Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum
Abstract
1. Introduction
2. Results and Discussion
2.1. In Vitro Biomass Production
2.1.1. In Vitro Culture Initiation and Aseptic Culture Establishment
2.1.2. Effect of Cytokinins and Culture Duration on In Vitro Biomass Production
Treatment | H. androsaemum | H. calycinum | H. hirsutum | H. kalmianum | H. olympicum | H. perforatum | H. triquetrifolium |
---|---|---|---|---|---|---|---|
40 days | |||||||
MS | 0.03 ± 0.01 a * | 0.11 ± 0.02 a | 0.03 ± 0.01 a | 0.04 ± 0.01 a | 0.08 ± 0.01 a | 0.02 ± 0.001 a | 0.01 ± 0.001 a |
MS + 0.1 mg/L BA | 0.95 ± 0.19 c | 0.83 ± 0.21 b | 0.56 ± 0.05 b | 0.48 ± 0.14 a | 1.00 ± 0.13 c | 1.71 ± 0.26 b | 3.41 ± 0.28 b |
MS + 0.2 mg/L BA | 0.32 ± 0.06 ab | 0.35 ± 0.03 a | 0.49 ± 0.06 b | 0.45 ± 0.07 a | 0.62 ± 0.06 bc | 3.85 ± 0.64 c | 3.81 ± 0.38 b |
MS + 1 mg/L mT | 0.02 ± 0.01 a | 0.07 ± 0.01 a | 0.03 ± 0.01 a | 0.08 ± 0.01 a | 0.06 ± 0.01 a | 0.01 ± 0.001 a | 0.01 ± 0.003 a |
MS + 2 mg/L mT | 0.14 ± 0.03 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.21 ± 0.02 a | 0.19 ± 0.02 a | 0.04 ± 0.01 a | 0.03 ± 0.01 a |
60 days | |||||||
MS | 0.03 ± 0.01 a | 0.13 ± 0.02 a | 0.05 ± 0.01 a | 0.16 ± 0.04 a | 0.09 ± 0.01 a | 0.02 ± 0.001 a | 0.03 ± 0.01 a |
MS + 0.1 mg/L BA | 3.44 ± 0.35 e | 1.90 ± 0.35 d | 1.38 ± 0.19 c | 2.16 ± 0.54 b | 2.02 ± 0.27 d | 1.98 ± 0.40 b | 5.89 ± 0.45 c |
MS + 0.2 mg/L BA | 2.64 ± 0.24 d | 1.20 ± 0.23 c | 1.34 ± 0.16 c | 4.09 ± 0.33 c | 2.47 ± 0.22 e | 5.47 ± 0.97 d | 7.93 ± 0.34 d |
MS + 1 mg/L mT | 0.07 ± 0.02 a | 0.13 ± 0.02 a | 0.03 ± 0.01 a | 0.10 ± 0.01 a | 0.11 ± 0.02 a | 0.02 ± 0.01 a | 0.01 ± 0.01 a |
MS + 2 mg/L mT | 0.87 ± 0.15 bc | 0.18 ± 0.03 a | 0.13 ± 0.03 a | 0.23 ± 0.03 a | 0.44 ± 0.07 a | 0.10 ± 0.01 a | 0.07 ± 0.02 a |
Treatment | H. androsaemum | H. calycinum | H. hirsutum | H. kalmianum | H. olympicum | H. perforatum | H. triquetrifolium |
---|---|---|---|---|---|---|---|
40 days | |||||||
MS | 2.21 ± 0.37 ab * | 2.52 ± 0.20 ab | 3.62 ± 0.35 e | 2.84 ± 0.26 a | 6.03 ± 0.58 b | 3.24 ± 0.61 a | 0.99 ± 0.25 ab |
MS + 0.1 mg/L BA | 5.81 ± 0.55 c | 4.69 ± 0.43 d | 0.89 ± 0.09 a | 3.96 ± 0.38 b | 4.09 ± 0.19 a | 4.85 ± 0.29 b | 2.41 ± 0.14 ef |
MS + 0.2 mg/L BA | 2.61 ± 0.19 ab | 2.31 ± 0.24 a | 1.43 ± 0.10 bc | 2.60 ± 0.16 a | 3.45 ± 0.27 a | 3.04 ± 0.38 a | 1.81 ± 0.16 cd |
MS + 1 mg/L mT | 1.62 ± 0.28 a | 3.04 ± 0.33 bc | 3.02 ± 0.16 d | 4.58 ± 0.24 c | 6.57 ± 0.32 b | 2.61 ± 0.94 a | 0.84 ± 0.34 ab |
MS + 2 mg/L mT | 3.15 ± 0.25 b | 2.91 ± 0.22 abc | 1.33 ± 0.13 ab | 5.30 ± 0.26 de | 12.28 ± 0.65 d | 4.27 ± 0.64 b | 1.31 ± 0.20 bc |
60 days | |||||||
MS | 2.59 ± 0.48 ab | 3.24 ± 0.32 c | 2.89 ± 0.18 d | 4.91 ± 0.44 cd | 9.64 ± 1.08 c | 2.77 ± 0.66 a | 2.79 ± 0.27 f |
MS + 0.1 mg/L BA | 8.41 ± 0.84 d | 7.07 ± 0.70 e | 1.87 ± 0.24 c | 5.47 ± 0.40 e | 8.55 ± 0.84 c | 8.96 ± 1.19 e | 4.56 ± 0.29 g |
