Morphological and Transcriptome Analysis of the Near-Threatened Orchid Habenaria radiata with Petals Shaped Like a Flying White Bird
Abstract
:1. Introduction
2. Results
2.1. Anthesis and Petal Withering
2.2. Lip Morphogenesis
2.3. Transcriptome Analysis of Floral Buds
2.4. Expression of Floral Homeotic Genes in Floral Organs
2.5. Transgenic Analysis of Habenaria radiata Floral Homeotic Genes in a Model Plant
2.6. Digital Expression of Genes Involved in Serration Formation
3. Discussion
3.1. Anthesis and Petal Withering
3.2. Lip Serration
3.3. Regional Differences in Lip Morphology and Conservation
3.4. Conclusions
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Confocal Microscopy
4.3. Cell Shape Quantification
4.4. Transcriptome Analysis
4.5. RT-PCR
4.6. Transformation of Arabidopsis Thaliana Mutants
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Theissen, G.; Saedler, H. Plant biology. Floral quartets. Nature 2001, 409, 469–471. [Google Scholar] [CrossRef]
- Theissen, G.; Melzer, R.; Rumpler, F. MADS-domain transcription factors and the floral quartet model of flower development: Linking plant development and evolution. Development 2016, 143, 3259–3271. [Google Scholar] [CrossRef] [PubMed]
- Krizek, B.A.; Fletcher, J.C. Molecular mechanisms of flower development: An armchair guide. Nat. Rev. Genet. 2005, 6, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Tsai, W.C.; Kuoh, C.-S.; Chuang, M.-H.; Chen, W.-H.; Chen, H.-H. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol. 2004, 45, 831–844. [Google Scholar] [CrossRef]
- Tsai, W.C.; Lee, P.-F.; Hsiao, Y.-Y.; Wei, W.-J.; Pan, Z.-J.; Chuang, M.-H.; Kuoh, C.-S.; Chen, W.-H.; Chen, H.-H. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 2005, 46, 1125–1139. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.C.; Pan, Z.-J.; Hsiao, Y.-Y.; Jeng, M.-F.; Wu, T.-F.; Chen, W.-H.; Chen, H.-H. Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol. 2008, 49, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.Y.; Kao, N.-H.; Li, J.-Y.; Hsu, W.-H.; Liang, Y.-L.; Wu, J.-W.; Yang, C.-H. Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol. 2010, 152, 837–853. [Google Scholar] [CrossRef]
- Hsu, H.F.; Yang, C.H. An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol. 2002, 43, 1198–1209. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.F.; Huang, C.-H.; Chou, L.-T.; Yang, C.-H. Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 2003, 44, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Teo, L.L.; Zhou, J.; Kumar, P.P.; Yu, H. Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J. 2006, 46, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Aceto, S.; Sica, M.; De Paolo, S.; D’Argenio, V.; Cantiello, P.; Salvatore, F.; Gaudio, L. The analysis of the inflorescence miRNome of the orchid Orchis italica reveals a DEF-like MADS-box gene as a new miRNA target. PLoS ONE 2014, 9, e97839. [Google Scholar] [CrossRef] [PubMed]
- Dirks-Mulder, A.; Butôt, R.; van Schaik, P.; Wijnands, J.W.P.M.; Berg, R.v.D.; Krol, L.; Doebar, S.; van Kooperen, K.; de Boer, H.; Kramer, E.M.; et al. Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system. BMC Evol. Biol. 2017, 17, 89. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Yun, P.-Y.; Fukuda, T.; Ochiai, T.; Yokoyama, J.; Kameya, T.; Kanno, A. Expression of a DEFICIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Sci. 2007, 172, 319–326. [Google Scholar] [CrossRef]
- Mitoma, M.; Kanno, A. The Greenish Flower Phenotype of Habenaria radiata (Orchidaceae) Is Caused by a Mutation in the SEPALLATA-Like MADS-Box Gene HrSEP-1. Front. Plant Sci. 2018, 9, 831. [Google Scholar] [CrossRef] [PubMed]
