Effects of Cytokinins on Morphogenesis, Total (Poly)Phenolic Content and Antioxidant Capacity of In Vitro-Cultured Hop Plantlets, cvs. Cascade and Columbus
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material and Culture Conditions
4.2. Experimental Design
4.3. Biochemical Analysis
4.3.1. Sample Extraction
4.3.2. Determination of Total (Poly)Phenolic Content
4.3.3. Antioxidant Capacity of Hop Vitro-Derived Vegetative Biomass, Through DPPH and ABTS+ Assays
4.4. Statistical Analyses of Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Willer, J.; Zidorn, C.; Juan-Vicedo, J. Ethnopharmacology, phytochemistry, and bioactivities of Hieracium L. and Pilosella Hill (Cichorieae, Asteraceae) species. J. Ethnopharmacol. 2021, 281, 114465. [Google Scholar] [CrossRef] [PubMed]
- Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.S.; Lorenzo, J.M. Humulus lupulus L. as a natural source of functional biomolecules. Appl. Sci. 2020, 10, 5074. [Google Scholar] [CrossRef]
- Kramer, B.; Thielmann, J.; Hickisch, A.; Muranyi, P.; Wunderlich, J.; Hauser, C. Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J. Appl. Microbiol. 2015, 118, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Nionelli, L.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. Int. J. Food Microbiol. 2018, 266, 173–182. [Google Scholar] [CrossRef]
- Sanz, V.; Torres, M.D.; Vilariño, L.J.M.; Domínguez, H. What is new on the hop extraction? Trends Food Sci. Technol. 2019, 93, 12–22. [Google Scholar] [CrossRef]
- Mendonca-Santana, A.F.; Teixeira-Fernandes, A.L.; Miranda, E.; Coronado, L.O.; Rios-Tibery, L.; Finzer, J. HOPS: The Aromatic Ingredient of Breweries. Agric. Food Sci. Environ. Sci. 2024, 18, e08463. [Google Scholar] [CrossRef]
- Alonso-Esteban, J.I.; Pinela, J.; Barros, L.; Ciri´c, A.; Sokovi´c, M.; Calhelha, R.C.; Torija-Isasa, E.; de Cortes ´Sánchez-Mata, M.; Ferreira, I.C.F.R. Phenolic composition and antioxidant, antimicrobial and cytotoxic properties of hop (Humulus lupulus L.) seeds. Ind. Crops Prod. 2019, 134, 154–159. [Google Scholar] [CrossRef]
- Liu, M.; Hansen, P.; Wang, G.; Qui, L.; Dong, J.; Yin, H.; Zhonghua, Q.; Mei, Y.; Jinlai, M. Pharmacological profile of xanthohumol a prenylated flavonoid from hops (H. lupulus). Molecules 2015, 20, 754–779. [Google Scholar] [CrossRef]
- Bocquet, L.; Rivière, C.; Dermont, C.; Samaillie, J.; Hilbert, J.L.; Halama, P.; Siah, A.; Sahpaz, S. Antifungal activity of hop extracts and compounds against the wheat pathogen Zymoseptoria tritici. Ind. Crops Prod. 2018, 122, 290–297. [Google Scholar] [CrossRef]
- Nezi, P.; Cicaloni, V.; Tinti, L.; Salvini, L.; Iannone, M.; Vitalini, S.; Garzoli, S. Metabolomic and proteomic profile of dried hop inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. Separations 2022, 9, 204. [Google Scholar] [CrossRef]
