Synergistic Role of Streptomyces Composite Inoculants in Mitigating Wheat Drought Stress Under Field Conditions
Abstract
:1. Introduction
2. Results
2.1. Effects of Streptomyces Inoculation on Morphological Growth Parameters of Wheat Under Drought Stress
2.2. Effects of Streptomyces Inoculation on Leaf Photosynthetic Characteristics Under Drought Stress
2.3. Effects of Streptomyces Inoculation on Leaf Antioxidant Enzyme Activities Under Drought Stress
2.4. Effects of Streptomyces Inoculation on MDA Content and Osmotic Regulatory Compounds in Wheat Under Drought Stress
2.5. Effects of Streptomyces Inoculation on Wheat Yield and Related Traits Under Drought Stress
3. Discussion
3.1. Streptomyces Enhances Wheat Drought Tolerance Through Photosynthesis and Antioxidant Mechanisms
3.2. Streptomyces Improves Wheat Biomass and Yield Under Drought Stress
3.3. Synergistic Effects of the Composite Inoculant on Wheat Drought Tolerance
4. Materials and Methods
4.1. Field Experiment
4.2. PGPR Strains and Seed Treatment
4.3. Measurement of Growth Parameters
4.4. Measurement of Chlorophyll Content and Chlorophyll Fluorescence Parameters
4.5. Measurement of Antioxidant Enzyme Activities, MDA Content, and Osmotic Regulatory Compounds
4.5.1. SOD and POD Activities
4.5.2. MDA Content
4.5.3. Proline Content
4.5.4. Protein Content
4.6. Measurement of Yield-Related Traits
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahzad, A.; Iqbal, M.; Asif, M.; Hirani, A.H.; Goyal, A. Growing Wheat on Saline Lands: Can a Dream Come True? Aust. J. Crop Sci. 2013, 7, 515–524. [Google Scholar]
- Zhang, Z.; Qu, Y.F.; Ma, F.F.; Lv, Q.; Zhu, X.J.; Guo, G.H.; Li, M.M.; Yang, W.; Que, B.B.; Zhang, Y.; et al. Integrating High-Throughput Phenotyping and Genome-Wide Association Studies for Enhanced Drought Resistance and Yield Prediction in Wheat. New Phytol. 2024, 243, 1758–1775. [Google Scholar] [CrossRef] [PubMed]
- Batool, A.; Akram, N.A.; Cheng, Z.G.; Lv, G.C.; Ashraf, M.; Afzal, M.; Xiong, J.L.; Wang, J.Y.; Xiong, Y.C. Physiological and Biochemical Responses of Two Spring Wheat Genotypes to Non-hydraulic Root-to-Shoot Signalling of Partial and Full Root-Zone Drought Stress. Plant Physiol. Biochem. 2019, 139, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Shen, Y.; Qi, Y.; Moiwo, J.P.; Min, L.; Zhang, Y.; Guo, Y.; Pei, H. Impact of Alternative Cropping Systems on Groundwater Use and Grain Yields in the North China Plain Region. Agric. Syst. 2017, 153, 109–117. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, D.L.; Wang, B.; Feng, P.; Bai, H.; Tang, J. Climate Change Impact on Yields and Water Use of Wheat and Maize in the North China Plainunder Future Climate Change Scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Meng, Q.; Sun, Q.; Chen, X.; Cui, Z.; Yue, S.; Zhang, F.; Römheld, V. Alternative Cropping Systems for Sustainable Water and Nitrogen Use in the North China Plain. Agric. Ecosyst. Environ. 2012, 146, 93–102. [Google Scholar] [CrossRef]
- Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Choudhary, K.; Gupta, P.; Pareek, A.; Singh, D.P.; Prabha, R.; Sahu, P.K.; Gupta, V.K.; et al. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Front. Plant Sci. 2017, 8, 172. [Google Scholar] [CrossRef]
- Ahmad, H.M.; Fiaz, S.; Hafeez, S.; Zahra, S.; Shah, A.N.; Gul, B.; Aziz, O.; Mahmood Ur, R.; Fakhar, A.; Rafique, M.; et al. Plant Growth-Promoting Rhizobacteria Eliminate the Effect of Drought Stress in Plants: A Review. Front. Plant Sci. 2022, 13, 875774. [Google Scholar] [CrossRef]
- Ojuederie, O.; Olanrewaju, O.; Babalola, O. Plant Growth Promoting Rhizobacterial Mitigation of Drought Stress in Crop Plants: Implications for Sustainable Agriculture. Agronomy 2019, 9, 712. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A Global Atlas of the Dominant Bacteria Found in Soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef]
- Shepherdson, E.M.F.; Baglio, C.R.; Elliot, M.A. Streptomyces Behavior and Competition in the Natural Environment. Curr. Opin. Microbiol. 2023, 71, 102257. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Singh, B.K. Harnessing Co-Evolutionary Interactions Between Plants and Streptomyces to Combat Drought Stress. Nat. Plants 2024, 10, 1159–1171. [Google Scholar] [CrossRef]
- Awad, N.; Rasmey, A.-H.; Aboseidaha, A.; Azizb, M.; Elshamy, A. Chemical Profile, Antimicrobial and Antitumor Activities of the Streptomyces rochei SUN35 Strain. Egypt. J. Chem. 2023, 66, 2211–2218. [Google Scholar] [CrossRef]
- Devi, S.; Sharma, M.; Manhas, R.K. Purification and Biological Analysis of Antimicrobial Compound Produced by an Endophytic Streptomyces sp. Sci. Rep. 2023, 13, 15248. [Google Scholar] [CrossRef]
- Patel, P.; Patel, G.; Mehta, P. Extraction and Molecular Characterization of Antimicrobial Metabolites from Streptomyces rochei Against Bacterial Leaf Blight of Cotton Caused by Pantoea sp. Asian J. Biol. Life Sci. 2020, 9, 158–162. [Google Scholar] [CrossRef]
- Li, H.; Guo, Q.; Jing, Y.; Liu, Z.; Zheng, Z.; Sun, Y.; Xue, Q.; Lai, H. Application of Streptomyces pactum Act12 Enhances Drought Resistance in Wheat. J. Plant Growth Regul. 2019, 39, 122–132. [Google Scholar] [CrossRef]
- Chen, J.; Qiao, M.; Yang, Y.; Gao, Z.; Yang, Z.; Lin, W. Exogenous Streptomyces spp. Benefit Naked Oat Growth under Dry Farming Conditions by Modifying Rhizosphere Bacterial Communities. Appl. Soil Ecol. 2023, 189, 104946. [Google Scholar] [CrossRef]
- Wang, N.; Ren, J.; Wang, L.; Wang, Y.; Wang, Z.; Guo, D. A Preliminary Study to Explain How Streptomyces pactum (Act12) Works on Phytoextraction: Soil Heavy Metal Extraction, Seed Germination, and Plant Growth. Environ. Monit. Assess. 2023, 195, 757. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, C.; Wang, S.; Zhang, M.; Li, Y.; Xue, Q.; Guo, Q.; Lai, H. Widely Targeted Metabolomic, Transcriptomic, and Metagenomic Profiling Reveal Microbe-Plant-Metabolic Reprogramming Patterns Mediated by Streptomyces pactum Act12 Enhance the Fruit Quality of Capsicum annuum L. Food Res. Int. 2023, 166, 112587. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, S.; Yang, D.; Zhang, J.; Liang, Z. Effects of Streptomyces pactum Act12 on Salvia miltiorrhiza Hairy Root Growth and Tanshinone Synthesis and Its Mechanisms. Appl. Biochem. Biotechnol. 2014, 173, 883–893. [Google Scholar] [CrossRef]