- Mitoma, M.; Kanno, A. Molecular mechanism underlying pseudopeloria in Habenaria radiata (Orchidaceae). Plant J. 2019, 99, 439–451. [Google Scholar] [CrossRef]
- Pan, Z.J.; Cheng, C.-C.; Tsai, W.-C.; Chung, M.-C.; Chen, W.-H.; Hu, J.-M.; Chen, H.-H. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant Cell Physiol. 2011, 52, 1515–1531. [Google Scholar] [CrossRef]
- Mondragon-Palomino, M.; Theissen, G. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: Refining the ‘orchid code’. Plant J. 2011, 66, 1008–1019. [Google Scholar] [CrossRef]
- Mondragon-Palomino, M. Perspectives on MADS-box expression during orchid flower evolution and development. Front. Plant Sci. 2013, 4, 377. [Google Scholar] [CrossRef] [PubMed]
- Mondragon-Palomino, M.; Theissen, G. MADS about the evolution of orchid flowers. Trends Plant Sci. 2008, 13, 51–59. [Google Scholar] [CrossRef]
- Mondragon-Palomino, M.; Theissen, G. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann. Bot. 2009, 104, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.F.; Hsu, W.-H.; Lee, Y.-I.; Mao, W.-T.; Yang, J.-Y.; Li, J.-Y.; Yang, C.-H. Model for perianth formation in orchids. Nat. Plants 2015, 1, 15046. [Google Scholar] [CrossRef]
- Royal Botanic Gardens, K. Available online: http://apps.kew.org/wcsp/ (accessed on 3 December 2024).
- Ministry of the Environment, R.L. Available online: https://ikilog.biodic.go.jp/Rdb/booklist (accessed on 3 December 2024).
- Ikeuchi, Y.; Suetsugu, K.; Sumikawa, H. Diurnal skipper Pelopidas mathias (Lepidoptera: Hesperiidae) pollinates Habenaria radiata (Orchidaceae). Entomol. News 2015, 125, 7–11. [Google Scholar] [CrossRef]
- Suetsugu, K.; Tanaka, K. Diurnal butterfly pollination in the orchid Habenaria radiata. Entomol. Sci. 2014, 17, 443–445. [Google Scholar] [CrossRef]
- Suetsugu, K.; Abe, Y.; Asai, T.; Matsumoto, S.; Hasegawa, M. Specialized petal with conspicuously fringed margin influences reproductive success in Habenaria radiata (Orchidaceae). Ecology 2022, 103, e3781. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, T.; Nishikawa, Y.; Kubo, N.; Takeda, S. Morphological and Genetic Diversities of Habenaria radiata (Orchidaceae) in the Kinki Area, Japan. Int. J. Mol. Sci. 2020, 22, 311. [Google Scholar] [CrossRef]
- Nikovics, K.; Blein, T.; Peaucelle, A.; Ishida, T.; Morin, H.; Aida, M.; Laufs, P. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 2006, 18, 2929–2945. [Google Scholar] [CrossRef]
- Bilsborough, G.D.; Runions, A.; Barkoulas, M.; Jenkins, H.W.; Hasson, A.; Galinha, C.; Laufs, P.; Hay, A.; Prusinkiewicz, P.; Tsiantis, M. Model for the regulation of Arabidopsis thaliana leaf margin development. Proc. Natl. Acad. Sci. USA 2011, 108, 3424–3429. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Fang, N.; Lu, T.; Tameshige, T.; Nakata, M.T.; Jiang, Y.; Tan, L.; He, H.; Zhang, X.; Huang, Y.; et al. WOX1 controls leaf serration development via temporally restricting BZR1 and CUC3 expression in Arabidopsis. J. Exp. Bot. 2025, 76, 478–492. [Google Scholar] [CrossRef] [PubMed]
- Engelhorn, J.; Reimer, J.J.; Leuz, I.; Göbel, U.; Huettel, B.; Farrona, S.; Turck, F. Development-related PcG target in the apex 4 controls leaf margin architecture in Arabidopsis thaliana. Development 2012, 139, 2566–2575. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Guo, L.; Tagliere, E.; Yang, Z.; Liu, Z. Leaf dissection and margin serration are independently regulated by two regulators converging on the CUC2-auxin module in strawberry. Curr. Biol. 2024, 34, 769–780.e5. [Google Scholar] [CrossRef]