MS + 0.2 mg/L BA | 2.68 ± 0.14 b | 3.18 ± 0.22 bc | 0.92 ± 0.11 a | 2.60 ± 0.12 a | 3.54 ± 0.17 a | 3.04 ± 0.12 a | 0.43 ± 0.02 a |
MS + 1 mg/L mT | 2.38 ± 0.24 ab | 3.30 ± 0.15 c | 2.69 ± 0.22 d | 5.18 ± 0.27 de | 5.98 ± 0.70 b | 6.19 ± 1.12 c | 1.25 ± 0.25 bc |
MS + 2 mg/L mT | 5.23 ± 0.49 c | 3.51 ± 0.41 c | 1.35 ± 0.19 ab | 5.51 ± 0.32 e | 16.30 ± 0.64 e | 7.24 ± 0.87 d | 1.97 ± 0.35 de |
Treatment | H. androsaemum | H. calycinum | H. hirsutum | H. kalmianum | H. olympicum | H. perforatum | H. triquetrifolium |
---|---|---|---|---|---|---|---|
40 days | |||||||
MS | 86.18 ± 0.90 c * | 83.50 ± 1.17 b | 81.80 ± 0.78 c | 85.79 ± 0.62 de | 84.67 ± 0.59 b | 83.43 ± 1.46 c | 88.00 ± 1.64 d |
MS + 0.1 mg/L BA | 90.28 ± 1.01 d | 88.62 ± 0.97 c | 88.80 ± 0.38 de | 85.39 ± 1.46 de | 86.15 ± 0.36 cd | 90.47 ± 1.04 de | 93.77 ± 0.15 ab |
MS + 0.2 mg/L BA | 90.20 ± 0.44 d | 89.11 ± 0.28 cd | 87.69 ± 1.43 d | 89.89 ± 0.85 f | 88.81 ± 0.41 e | 92.49 ± 0.97 ef | 93.57 ± 0.22 e |
MS + 1 mg/L mT | 87.65 ± 0.54 c | 81.20 ± 1.85 b | 80.76 ± 1.17 c | 83.83 ± 0.48 cd | 85.90 ± 0.81 bcd | 80.49 ± 0.87 bc | 81.55 ± 1.18 bc |
MS + 2 mg/L mT | 83.31 ± 1.06 b | 76.48 ± 1.30 a | 75.66 ± 1.02 b | 80.77 ± 0.44 ab | 83.32 ± 0.60 a | 75.04 ± 0.88 a | 79.77 ± 1.69 ab |
60 days | |||||||
MS | 80.85 ± 0.73 a | 81.14 ± 0.65 b | 71.04 ± 0.97 a | 81.47 ± 0.77 ab | 82.61 ± 0.63 a | 79.12 ± 0.92 b | 79.87 ± 1.69 ab |
MS + 0.1 mg/L BA | 91.55 ± 0.26 d | 86.86 ± 1.28 c | 85.69 ± 0.43 d | 86.38 ± 1.41 e | 87.13 ± 0.71 d | 88.47 ± 0.74 d | 93.31 ± 1.13 e |
MS + 0.2 mg/L BA | 95.21 ± 0.20 e | 91.50 ± 0.64 d | 91.42 ± 0.30 e | 95.51 ± 0.11 g | 91.67 ± 0.09 f | 95.11 ± 0.20 f | 96.12 ± 0.13 e |
MS + 1 mg/L mT | 87.20 ± 0.69 c | 82.81 ± 0.86 b | 79.75 ± 0.85 c | 83.02 ± 0.55 bc | 85.44 ± 0.29 bc | 79.42 ± 2.02 b | 83.51 ± 1.53 c |
MS + 2 mg/L mT | 86.19 ± 0.71 c | 77.48 ± 1.14 a | 75.77 ± 1.10 b | 80.19 ± 0.52 a | 85.58 ± 0.35 bc | 78.22 ± 0.99 ab | 78.13 ± 1.43 a |
2.2. Analysis of Phenolic Compounds
2.2.1. Identification and Classification of Phenolic Compounds
2.2.2. Quantitative Variation in Phenolic Content Among Species and Treatments
3. Materials and Methods
3.1. In Vitro Propagation
3.1.1. Culture Medium and Culture Conditions
3.1.2. Initiation and Stabilization of In Vitro Cultures
3.1.3. Biomass Production
3.2. HPLC-DAD-MS-ESI Analysis
3.2.1. Sample Preparation and Chromatographic Conditions
3.2.2. Chemical Reagents and Materials
3.2.3. Quantitative Determination
3.3. Experimental Design
3.4. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant Tissue Culture as a Perpetual Source for Production of Industrially Important Bioactive Compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef]
- Selvakesavan, R.K.; Franklin, G. Robust in Vitro Culture Tools Suitable for Sustainable Bioprospecting of the Genus Hypericum. Ind. Crops Prod. 2021, 170, 113715. [Google Scholar] [CrossRef]
