef]
- Marangon, J.; Christodoulou, M.S.; Casagrande, F.V.M.; Tiana, G.; Dalla Via, L.; Aliverti, A.; Passarella, D.; Cappelletti, G.; Ricagno, S. Tools for the Rational Design of Bivalent Microtubule-Targeting Drugs. Biochem. Biophys. Res. Commun. 2016, 479, 48–53. [Google Scholar] [CrossRef]
- Gaspari, R.; Prota, A.E.; Bargsten, K.; Cavalli, A.; Steinmetz, M.O. Structural Basis of Cis- and Trans-Combretastatin Binding to Tubulin. Chem 2017, 2, 102–113. [Google Scholar] [CrossRef]
- Field, J.J.; Pera, B.; Gallego, J.E.; Calvo, E.; Rodríguez-Salarichs, J.; Sáez-Calvo, G.; Zuwerra, D.; Jordi, M.; Andreu, J.M.; Prota, A.E.; et al. Zampanolide Binding to Tubulin Indicates Cross-Talk of Taxane Site with Colchicine and Nucleotide Sites. J. Nat. Prod. 2018, 81, 494–505. [Google Scholar] [CrossRef] [PubMed]
- Dohle, W.; Jourdan, F.L.; Menchon, G.; Prota, A.E.; Foster, P.A.; Mannion, P.; Hamel, E.; Thomas, M.P.; Kasprzyk, P.G.; Ferrandis, E.; et al. Quinazolinone-Based Anticancer Agents: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Tubulin Co-Crystal Structure. J. Med. Chem. 2018, 61, 1031–1044. [Google Scholar] [CrossRef] [PubMed]
- Muzaffar, A.; Brossi, A.; Lin, C.M.; Hamel, E. Antitubulin Effects of Derivatives of 3-Demethylthiocolchicine, Methylthio Ethers of Natural Colchicinoids, and Thioketones Derived from Thiocolchicine. Comparison with Colchicinoids. J. Med. Chem. 1990, 33, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Wu, Y.; Wang, Y.; Wang, C.; Wang, Y.; Wu, C.; Zeng, S.; Yu, Y.; Chen, Q. Structure of a Benzylidene Derivative of 9(10H)-Anthracenone in Complex with Tubulin Provides a Rationale for Drug Design. Biochem. Biophys. Res. Commun. 2018, 495, 185–188. [Google Scholar] [CrossRef]
- Li, Z.; Ma, L.; Wu, C.; Meng, T.; Ma, L.; Zheng, W.; Yu, Y.; Chen, Q.; Yang, J.; Shen, J. The Structure of MT189-Tubulin Complex Provides Insights into Drug Design. Lett. Drug Des. Discov. 2018, 16, 1069–1073. [Google Scholar] [CrossRef]
- Brindisi, M.; Ulivieri, C.; Alfano, G.; Gemma, S.; de Asís Balaguer, F.; Khan, T.; Grillo, A.; Chemi, G.; Menchon, G.; Prota, A.E.; et al. Structure-Activity Relationships, Biological Evaluation and Structural Studies of Novel Pyrrolonaphthoxazepines as Antitumor Agents. Eur. J. Med. Chem. 2019, 162, 290–320. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Niu, L.; Hu, D.; Li, H.; Chen, L.; Yu, Y.; Chen, Q. Structural Insights into the Design of Indole Derivatives as Tubulin Polymerization Inhibitors. FEBS Lett. 2020, 594, 199–204. [Google Scholar] [CrossRef]
- Niu, L.; Yang, J.; Yan, W.; Yu, Y.; Zheng, Y.; Ye, H.; Chen, Q.; Chen, L. Reversible Binding of the Anticancer Drug KXO1 (Tirbanibulin) to the Colchicine-Binding Site of β-Tubulin Explains KXO1’s Low Clinical Toxicity. J. Biol. Chem. 2019, 294, 18099–18108. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Calvo, G.; Sharma, A.; Balaguer, F.d.A.; Barasoain, I.; Rodríguez-Salarichs, J.; Olieric, N.; Muñoz-Hernández, H.; Berbís, M.Á.; Wendeborn, S.; Peñalva, M.A.; et al. Triazolopyrimidines Are Microtubule-Stabilizing Agents That Bind the Vinca Inhibitor Site of Tubulin. Cell Chem. Biol. 2017, 24, 737–750.e6. [Google Scholar] [CrossRef]
- Doodhi, H.; Prota, A.E.; Rodríguez-García, R.; Xiao, H.; Custar, D.W.; Bargsten, K.; Katrukha, E.A.; Hilbert, M.; Hua, S.; Jiang, K.; et al. Termination of Protofilament Elongation by Eribulin Induces Lattice Defects That Promote Microtubule Catastrophes. Curr. Biol. 2016, 26, 1713–1721. [Google Scholar] [CrossRef]
- Alhossary, A.; Handoko, S.D.; Mu, Y.; Kwoh, C.K. Fast, Accurate, and Reliable Molecular Docking with QuickVina 2. Bioinformatics 2015, 31, 2214–2216. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Tosco, P.; Balle, T.; Shiri, F. Open3DALIGN: An Open-Source Software Aimed at Unsupervised Ligand Alignment. J. Comput. Aided Mol. Des. 2011, 25, 777–783. [Google Scholar] [CrossRef]
- Stewart, J.J.P.; Stewart, A.C. A Semiempirical Method Optimized for Modeling Proteins. J. Mol. Model. 2023, 29, 284. [Google Scholar] [CrossRef]