- Cao, S.; Yang, F.; Zhang, H.; Wang, Q.; Xu, G.; Zhu, B.; Wu, C. Physiological and Transcriptome Profiling Analyses Reveal Important Roles of Streptomyces rochei D74 in Improving Drought Tolerance of Puccinellia distans (Jacq.) Parl. Environ. Exp. Bot. 2023, 207, 105204. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Q.; He, F.; Li, Y.; Xue, Q.; Lai, H. Biocontrol of Root Diseases and Growth Promotion of the Tuberous Plant Aconitum carmichaelii Induced by Actinomycetes Are Related to Shifts in the Rhizosphere Microbiota. Microb. Ecol. 2020, 79, 134–147. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Han, X.; Han, G.; Xi, J.; Liu, Y.; Zhang, Y.; Xue, Q.; Guo, Q.; Lai, H. Actinobacterial Biofertilizer Improves the Yields of Different Plants and Alters the Assembly Processes of Rhizosphere Microbial Communities. Appl. Soil Ecol. 2022, 171, 104345. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Xue, Z.; Liu, Y.; Li, Y.; Li, Y.; Chen, Q. Streptomyces Application Triggers Reassembly and Optimization of the Rhizosphere Microbiome of Cucumber. Diversity 2021, 13, 413. [Google Scholar] [CrossRef]
- Peng, X.; Jia, T.; Bai, Q.; Lang, D.; Zhang, X. Development of a Composite Microbial Agent Beneficial to Improve Drought and Salt Tolerance of Glycyrrhiza uralensis Fisch. Ind. Crop. Prod. 2024, 211, 118280. [Google Scholar] [CrossRef]
- Begum, N.; Wang, L.; Ahmad, H.; Akhtar, K.; Roy, R.; Khan, M.I.; Zhao, T.J. Co-inoculation of Arbuscular Mycorrhizal Fungi and the Plant Growth-Promoting Rhizobacteria Improve Growth and Photosynthesis in Tobacco under Drought Stress by Up-Regulating Antioxidant and Mineral Nutrition Metabolism. Microb. Ecol. 2022, 83, 971–988. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, P.; Wu, X.; Zhu, M.; Kang, S.; Du, T.; Kang, J.; Chen, J.; Tong, L.; Ding, R. Optimizing Cotton Growth in Saline Soil: Compound Microbial Agent Modulates Indigenous Bacteria to Enhance Photosynthesis and Vegetative-Reproductive Balance. Ind. Crop. Prod. 2024, 221, 119286. [Google Scholar] [CrossRef]
- Yang, B.; Wen, H.; Wang, S.; Zhang, J.; Wang, Y.; Zhang, T.; Yuan, K.; Lu, L.; Liu, Y.; Xue, Q.; et al. Enhancing Drought Resistance and Yield of Wheat through Inoculation with Streptomyces pactum Act12 in Drought Field Environments. Agronomy 2024, 14, 692. [Google Scholar] [CrossRef]
- Chandran, H.; Meena, M.; Swapnil, P. Plant Growth-Promoting Rhizobacteria as a Green Alternative for Sustainable Agriculture. Sustainability 2021, 13, 10986. [Google Scholar] [CrossRef]
- Naveed, M.; Hussain, M.B.; Zahir, Z.A.; Mitter, B.; Sessitsch, A. Drought Stress Amelioration in Wheat Through Inoculation with Burkholderia phytofirmans Strain PsJN. Plant Growth Regul. 2014, 73, 121–131. [Google Scholar] [CrossRef]
- Rashid, U.; Yasmin, H.; Hassan, M.N.; Naz, R.; Nosheen, A.; Sajjad, M.; Ilyas, N.; Keyani, R.; Jabeen, Z.; Mumtaz, S.; et al. Drought-Tolerant Bacillus megaterium Isolated from Semi-Arid Conditions Induces Systemic Tolerance of Wheat under Drought Conditions. Plant Cell Rep. 2022, 41, 549–569. [Google Scholar] [CrossRef]