- Hasnain, A.; Naqvi, S.A.H.; Ayesha, S.I.; Khalid, F.; Ellahi, M.; Iqbal, S.; Hassan, M.Z.; Abbas, A.; Adamski, R.; Markowska, D.; et al. Plants in Vitro Propagation with Its Applications in Food, Pharmaceuticals and Cosmetic Industries; Current Scenario and Future Approaches. Front. Plant Sci. 2022, 13, 1009395. [Google Scholar] [CrossRef] [PubMed]
- Mohaddab, M.; El Goumi, Y.; Gallo, M.; Montesano, D.; Zengin, G.; Bouyahya, A.; Fakiri, M. Biotechnology and In Vitro Culture as an Alternative System for Secondary Metabolite Production. Molecules 2022, 27, 8093. [Google Scholar] [CrossRef] [PubMed]
- Kakouri, E.; Trigas, P.; Daferera, D.; Skotti, E.; Tarantilis, P.A.; Kanakis, C. Chemical Characterization and Antioxidant Activity of Nine Hypericum Species from Greece. Antioxidants 2023, 12, 899. [Google Scholar] [CrossRef]
- Kakouri, E.; Daferera, D.; Nalbanti, A.; Trigas, P.; Tarantilis, P.A. Volatile Constituents of Four Hypericum Species Native to Greece. Compounds 2025, 5, 3. [Google Scholar] [CrossRef]
- Lazdiņa, D.; Mišina, I.; Górnaś, P. Tocotrienols in Eleven Species of Hypericum Genus Leaves. Molecules 2025, 30, 662. [Google Scholar] [CrossRef]
- Kwiecień, I.; Szydłowska, A.; Kawka, B.; Beerhues, L.; Ekiert, H. Accumulation of Biologically Active Phenolic Acids in Agitated Shoot Cultures of Three Hypericum perforatum Cultivars: “Elixir”, “Helos” and “Topas”. Plant Cell. Tissue Organ. Cult. 2015, 123, 273–281. [Google Scholar] [CrossRef]
- Kwiecień, I.; Smolin, J.; Beerhues, L.; Ekiert, H. The Impact of Media Composition on Production of Flavonoids in Agitated Shoot Cultures of the Three Hypericum perforatum L. Cultivars “Elixir”, “Helos” and “Topas”. Vitr. Cell. Dev. Biol.—Plant 2018, 54, 332–340. [Google Scholar] [CrossRef]
- Kwiecień, I.; Miceli, N.; Kędzia, E.; Cavò, E.; Taviano, M.F.; Beerhues, L.; Ekiert, H. Different Types of Hypericum perforatum Cvs. (Elixir, Helos, Topas) In Vitro Cultures: A Rich Source of Bioactive Metabolites and Biological Activities of Biomass Extracts. Molecules 2023, 28, 2376. [Google Scholar] [CrossRef]
- Pradeep, M.; Kachlicki, P.; Franklin, G. Simultaneous Determination of Naphtodianthrones, Emodin, Skyrin and New Bisanthrones in Hypericum perforatum L. in Vitro Shoot Cultures. Ind. Crops Prod. 2020, 144, 112003. [Google Scholar] [CrossRef]
- Cirak, C.; Radušienė, J.; Kurtarc, E.S.; Marksa, M.; Ivanauskas, L. In Vitro Plant Regeneration and Jasmonic Acid Induced Bioactive Chemical Accumulations in Two Hypericum Species from Turkey. S. Afr. J. Bot. 2020, 128, 312–318. [Google Scholar] [CrossRef]
- Danova, K.; Motyka, V.; Trendafilova, A.; Dobrev, P.I.; Ivanova, V.; Aneva, I. Evolutionary Aspects of Hypericin Productivity and Endogenous Phytohormone Pools Evidenced in Hypericum Species In Vitro Culture Model. Plants 2022, 11, 2753. [Google Scholar] [CrossRef] [PubMed]