- Fráguas, R.M.; Costa, V.A.; Terra, W.C.; Aguiar, A.P.; Martins, S.J.; Campos, V.P.; Oliveira, D.F. Toxicities of 4,5-Dihydroisoxazoles against Root-Knot Nematodes and in Silico Studies of Their Modes of Action. J. Agric. Food Chem. 2020, 68, 523–529. [Google Scholar] [CrossRef]
- Lešnik, S.; Štular, T.; Brus, B.; Knez, D.; Gobec, S.; Janežič, D.; Konc, J. LiSiCA: A Software for Ligand-Based Virtual Screening and Its Application for the Discovery of Butyrylcholinesterase Inhibitors. J. Chem. Inf. Model. 2015, 55, 1521–1528. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, L.; Maddula, H.; Akcan, O.; Oughtred, R.; Berman, H.M.; Westbrook, J. Ligand Depot: A Data Warehouse for Ligands Bound to Macromolecules. Bioinformatics 2004, 20, 2153–2155. [Google Scholar] [CrossRef]
- Saur, I.M.L.; Panstruga, R.; Schulze-Lefert, P. NOD-like Receptor-Mediated Plant Immunity: From Structure to Cell Death. Nat. Rev. Immunol. 2021, 21, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Gohda, S.; Abe, K.; Togo, T.; Shimano, N.; Sasaki, T.; Tanaka, H.; Ono, H.; Ohba, T.; Kubo, S.; et al. Carbon Materials with Controlled Edge Structures. Carbon 2017, 122, 694–701. [Google Scholar] [CrossRef]
- Martínez, L.; Andreani, R.; Martínez, J.M. Convergent Algorithms for Protein Structural Alignment. BMC Bioinform. 2007, 8, 306. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Allouche, A. Software News and Updates Gabedit—A Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2012, 32, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Maderna, A.; Doroski, M.; Subramanyam, C.; Porte, A.; Leverett, C.A.; Vetelino, B.C.; Chen, Z.; Risley, H.; Parris, K.; Pandit, J.; et al. Discovery of Cytotoxic Dolastatin 10 Analogues with N-Terminal Modifications. J. Med. Chem. 2014, 57, 10527–10543. [Google Scholar] [CrossRef]
- Waight, A.B.; Bargsten, K.; Doronina, S.; Steinmetz, M.O.; Sussman, D.; Prota, A.E. Structural Basis of Microtubule Destabilization by Potent Auristatin Anti-Mitotics. PLoS ONE 2016, 11, e0160890. [Google Scholar] [CrossRef] [PubMed]
- Prota, A.E.; Bargsten, K.; Redondo-Horcajo, M.; Smith, A.B.; Yang, C.P.H.; McDaid, H.M.; Paterson, I.; Horwitz, S.B.; Fernando Díaz, J.; Steinmetz, M.O. Structural Basis of Microtubule Stabilization by Discodermolide. ChemBioChem 2017, 18, 905–909. [Google Scholar] [CrossRef]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the Worldwide Protein Data Bank. Nat. Struct. Biol. 2003, 10, 980. [Google Scholar] [CrossRef]
- Yang, J.; Yan, W.; Yu, Y.; Wang, Y.; Yang, T.; Xue, L.; Yuan, X.; Long, C.; Liu, Z.; Chen, X.; et al. The Compound Millepachine and Its Derivatives Inhibit Tubulin Polymerization by Irreversibly Binding to the Colchicine-Binding Site in β-Tubulin. J. Biol. Chem. 2018, 293, 9461–9472. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- Bartlett, M.S. Properties of Sufficiency and Statistical Tests. Proc. R. Soc. Lond. A Math. Phys. Sci. 1937, 160, 268–282. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- University of California. J. Educ. 1915, 82, 204. [CrossRef]
- Thorsten, P. R Package “PMCMRplus”. Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended, version 1.9.10. 2023. Available online: https://cran.r-project.org/ (accessed on 10 February 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Faria, K.C.F.; Alvarenga, E.S.; Oliveira, D.F.; Baia, V.C.; Isenmann, A.F. Synthesis of Epoxyoxirenes: Phytotoxic Activity and Enzymatic Target Identification. Plants 2025, 14, 1933. https://doi.org/10.3390/plants14131933
de Faria KCF, Alvarenga ES, Oliveira DF, Baia VC, Isenmann AF. Synthesis of Epoxyoxirenes: Phytotoxic Activity and Enzymatic Target Identification. Plants. 2025; 14(13):1933. https://doi.org/10.3390/plants14131933
Chicago/Turabian Stylede Faria, Kamylla C. F., Elson S. Alvarenga, Denilson F. Oliveira, Vitor C. Baia, and Armin F. Isenmann. 2025. "Synthesis of Epoxyoxirenes: Phytotoxic Activity and Enzymatic Target Identification" Plants 14, no. 13: 1933. https://doi.org/10.3390/plants14131933
APA Stylede Faria, K. C. F., Alvarenga, E. S., Oliveira, D. F., Baia, V. C., & Isenmann, A. F. (2025). Synthesis of Epoxyoxirenes: Phytotoxic Activity and Enzymatic Target Identification. Plants, 14(13), 1933. https://doi.org/10.3390/plants14131933