- Sun, C.; Johnson, J.M.; Cai, D.; Sherameti, I.; Oelmuller, R.; Lou, B. Piriformospora indica Confers Drought Tolerance in Chinese Cabbage Leaves by Stimulating Antioxidant Enzymes, the Expression of Drought-Related Genes and the Plastid-Localized CAS Protein. J. Plant Physiol. 2010, 167, 1009–1017. [Google Scholar] [CrossRef]
- Tamreihao, K.; Ningthoujam, D.S.; Nimaichand, S.; Singh, E.S.; Reena, P.; Singh, S.H.; Nongthomba, U. Biocontrol and Plant Growth Promoting Activities of a Streptomyces corchorusii Strain UCR3-16 and Preparation of Powder Formulation for Application as Biofertilizer Agents for Rice Plant. Microbiol. Res. 2016, 192, 260–270. [Google Scholar] [CrossRef]
- Yandigeri, M.S.; Meena, K.K.; Singh, D.; Malviya, N.; Singh, D.P.; Solanki, M.K.; Yadav, A.K.; Arora, D.K. Drought-Tolerant Endophytic Actinobacteria Promote Growth of Wheat (Triticum aestivum) under Water Stress Conditions. Plant Growth Regul. 2012, 68, 411–420. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Danish, S.; Abbas, M.; Ahmad, M.; Munir, T.M. ACC Deaminase Producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with Biochar Improve Wheat Productivity under Drought Stress. Agronomy 2019, 9, 343. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, Z.; Liu, X.; Wu, Q.; Chen, Q.; Liu, Q.; van Nocker, S.; Ma, F.; Li, C. Physiological and Transcriptome Analyses of the Effects of Exogenous Dopamine on Drought Tolerance in Apple. Plant Physiol. Biochem. 2020, 148, 260–272. [Google Scholar] [CrossRef]
- Bouremani, N.; Cherif-Silini, H.; Silini, A.; Bouket, A.C.; Luptakova, L.; Alenezi, F.N.; Baranov, O.; Belbahri, L. Plant Growth-Promoting Rhizobacteria (PGPR): A Rampart against the Adverse Effects of Drought Stress. Water 2023, 15, 418. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Mashwani, Z.-U.-R.; Hayat, R.; Yasmin, H.; Noureldeen, A.; Ahmad, P. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Silicon Dioxide Nano-Particles for Ameliorationof Drought Stress in Wheat. Plant Physiol. Biochem. 2021, 166, 160–176. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. Assessment of Lipid Peroxidation by Measuring Malondialdehyde (MDA) and Relatives in Biological Samples: Analytical and Biological Challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Arora, S.; Jha, P.N. Drought-tolerant Enterobacter bugandensis WRS7 Induces Systemic Tolerance in Triticum aestivum L. (wheat) under Drought Conditions. J. Plant Growth Regul. 2023, 42, 7715–7730. [Google Scholar] [CrossRef]
- Carlson, R.; Tugizimana, F.; Steenkamp, P.A.; Dubery, I.A.; Hassen, A.I.; Labuschagne, N. Rhizobacteria-induced Systemic Tolerance Against Drought Stress in Sorghum bicolor (L.) Moench. Microbiol. Res. 2020, 232, 126388. [Google Scholar] [CrossRef] [PubMed]
- Chandra, D.; Srivastava, R.; Glick, B.R.; Sharma, A.K. Rhizobacteria Producing ACC Deaminase Mitigate Water-Stress Response in Finger Millet (Eleusine coracana (L.) Gaertn.). 3 Biotech. 2020, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.; Chaudhary, A.; Singh, H.; Kumar, P.A. Prospective Evaluation of Individual and Consortia Plant Growth Promoting Rhizobacteria for Drought Stress Amelioration in Rice (Oryza sativa L.). Plant Soil 2020, 457, 225–240. [Google Scholar] [CrossRef]