- Asan, H.S. Elicitors Enhanced the Production of Bioactive Compounds in Shoot Cultures of Hypericum Amblysepalum. Bot. Serbica 2023, 47, 271–277. [Google Scholar] [CrossRef]
- Ebadollahi, R.; Jafarirad, S.; Kosari-Nasab, M.; Mahjouri, S. Effect of Explant Source, Perlite Nanoparticles and TiO2/Perlite Nanocomposites on Phytochemical Composition of Metabolites in Callus Cultures of Hypericum perforatum. Sci. Rep. 2019, 9, 12998. [Google Scholar] [CrossRef]
- Eray, N.; Dalar, A.; Turker, M. The Effects of Abiotic Stressors and Signal Molecules on Phenolic Composition and Antioxidant Activities of in Vitro Regenerated Hypericum perforatum (St. John’s Wort). S. Afr. J. Bot. 2020, 133, 253–263. [Google Scholar] [CrossRef]
- Yaman, C. Phytochemicals and Antioxidant Capacity of Wild Growing and in Vitro Hypericum heterophyllum. Rom. All. Rights Reserv. Rom. Biotechnol. Lett. 2020, 25, 2111–2117. [Google Scholar] [CrossRef]
- Yaman, C.; Önlü, S.; Ahmed, H.A.; Erenler, R. Comparison of Phytochemicals and Antioxidant Capacity of Hypericum perforatum; Wild Plant Parts and In Vitro Samples. J. Anim. Plant Sci. 2022, 32, 596–603. [Google Scholar] [CrossRef]
- Valletta, A.; De Angelis, G.; Badiali, C.; Brasili, E.; Miccheli, A.; Di Cocco, M.E.; Pasqua, G. Acetic Acid Acts as an Elicitor Exerting a Chitosan-like Effect on Xanthone Biosynthesis in Hypericum perforatum L. Root Cult. Plant Cell Rep. 2016, 35, 1009–1020. [Google Scholar] [CrossRef]
- Gaid, M.; Haas, P.; Beuerle, T.; Scholl, S.; Beerhues, L. Hyperforin Production in Hypericum perforatum Root Cultures. J. Biotechnol. 2016, 222, 47–55. [Google Scholar] [CrossRef]
- Sobhani Najafabadi, A.; Khanahmadi, M.; Ebrahimi, M.; Moradi, K.; Behroozi, P.; Noormohammadi, N. Effect of Different Quality of Light on Growth and Production of Secondary Metabolites in Adventitious Root Cultivation of Hypericum perforatum. Plant Signal. Behav. 2019, 14, 1640561. [Google Scholar] [CrossRef]
- Tavakoli, F.; Rafieiolhossaini, M.; Ravash, R.; Ebrahimi, M. Subject: UV-B Radiation and Low Temperature Promoted Hypericin Biosynthesis in Adventitious Root Culture of Hypericum perforatum. Plant Signal. Behav. 2020, 15, 1764184. [Google Scholar] [CrossRef]
- Henzelyová, J.; Čellárová, E. Modulation of Naphthodianthrone Biosynthesis in Hairy Root-Derived Hypericum Tomentosum Regenerants. Acta Physiol. Plant. 2018, 40, 82. [Google Scholar] [CrossRef]
- Tusevski, O.; Todorovska, M.; Todorovska, I.; Stanoeva, J.P.; Simic, S.G. Photoperiod Modulates the Production of Biologically Active Compounds in Hypericum perforatum L. Hairy Roots: An in Vitro and in Silico Approach. Plant Cell. Tissue Organ. Cult. 2024, 156, 96. [Google Scholar] [CrossRef]
- Wang, J.; Qian, J.; Yao, L.; Lu, Y. Enhanced Production of Flavonoids by Methyl Jasmonate Elicitation in Cell Suspension Culture of Hypericum perforatum. Bioresour. Bioprocess. 2015, 2, 5. [Google Scholar] [CrossRef]