- Gerhäuser, C. Broad spectrum anti-infective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Mol. Nutr. Food Res. 2005, 49, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Kavalier, A.R.; Litt, A.; Ma, C.; Pitra, N.J.; Coles, M.C.; Kennelly, E.J.; Matthews, P.D. Phytochemical and morphological characterization of hop (Humulus lupulus L.) cones over five developmental stages using high performance liquid chromatography coupled to time-of-flight mass spectrometry, ultrahigh performanceliquid chromatography photodiode array detection, and light microscopy techniques. J. Agric. Food Chem. 2011, 59, 4783–4793. [Google Scholar] [CrossRef] [PubMed]
- Čeh, B.; Kac, M.; Košir, I.J.; Abram, V. Relationships between xanthohumol and polyphenol content in hop leaves and hop cones with regard to water supply and cultivar. Int. J. Mol. Sci. 2007, 8, 989–1000. [Google Scholar] [CrossRef]
- Abram, V.; Čeh, B.; Vidmar, M.; Hercezi, M.; Lazić, N.; Bucik, V.; Smole-Možina, S.; Košir, I.J.; Kač, M.; Demšar, L.; et al. A comparison of antioxidant and antimicrobial activity between hop leaves and hop cones. Ind. Crops Prod. 2015, 64, 124–134. [Google Scholar] [CrossRef]
- Green, P.B. Self-organization and the formation of patterns in plants. In Dynamics of Cell and Tissue Motion. Mathematics and Biosciences in Interaction; Alt, W., Deutsch, A., Dunn, G.A., Eds.; Birkhäuser: Basel, Switzerland, 1997; pp. 243–249. [Google Scholar] [CrossRef]
- Buchanan, B.B.; Jones, R.L. Biochemistry & Molecular Biology of Plants; American Society of Plant Physiologists: Rockville, MD, USA, 2020. [Google Scholar]
- Chiancone, B.; Guarrasi, V.; Leto, L.; Del Vecchio, L.; Calani, L.; Ganino, T.; Galaverni, M.; Cirlini, M. Vitro-derived hop (Humulus lupulus L.) leaves and roots as source of bioactive compounds: Antioxidant activity and polyphenolic profile. Plant Cell Tiss. Org. 2023, 153, 295–306. [Google Scholar] [CrossRef]
- Faragó, J.; Pšenáková, I.; Faragová, N. The use of biotechnology in hop (Humulus lupulus L.) improvement. Nova Biotechnol. 2009, 9, 279–293. [Google Scholar] [CrossRef]
- Leto, L.; Favari, C.; Agosti, A.; Del Vecchio, L.; Di Fazio, A.; Bresciani, L.; Mena, P.; Guarrasi, V.; Cirlini, M.; Chiancone, B. Evaluation of in vitro-derived hop plantlets, cv. Columbus and Magnum, as potential source of bioactive compounds. Antioxidants 2024, 13, 909. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F.A. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum. 1962, 15, 473–479. [Google Scholar] [CrossRef]
- Howell, S.H.; Lall, S.; Che, P. Cytokinins and shoot development. Trends Plant Sci. 2003, 8, 453–459. [Google Scholar] [CrossRef]
- Phillips, G.C.; Garda, M. Plant tissue culture media and practices: An overview. Vitr. Cell. Dev. Biol. Plant. 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Schaller, G.E.; Street, I.H.; Kieber, J.J. Cytokinin and the cell cycle. Curr. Opin. Plant Biol. 2014, 21, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Raines, T.; Shanks, C.; Cheng, C.Y.; McPherson, D.; Argueso, C.T.; Kim, H.J.; Kieber, J.J. The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. Plant J. 2016, 85, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Zwack, P.J.; Rashotte, A.M. Cytokinin inhibition of leaf senescence. Plant Signal Behav. 2013, 8, e24737. [Google Scholar] [CrossRef] [PubMed]