- Saleem, M.; Nawaz, F.; Hussain, M.B.; Ikram, R.M. Comparative Effects of Individual and Consortia Plant Growth Promoting Bacteria on Physiological and Enzymatic Mechanisms to Confer Drought Tolerance in Maize (Zea mays L.). J. Soil Sci. Plant Nutr. 2021, 21, 3461–3476. [Google Scholar] [CrossRef]
- Girma, B.; Panda, A.N.; Roy, P.C.; Ray, L.; Mohanty, S.; Chowdhary, G. Molecular, Biochemical, and Comparative Genome Analysis of a Rhizobacterial Strain Klebsiella Sp. KBG6.2 Imparting Salt Stress Tolerance to Oryza sativa L. Environ. Exp. Bot. 2022, 203, 105066. [Google Scholar] [CrossRef]
- Ali, A.; Guo, D.; Mahar, A.; Ma, F.; Li, R.; Shen, F.; Wang, P.; Zhang, Z. Streptomyces pactum Assisted Phytoremediation in Zn/Pb Smelter Contaminated Soil Of Feng County and its Impact on Enzymatic Activities. Sci. Rep. 2017, 7, 46087. [Google Scholar] [CrossRef]
- Ilyas, N.; Mumtaz, K.; Akhtar, N.; Yasmin, H.; Sayyed, R.Z.; Khan, W.; El Enshasy, H.A.; Dailin, D.J.; Elsayed, E.A.; Ali, Z. Exopolysaccharides Producing Bacteria for the Amelioration of Drought Stress in Wheat. Sustainability 2020, 12, 8876. [Google Scholar] [CrossRef]
- Astorga-Eló, M.; Gonzalez, S.; Acuña, J.J.; Sadowsky, M.J.; Jorquera, M.A. Rhizobacteria from ‘Flowering Desert’ Events Contribute to the Mitigation of Water Scarcity Stress During Tomato Seedling Germination and Growth. Sci. Rep. 2021, 11, 13745. [Google Scholar] [CrossRef]
- Chukwuneme, C.F.; Babalola, O.O.; Kutu, F.R.; Ojuederie, O.B. Characterization of Actinomycetes Isolates for Plant Growth Promoting Traits and Their Effects on Drought Tolerance in Maize. J. Plant Interact. 2020, 15, 93–105. [Google Scholar] [CrossRef]
- Narayanasamy, S.; Thangappan, S.; Uthandi, S. Plant Growth-Promoting Bacillus sp. Cahoots Moisture Stress Alleviation in Rice Genotypes by Triggering Antioxidant Defense System. Microbiol. Res. 2020, 239, 126518. [Google Scholar] [CrossRef]
- Silva, R.; Filgueiras, L.; Santos, B.; Coelho, M.; Silva, M.; Estrada-Bonilla, G.; Vidal, M.; Baldani, J.I.; Meneses, C. Gluconacetobacter diazotrophicus Changes the Molecular Mechanisms of Root Development in Oryza sativa L. Growing under Water Stress. Int. J. Mol. Sci. 2020, 21, 333. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Haider, M.Z.; Javed, S.; Saleem, M.H.; Alatawi, A. Drought Stress Amelioration in Maize (Zea mays L.) by Inoculation of Bacillus spp. Strains Under Sterile Soil Conditions. Agriculture 2022, 12, 50. [Google Scholar] [CrossRef]
- Cao, S. Actinomycetes Enhance Phytoremediation of Lead and Cadmium Contaminated Soil and Its Mechanisms. Ph.D. Thesis, Chang’an University, Xi’an, China, 2016. [Google Scholar]