- Kruszka, D.; Selvakesavan, R.K.; Kachlicki, P.; Franklin, G. Untargeted Metabolomics Analysis Reveals the Elicitation of Important Secondary Metabolites upon Treatment with Various Metal and Metal Oxide Nanoparticles in Hypericum perforatum L. Cell Suspension Cultures. Ind. Crops Prod. 2022, 178, 114561. [Google Scholar] [CrossRef]
- Jafarirad, S.; Kosari-Nasab, M.; Mohammadpour Tavana, R.; Mahjouri, S.; Ebadollahi, R. Impacts of Manganese Bio-Based Nanocomposites on Phytochemical Classification, Growth and Physiological Responses of Hypericum perforatum L. Shoot Cultures. Ecotoxicol. Environ. Saf. 2021, 209, 111841. [Google Scholar] [CrossRef] [PubMed]
- Önlü, Ş.; Yaman, C.; Kurtul, E.; Önlü, H.; Bahadir-Acikara, Ö.; Tusevski, O.; Simic, S.G.; Özcan, S. Production of Elicitor-Induced Phytochemicals in Callus and Shoot Cultures of Hypericum heterophyllum. S. Afr. J. Bot. 2025, 177, 295–304. [Google Scholar] [CrossRef]
- Coste, A.; Pop, C.; Halmagyi, A.; Butiuc-Keul, A. Secondary Metabolites in Shoot Cultures of Hypericum; Springer: Cham, Switzerland, 2021; pp. 273–307. [Google Scholar]
- Gadzovska, S.; Maury, S.; Ounnar, S.; Righezza, M.; Kascakova, S.; Refregiers, M.; Spasenoski, M.; Joseph, C.; Hagège, D. Identification and Quantification of Hypericin and Pseudohypericin in Different Hypericum perforatum L. in Vitro Cultures. Plant Physiol. Biochem. 2005, 43, 591–601. [Google Scholar] [CrossRef]
- Coste, A.; Vlase, L.; Halmagyi, A.; Deliu, C.; Coldea, G. Effects of Plant Growth Regulators and Elicitors on Production of Secondary Metabolites in Shoot Cultures of Hypericum Hirsutum and Hypericum Maculatum. Plant Cell. Tissue Organ. Cult. 2011, 106, 279–288. [Google Scholar] [CrossRef]
- Coste, A.; Halmagyi, A.; Butiuc-Keul, A.L.; Deliu, C.; Coldea, G.; Hurdu, B. In Vitro Propagation and Cryopreservation of Romanian Endemic and Rare Hypericum Species. Plant Cell. Tissue Organ. Cult. 2012, 110, 213–226. [Google Scholar] [CrossRef]
- Azeez, H.; Ibrahim, K.; Pop, R.; Pamfil, D.; Hârţa, M.; Bobiș, O. Changes Induced by Gamma Ray Irradiation on Biomass Production and Secondary Metabolites Accumulation in Hypericum triquetrifolium Turra Callus Cultures. Ind. Crops Prod. 2017, 108, 183–189. [Google Scholar] [CrossRef]
- Ahmed, H.A.A.; Uranbey, S.; Salaj, T.; Mistrikova, V. Cell Suspension Cultures and High Frequency Shoot Regeneration of Some Hypericum Species. Tarim. Bilim. Derg. 2025, 31, 319–331. [Google Scholar] [CrossRef]
- Savio, L.E.B.; Astarita, L.V.; Santarém, E.R. Secondary Metabolism in Micropropagated Hypericum perforatum L. Grown in Non-Aerated Liquid Medium. Plant Cell. Tissue Organ. Cult. 2012, 108, 465–472. [Google Scholar] [CrossRef]