- Mughal, N.; Shoaib, N.; Chen, J.; He, Y.; Fu, M.; Li, X.; Liu, J. Adaptive roles of cytokinins in enhancing plant resilience and yield against environmental stressors. Chemosphere 2024, 364, 143189. [Google Scholar] [CrossRef]
- Horner, C.E.; Likens, S.T.; Zimmerman, C.E.; Haunold, A. ‘Cascade’—A new continental-type hop variety for the US. Brew Digest. 1972, 8, 56–62. [Google Scholar]
- Santagostini, L.; Caporali, E.; Giuliani, C.; Bottoni, M.; Ascrizzi, R.; Araneo, S.R.; Fico, G. Humulus lupulus L. cv. Cascade grown in Northern Italy: Morphological and phytochemical characterization. Plant Biosyst. 2020, 154, 316–325. [Google Scholar] [CrossRef]
- Padgitt-Cobb, L.K.; Kingan, S.B.; Wells, J.; Elser, J.; Kronmiller, B.; Moore, D.; Concepcion, G.; Peluso, P.; Rank, D.; Jaiswal, P.; et al. A draft phased assembly of the diploid Cascade hop (Humulus lupulus) genome. J. Plant Genome Sci. 2021, 14, e20072. [Google Scholar] [CrossRef]
- Iacuzzi, N.; Salamone, F.; Farruggia, D.; Tortorici, N.; Vultaggio, L.; Tuttolomondo, T. Development of a new micropropagation protocol and transfer of in vitro plants to in vivo conditions for Cascade hop. Plants 2023, 12, 2877. [Google Scholar] [CrossRef]
- De-Souza, R.; Adams, C.R.; De-Melo, R.C.; Guidolin, A.F.; Michel, A.; Coimbra, J.L.M. Growth regulators and their reflection on different hop genotypes cultivated under in vitro conditions. Braz. J. Biol. 2021, 82, e242596. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Kuźma, Ł.; Wysokińska, H. The effect of cytokinins on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina. Plant Cell Tiss. Organ Cult. 2015, 122, 699–708. [Google Scholar] [CrossRef]
- Ptak, A.; Szewczyk, A.; Simlat, M.; Błażejczak, A.; Warchoł, M. Meta-Topolin-induced mass shoot multiplication and biosynthesis of valuable secondary metabolites in Stevia rebaudiana Bertoni bioreactor culture. Sci. Rep. 2023, 13, 15520. [Google Scholar] [CrossRef] [PubMed]
- Clapa, D.; Hârța, M. Establishment of an efficient micropropagation system for Humulus lupulus L. cv. Cascade and confirmation of genetic uniformity of the regenerated plants through DNA markers. Agronomy 2021, 11, 2268. [Google Scholar] [CrossRef]
- Mafakheri, M.; Hamidoghli, Y. Micropropagation of hop (Humulus lupulus L.) via shoot tip and node culture. In Proceedings of the IV International Humulus Symposium, Yakima, WA, USA, 4–8 August 2015; pp. 31–36. [Google Scholar] [CrossRef]
- Batista, D.; Sousa, M.J.; Pais, M.S. Plant regeneration from stem and petiole-derived callus of Humulus lupulus L. (Hop) clone Braganca and var. Brewer’s Gold. Vitr. Plant 1996, 32, 37–41. [Google Scholar] [CrossRef]
- Asensio, E.; de Medinacelli Juan-Méndez, R.; Juan-Vicedo, J. In vitro propagation and phytochemistry of thymol-producing plants from a horticultural form of Thymus × josephi-angeli Mansanet & Aguil. (Lamiaceae). Horticulturae 2022, 8, 1188. [Google Scholar] [CrossRef]