- Murali, M.; Gowtham, H.G.; Singh, S.B.; Shilpa, N.; Aiyaz, M.; Niranjana, S.R.; Amruthesh, K.N. Bio-Prospecting of ACC Deaminase Producing Rhizobacteria Towards Sustainable Agriculture: A Special Emphasis on Abiotic Stress in Plants. Appl. Soil Ecol. 2021, 168, 104142. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Batool Zahra, M.; Danish, S.; Abbas, M.; Rehim, A.; Naeem Akbar, M.; Iftikhar, A.; Gul, M.; Nazir, I.; Abid, M.; et al. Multi-Strain Inoculation with PGPR Producing ACC Deaminase is More Effective Than Single-Strain Inoculation to Improve Wheat (Triticum Aestivum) Growth and yield. Phyton 2020, 89, 405–413. [Google Scholar] [CrossRef]
- Danish, S.; Zafar-Ul-Hye, M. Co-Application of ACC-Deaminase Producing PGPR and Timber-Waste Biochar Improves Pigments Formation, Growth and Yield of Wheat Under Drought Stress. Sci. Rep. 2019, 9, 5999. [Google Scholar] [CrossRef]
- Chandwani, S.; Amaresan, N. ACC Deaminase Producing Bacteria Alleviate the Polyethylene Glycol Induced Drought Stress in Black Gram (Vigna mungo L.) by Enhancing Nutrient Uptake and Soil Respiration Activity. Sci. Hortic. 2024, 331, 113111. [Google Scholar] [CrossRef]
- Ali, S.; Khan, N. Delineation of Mechanistic Approaches Employed by Plant Growth Promoting Microorganisms for Improving Drought Stress Tolerance in Plants. Microbiol. Res. 2021, 249, 126771. [Google Scholar] [CrossRef]
- Bittencourt, P.P.; Alves, A.F.; Ferreira, M.B.; da Silva Irineu, L.E.S.; Pinto, V.B.; Olivares, F.L. Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance. Microorganisms 2023, 11, 502. [Google Scholar] [CrossRef]
- Yang, B.; Yan, X.; Wang, H.Y.; Li, X.Y.; Ma, H.X.; Wang, S.G.; Sun, D.Z.; Jing, R.L. Dynamic QTL Analysis of Chlorophyll Content During Grain Filling Stage in Winter Wheat(Triticum aestivum L.). Rom. Agric. Res. 2016, 33, 77–85. [Google Scholar]
- Tang, B.; Xu, S.-Z.; Zou, X.-L.; Zheng, Y.-L.; Qiu, F.-Z. Changes of Antioxidative Enzymes and Lipid Peroxidation in Leaves and Roots of Waterlogging-Tolerant and Waterlogging-Sensitive Maize Genotypes at Seedling Stage. Agric. Sci. China 2010, 9, 651–661. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts. I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.A.; Teare, I. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, H.; Wen, H.; Zhang, J.; Wang, Y.; Lu, L.; Liu, Y.; Yang, B.; Ji, W. Synergistic Role of Streptomyces Composite Inoculants in Mitigating Wheat Drought Stress Under Field Conditions. Plants 2025, 14, 366. https://doi.org/10.3390/plants14030366
Shan H, Wen H, Zhang J, Wang Y, Lu L, Liu Y, Yang B, Ji W. Synergistic Role of Streptomyces Composite Inoculants in Mitigating Wheat Drought Stress Under Field Conditions. Plants. 2025; 14(3):366. https://doi.org/10.3390/plants14030366
Chicago/Turabian StyleShan, Hao, Hongwei Wen, Jinhui Zhang, Yuzhi Wang, Lahu Lu, Yutao Liu, Bin Yang, and Wei Ji. 2025. "Synergistic Role of Streptomyces Composite Inoculants in Mitigating Wheat Drought Stress Under Field Conditions" Plants 14, no. 3: 366. https://doi.org/10.3390/plants14030366
APA StyleShan, H., Wen, H., Zhang, J., Wang, Y., Lu, L., Liu, Y., Yang, B., & Ji, W. (2025). Synergistic Role of Streptomyces Composite Inoculants in Mitigating Wheat Drought Stress Under Field Conditions. Plants, 14(3), 366. https://doi.org/10.3390/plants14030366