- Luczkiewicz, M.; Kokotkiewicz, A.; Glod, D. Plant Growth Regulators Affect Biosynthesis and Accumulation Profile of Isoflavone Phytoestrogens in High-Productive in Vitro Cultures of Genista Tinctoria. Plant Cell. Tissue Organ. Cult. 2014, 118, 419–429. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Krzemińska, M.; Kiss, A.K.; Owczarek-Januszkiewicz, A.; Olszewska, M.A. Role of Phytohormones in Biomass and Polyphenol Accumulation in Salvia bulleyana In Vitro Culture. Biomolecules 2023, 13, 227. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.A.; Motallebi-Azar, A.; Movafeghi, A.; Akhtar, A.F.; Aharizad, S.; Banan Khojasteh, S.M. In Vitro Shoot Regeneration and Hypericin Production in Four Hypericum perforatum L. Genotypes. Int. J. Agric. 2014, 3, 887–893. [Google Scholar]
- Abdollahpoor, M.; Kalantari, S.; Azizi, M.; Saadat, Y.A. In Vitro Shoot Proliferation of Hypericum perforatum L. through Indirect and Direct Plant Regeneration. J. Med. Plants By-Prod. 2017, 6, 81–89. [Google Scholar]
- Ravindran, B.M.; Rizzo, P.; Franke, K.; Fuchs, J.; D’Auria, J. Simple and Robust Multiple Shoot Regeneration and Root Induction Cycle from Different Explants of Hypericum perforatum L. Genotypes. Plant Cell. Tissue Organ. Cult. 2023, 152, 1–15. [Google Scholar] [CrossRef]
- Băcilă, I.; Coste, A.; Halmagyi, A.; Deliu, C. Micropropagation of Hypericum Maculatum Cranz an Important Medicinal Plant. Rom. Biotechnol. Lett. 2010, 15, 86–91. [Google Scholar]
- Asan, H.S.; Ozen, H.C.; Onay, A.; Asan, N. Effect of BAP on Total Hypericin Production in Shoot Cultures of Hypericum Scabroides: An Endemic Species in the Eastern Anatolia Region of Turkey. EurAsian J. Biosci. 2015, 9, 46–51. [Google Scholar]
- Akbaş, F.; Isikalan, Ç.; Namli, S.; Karakuş, P.; Başaran, D. Direct Plant Regeneration from in Vitro-Derived Leaf Explants of Hypericum Spectabile, a Medicinal Plant. J. Med. Plants Res. 2011, 5, 2175–2181. [Google Scholar]
- Nowakowska, K.; Pacholczak, A. Comparison of the Effect of Meta-Topolin and Benzyladenine during Daphne mezereum L. Micropropagation. Agronomy 2020, 10, 1994. [Google Scholar] [CrossRef]
- Meyer, E.M.; Touchell, D.H.; Ranney, T.G. In Vitro Shoot Regeneration and Polyploid Induction from Leaves of Hypericum Species. HortScience 2009, 44, 1957–1961. [Google Scholar] [CrossRef]
- Ahmad, N.; Fatima, N.; Faisal, M.; Alatar, A.A.; Pathirana, R. Photosynthetic Parameters and Oxidative Stress during Acclimation of Crepe-Myrtle (Lagerstroemia speciosa (L.) Pers.) in a Meta-Topolin-Based Micropropagation System and Genetic Fidelity of Regenerated Plants. Plants 2022, 11, 1163. [Google Scholar] [CrossRef]
- Napoli, E.; Siracusa, L.; Ruberto, G.; Carrubba, A.; Lazzara, S.; Speciale, A.; Cimino, F.; Saija, A.; Cristani, M. Phytochemical Profiles, Phototoxic and Antioxidant Properties of Eleven Hypericum Species—A Comparative Study. Phytochemistry 2018, 152, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Kirakosyan, A.; Gibson, D.M.; Sirvent, T. A Comparative Study of Hypericum perforatum Plants as Sources of Hypericins and Hyperforins. J. Herbs Spices Med. Plants 2003, 10, 73–88. [Google Scholar] [CrossRef]