- Juan-Vicedo, J.; Ramírez-Luna, J.E.; Piqueras, A.; Casas, J.L. Micropropagation and cryopreservation by vitrification of the Spanish endemic medicinal plant Sideritis leucantha Cav. subsp. leucantha (Lamiaceae). Vitr. Cell. Dev. Biol. Plant. 2021, 57, 1057–1065. [Google Scholar] [CrossRef]
- Juan-Vicedo, J.; Pavlov, A.; Ríos, S.; Casas, J.L. Micropropagation of five endemic, rare and/or endangered Narcissus species from the Iberian Peninsula (Spain and Portugal). Acta Biol. Crac. Ser. Bot. 2021, 63, 55–61. [Google Scholar] [CrossRef]
- Lagos, F.S.; Zuffellato-Ribas, K.C.; Deschamps, C. Vegetative propagation of hops (Humulus lupulus L.): Historical approach and perspectives. Semin. Cienc. Agrar. 2022, 43, 1373–1394. [Google Scholar] [CrossRef]
- Cary, A.J.; Liu, W.; Howell, S.H. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 1995, 107, 1075–1082. [Google Scholar] [CrossRef]
- Debi, B.R.; Taketa, S.; Ichii, M. Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J. Plant Physiol. 2005, 162, 507–515. [Google Scholar] [CrossRef]
- Skoog, F.; Miller, C.O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 1957, 11, 118–130. [Google Scholar]
- Werner, T.; Nehnevajova, E.; Köllmer, I.; Novák, O.; Strnad, M.; Krämer, U.; Schmülling, T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell. 2010, 22, 3905–3920. [Google Scholar] [CrossRef] [PubMed]
- Prerostova, S.; Dobrev, P.I.; Gaudinova, A.; Knirsch, V.; Körber, N.; Pieruschka, R.; Fiorani, F.; Brzobohatý, B.; Cerný, M.; Spichal, L.; et al. Cytokinins: Their Impact on molecular and growth responses to drought stress and recovery in Arabidopsis. Front. Plant Sci. 2018, 9, 655. [Google Scholar] [CrossRef] [PubMed]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed]
- Damanik, R.I.; Manurung, D.; Bayu, E.S.; Rahmawati, N. Response of some soybean (Glycine max L. Merrill) varieties on flooded condition with application of Benzyl Amino Purine (BAP) and Salicylic Acid (SA) in the R3 phase. IOP Conf. Ser. Earth Environ. Sci. 2020, 454, 012162. [Google Scholar] [CrossRef]
- Singh, J.; Sabir, F.; Sangwan, R.S.; Narnoliya, L.K.; Saxena, S.; Sangwan, N.S. Enhanced secondary metabolite production and pathway gene expression by leaf explants-induced direct root morphotypes are regulated by combination of growth regulators and culture conditions in Centella asiatica (L.) urban. Plant Growth Regul. 2015, 75, 55–66. [Google Scholar] [CrossRef]
- Önder, F.C.; Ay, M.; Sarker, S.D. Comparative study of antioxidant properties and total phenolic content of the extracts of Humulus lupulus L. and quantification of bioactive components by LC-MS/MS and GC-MS. J. Agric. Food Chem. 2013, 61, 10498–10506. [Google Scholar] [CrossRef]
- Wu, S.; Shen, D.; Wang, R.; Li, Q.; Mo, R.; Zheng, Y.; Zhou, Y.; Liu, Y. Phenolic profiles and antioxidant activities of free, esterified and bound phenolic compounds in walnut kernel. Food Chem. 2021, 350, 129217. [Google Scholar] [CrossRef]
Genotype (G) | Growth Regulator (GR) | Growth Regulator Concentration (GRC) | Viability | Sprouting | Rooting | Callus | Sprouts | Roots | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | ±SD | % | ±SD | % | ±SD | % | ±SD | n° | ±SD | n° | ±SD | |||