- Ori, N.; Cohen, A.R.; Etzioni, A.; Brand, A.; Yanai, O.; Shleizer, S.; Menda, N.; Amsellem, Z.; Efroni, I.; Pekker, I.; et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat. Genet. 2007, 39, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Mitsuda, N.; Seki, M.; Shinozaki, K.; Ohme-Takagi, M. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 2010, 22, 3574–3588. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Ohme-Takagi, M.; Sato, F. Generation of serrated and wavy petals by inhibition of the activity of TCP transcription factors in Arabidopsis thaliana. Plant Signal. Behav. 2011, 6, 697–699. [Google Scholar] [CrossRef] [PubMed]
- Crawford, B.C.; Nath, U.; Carpenter, R.; Coen, E.S. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol. 2004, 135, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Freytes, S.N.; Canelo, M.; Cerdan, P.D. Regulation of Flowering Time: When and Where? Curr. Opin. Plant Biol. 2021, 63, 102049. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Sun, Z.; Yan, P.; Wang, T.; Zhang, Y. Mechanical regulation of cortical microtubules in plant cells. New Phytol. 2023, 239, 1609–1621. [Google Scholar] [CrossRef]
- de Boer, H.J.; Schaefer, H.; Thulin, M.; Renner, S.S. Evolution and loss of long-fringed petals: A case study using a dated phylogeny of the snake gourds, Trichosanthes (Cucurbitaceae). BMC Evol. Biol. 2012, 12, 108. [Google Scholar] [CrossRef]
- Katsuhara, K.R.; Kitamura, S.; Ushimaru, A. Functional significance of petals as landing sites in fungus-gnat pollinated flowers of Mitella pauciflora (Sexifragaceae). Funct. Ecol. 2017, 31, 1193–1200. [Google Scholar] [CrossRef]
- Higaki, T.; Takigawa-Imamura, H.; Akita, K.; Kutsuna, N.; Kobayashi, R.; Hasezawa, S.; Miura, T. Exogenous Cellulase Switches Cell Interdigitation to Cell Elongation in an RIC1-dependent Manner in Arabidopsis thaliana Cotyledon Pavement Cells. Plant Cell Physiol. 2017, 58, 106–119. [Google Scholar] [PubMed]
- Brunner, A.M.; Yakovlev, I.A.; Strauss, S.H. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol. 2004, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Yoza, M.; Ueda, S.; Takeuchi, S.; Maeno, A.; Sakamoto, T.; Kimura, S. Exploring the diversity of galls on Artemisia indica induced by Rhopalomyia species through morphological and transcriptome analyses. Plant Direct 2024, 8, e619. [Google Scholar] [CrossRef] [PubMed]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeda, S.; Nishikawa, Y.; Tachibana, T.; Higaki, T.; Sakamoto, T.; Kimura, S. Morphological and Transcriptome Analysis of the Near-Threatened Orchid Habenaria radiata with Petals Shaped Like a Flying White Bird. Plants 2025, 14, 393. https://doi.org/10.3390/plants14030393
Takeda S, Nishikawa Y, Tachibana T, Higaki T, Sakamoto T, Kimura S. Morphological and Transcriptome Analysis of the Near-Threatened Orchid Habenaria radiata with Petals Shaped Like a Flying White Bird. Plants. 2025; 14(3):393. https://doi.org/10.3390/plants14030393
Chicago/Turabian StyleTakeda, Seiji, Yuki Nishikawa, Tsutomu Tachibana, Takumi Higaki, Tomoaki Sakamoto, and Seisuke Kimura. 2025. "Morphological and Transcriptome Analysis of the Near-Threatened Orchid Habenaria radiata with Petals Shaped Like a Flying White Bird" Plants 14, no. 3: 393. https://doi.org/10.3390/plants14030393
APA StyleTakeda, S., Nishikawa, Y., Tachibana, T., Higaki, T., Sakamoto, T., & Kimura, S. (2025). Morphological and Transcriptome Analysis of the Near-Threatened Orchid Habenaria radiata with Petals Shaped Like a Flying White Bird. Plants, 14(3), 393. https://doi.org/10.3390/plants14030393