- Kirakosyan, A.; Sirvent, T.M.; Gibson, D.M.; Kaufman, P.B. The Production of Hypericins and Hyperforin by in Vitro Cultures of St. John’s Wort (Hypericum perforatum). Biotechnol. Appl. Biochem. 2004, 39, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Meseguer, A.S.; Lobo, J.M.; Ree, R.; Beerling, D.J.; Sanmartín, I. Integrating Fossils, Phylogenies, and Niche Models into Biogeography to Reveal Ancient Evolutionary History: The Case of Hypericum (Hypericaceae). Syst. Biol. 2015, 64, 215–232. [Google Scholar] [CrossRef]
- Tzatzani, T.-T.; Michail, I.; Ioulietta, I.S.; Krigas, N.; Tsoktouridis, G. Micropropagation and Molecular Characterization of Hypericum perforatum L. Subsp. Veronense (Schrank) H. Lindb., a Valuable Medicinal Plant with Ornamental Value. Rom. J. Hortic. 2023, 4, 9–26. [Google Scholar] [CrossRef]
- Murasnige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Agsays with Tohaoco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
Peak No. | Rt (min) | UV λmax (nm) | [M + H]+ (m/z) | Phenolic Compound | Subclass |
---|---|---|---|---|---|
1 | 10.34 | 332 | 355 | 3-Caffeoylquinic acid (Neochlorogenic acid) | Hydroxycinnamic acid |
2 | 11.01 | 528 | 449.287 | Cyanidin-glucoside | Anthocyanin |
3 | 12.18 | 530 | 433.287 | Cyanidin-rhamnoside | Anthocyanin |
4 | 13.21 | 320 | 537 | Hyperforin | Phloroglucinol |
5 | 14.54 | 290 | 523 | Protopseudohypericin | Naphthodianthrone |
6 | 15.13 | 290 | 523 | Pseudohypericin | Naphthodianthrone |
7 | 15.83 | 360 | 465.303 | Quercetin-galactoside | Flavonol |
8 | 17.31 | 360 | 449.303 | Quercetin-rhamnoside | Flavonol |
9 | 17.71 | 322 | 467 | Hyperfirin | Phloroglucinol |
10 | 18.73 | 320 | 551 | Adhyperforin | Phloroglucinol |
11 | 20.06 | 322 | 481 | Adhyperfirin | Phloroglucinol |
12 | 21.05 | 360 | 303 | Quercetin | Flavonol |
13 | 24.42 | 330 | 505 | Hypericin | Naphthodianthrone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clapa, D.; Hârţa, M.; Radomir, A.M.; Peticilă, A.G.; Leopold, L.; Ranga, F.; Sumedrea, D.I. Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum. Plants 2025, 14, 2437. https://doi.org/10.3390/plants14152437
Clapa D, Hârţa M, Radomir AM, Peticilă AG, Leopold L, Ranga F, Sumedrea DI. Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum. Plants. 2025; 14(15):2437. https://doi.org/10.3390/plants14152437
Chicago/Turabian StyleClapa, Doina, Monica Hârţa, Ana Maria Radomir, Adrian George Peticilă, Loredana Leopold, Floricuţa Ranga, and Dorin Ioan Sumedrea. 2025. "Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum" Plants 14, no. 15: 2437. https://doi.org/10.3390/plants14152437
APA StyleClapa, D., Hârţa, M., Radomir, A. M., Peticilă, A. G., Leopold, L., Ranga, F., & Sumedrea, D. I. (2025). Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum. Plants, 14(15), 2437. https://doi.org/10.3390/plants14152437