CASCADE | Kinetin | 0 µM | 100.00 | 0.00 | 45.83 | 13.82 | 41.67 | 14.43 | 0.00 | 0.00 | 0.67 | 0.12 | 0.88 | 0.25 |
1 µM | 58.33 | 8.33 | 41.67 | 8.33 | 0.00 | 0.00 | 33.33 | 20.41 | 0.67 | 0.20 | 0.00 | 0.00 | ||
2 µM | 62.50 | 13.82 | 41.67 | 30.05 | 0.00 | 0.00 | 41.67 | 30.05 | 0.75 | 0.67 | 0.00 | 0.00 | ||
3 µM | 62.50 | 7.22 | 29.17 | 24.65 | 0.00 | 0.00 | 50.00 | 11.79 | 0.42 | 0.38 | 0.00 | 0.00 | ||
4 µM | 66.67 | 11.79 | 33.33 | 23.57 | 0.00 | 0.00 | 45.83 | 13.82 | 0.46 | 0.36 | 0.00 | 0.00 | ||
BAP | 0 µM | 100.00 | 0.00 | 45.83 | 13.82 | 41.67 | 14.43 | 0.00 | 0.00 | 0.67 | 0.12 | 0.88 | 0.25 | |
1 µM | 100.00 | 0.00 | 66.67 | 16.67 | 8.33 | 14.43 | 100.00 | 0.00 | 0.75 | 0.28 | 0.13 | 0.22 | ||
2 µM | 70.83 | 29.76 | 50.00 | 11.79 | 0.00 | 0.00 | 75.00 | 25.00 | 0.67 | 0.20 | 0.00 | 0.00 | ||
3 µM | 87.50 | 13.82 | 54.17 | 13.82 | 0.00 | 0.00 | 75.00 | 27.64 | 0.00 | 0.00 | 0.00 | 0.00 | ||
4 µM | 79.17 | 13.82 | 58.33 | 18.63 | 0.00 | 0.00 | 83.33 | 11.79 | 0.25 | 0.28 | 0.00 | 0.00 | ||
Meta-topolin | 0 µM | 100.00 | 0.00 | 45.83 | 13.82 | 41.67 | 14.43 | 0.00 | 0.00 | 0.67 | 0.12 | 0.88 | 0.25 | |
1 µM | 75.00 | 43.30 | 75.00 | 43.30 | 8.33 | 14.43 | 75.00 | 43.30 | 0.46 | 0.49 | 0.00 | 0.00 | ||
2 µM | 100.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.29 | 0.25 | 0.00 | 0.00 | ||
3 µM | 100.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.08 | 0.14 | 0.00 | 0.00 | ||
4 µM | 100.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.46 | 0.79 | 0.00 | 0.00 | ||
2iP | 0 µM | 100.00 | 0.00 | 45.83 | 13.82 | 41.67 | 14.43 | 0.00 | 0.00 | 0.67 | 0.12 | 0.88 | 0.25 | |
1 µM | 100.00 | 0.00 | 33.33 | 11.79 | 12.50 | 21.65 | 100.00 | 0.00 | 0.42 | 0.14 | 0.17 | 0.29 | ||
2 µM | 95.83 | 7.22 | 58.33 | 14.43 | 25.00 | 25.00 | 95.83 | 7.22 | 0.63 | 0.14 | 0.38 | 0.38 | ||
3 µM | 100.00 | 0.00 | 54.17 | 18.16 | 8.33 | 14.43 | 100.00 | 0.00 | 0.88 | 0.32 | 0.08 | 0.14 | ||
4 µM | 100.00 | 0.00 | 29.17 | 18.16 | 0.00 | 0.00 | 91.67 | 14.43 | 0.33 | 0.20 | 0.00 | 0.00 | ||
COLUMBUS | Kinetin | 0 µM | 87.50 | 13.82 | 79.17 | 13.82 | 58.33 | 8.33 | 0.00 | 0.00 | 1.25 | 0.28 | 2.00 | 0.49 |
1 µM | 87.50 | 21.65 | 87.50 | 21.65 | 8.33 | 14.43 | 66.67 | 20.41 | 0.46 | 0.27 | 0.08 | 0.14 | ||
2 µM | 100.00 | 0.00 | 100.00 | 0.00 | 8.33 | 8.33 | 87.50 | 21.65 | 0.63 | 0.30 | 0.17 | 0.17 | ||
3 µM | 100.00 | 0.00 | 100.00 | 0.00 | 4.17 | 7.22 | 75.00 | 18.63 | 0.50 | 0.12 | 0.13 | 0.22 | ||
4 µM | 87.50 | 21.65 | 87.50 | 21.65 | 0.00 | 0.00 | 83.33 | 20.41 | 0.46 | 0.18 | 0.00 | 0.00 | ||
BAP | 0 µM | 87.50 | 13.82 | 79.17 | 13.82 | 58.33 | 8.33 | 0.00 | 0.00 | 1.25 | 0.28 | 2.00 | 0.49 | |
1 µM | 91.67 | 14.43 | 66.67 | 20.41 | 66.67 | 20.41 | 79.17 | 21.65 | 0.71 | 0.41 | 0.08 | 0.14 | ||
2 µM | 100.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 1.79 | 0.14 | 0.00 | 0.00 | ||
3 µM | 66.67 | 39.09 | 16.67 | 11.79 | 0.00 | 0.00 | 58.33 | 34.36 | 0.29 | 0.25 | 0.00 | 0.00 | ||
4 µM | 62.50 | 21.65 | 41.67 | 8.33 | 0.00 | 0.00 | 87.50 | 13.82 | 0.67 | 0.17 | 0.00 | 0.00 | ||
Meta-topolin | 0 µM | 87.50 | 13.82 | 79.17 | 13.82 | 58.33 | 8.33 | 0.00 | 0.00 | 1.25 | 0.28 | 2.00 | 0.48 | |
1 µM | 70.83 | 29.76 | 62.50 | 24.65 | 79.17 | 21.65 | 100.00 | 0.00 | 0.63 | 0.32 | 0.00 | 0.00 | ||
2 µM | 62.50 | 24.65 | 62.50 | 24.65 | 0.00 | 0.00 | 95.83 | 7.22 | 1.17 | 0.42 | 0.00 | 0.00 | ||
3 µM | 100.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.58 | 0.08 | 0.00 | 0.00 | ||
4 µM | 75.00 | 43.30 | 75.00 | 43.30 | 0.00 | 0.00 | 75.00 | 43.30 | 0.58 | 0.42 | 0.00 | 0.00 | ||
2iP | 0 µM | 87.50 | 13.82 | 79.17 | 13.82 | 58.33 | 8.33 | 0.00 | 0.00 | 1.25 | 0.28 | 2.00 | 0.48 | |
1 µM | 75.00 | 43.30 | 75.00 | 43.30 | 29.17 | 29.76 | 45.83 | 46.21 | 0.54 | 0.62 | 1.58 | 1.65 | ||
2 µM | 75.00 | 43.30 | 75.00 | 43.30 | 41.67 | 43.30 | 66.67 | 40.82 | 0.88 | 0.66 | 1.54 | 2.13 | ||
3 µM | 75.00 | 43.30 | 75.00 | 43.30 | 41.67 | 43.30 | 75.00 | 43.30 | 0.79 | 0.59 | 1.79 | 1.86 | ||
4 µM | 75.00 | 43.30 | 66.67 | 40.82 | 41.67 | 25.00 | 66.67 | 40.82 | 0.83 | 0.60 | 0.96 | 0.56 | ||
Statistical analysis of data | p | p | p | p | p | p | ||||||||
G | 0.186 | <0.001 | <0.001 | 0.957 | <0.001 | <0.001 | ||||||||
GR | 0.593 | <0.001 | <0.001 | <0.001 | 0.558 | <0.001 | ||||||||
GRC | 0.242 | 0.340 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||||
G × GRC | 0.709 | 0.486 | 0.002 | 0.793 | 0.030 | 0.054 | ||||||||
GR × G | 0.001 | <0.001 | 0.006 | <0.001 | 0.096 | 0.001 | ||||||||
GRC × GR | 0.625 | 0.049 | <0.001 | 0.319 | 0.052 | 0.690 | ||||||||
G × GR × GRC | 0.437 | 0.021 | <0.001 | 0.211 | 0.546 | 0.921 |
Genotype (G) | Growth Regulator (GR) | Growth Regulator Concentration (GRC) | TPC | DPPH | ABTS+ | |||
---|---|---|---|---|---|---|---|---|
mg GAE/g | ±SD | mg TEAC/mL | ±SD | mg TEAC/mL | ±SD | |||
CASCADE | Kinetin | 0 µM | 5.36 | 0.02 | 2.14 | 0.21 | 16.25 | 0.83 |
1 µM | 6.09 | 0.15 | 2.04 | 0.64 | 20.29 | 2.71 | ||
2 µM | 6.04 | 0.15 | 2.85 | 0.26 | 22.54 | 0.46 | ||
3 µM | 5.98 | 0.16 | 3.83 | 0.00 | 16.50 | 1.50 | ||
4 µM | 5.80 | 0.14 | 2.65 | 0.62 | 18.84 | 3.00 | ||
BAP | 0 µM | 5.36 | 0.02 | 2.14 | 0.21 | 16.25 | 0.83 | |
1 µM | 5.35 | 0.01 | 3.06 | 0.11 | 26.09 | 7.00 | ||
2 µM | 5.00 | 0.17 | 1.76 | 0.46 | 15.21 | 3.04 | ||
3 µM | 5.34 | 0.04 | 1.62 | 0.05 | 19.04 | 1.79 | ||
4 µM | 5.31 | 0.15 | 2.50 | 0.11 | 19.09 | 2.58 | ||
Meta-topolin | 0 µM | 5.36 | 0.02 | 2.14 | 0.21 | 16.25 | 0.83 | |
1 µM | 5.67 | 0.06 | 2.16 | 0.03 | 20.71 | 1.29 | ||
2 µM | 5.84 | 0.32 | 1.22 | 0.18 | 19.88 | 1.29 | ||
3 µM | 5.35 | 0.09 | 2.11 | 0.15 | 17.67 | 0.75 | ||
4 µM | 5.98 | 0.10 | 2.57 | 0.21 | 15.25 | 3.75 | ||
2iP | 0 µM | 5.36 | 0.02 | 2.14 | 0.21 | 16.25 | 0.83 | |
1 µM | 5.03 | 0.01 | 4.09 | 0.20 | 9.25 | 3.17 | ||
2 µM | 5.99 | 0.23 | 4.91 | 0.92 | 12.75 | 0.33 | ||
3 µM | 5.74 | 0.09 | 5.81 | 0.11 | 14.29 | 1.38 | ||
4 µM | 4.86 | 0.16 | 4.03 | 0.33 | 13.21 | 0.63 | ||
COLUMBUS | Kinetin | 0 µM | 6.87 | 0.02 | 4.98 | 0.26 | 18.25 | 0.33 |
1 µM | 5.65 | 0.21 | 3.57 | 0.03 | 24.84 | 0.33 | ||
2 µM | 5.70 | 0.07 | 4.17 | 0.15 | 16.63 | 4.63 | ||
3 µM | 6.35 | 0.47 | 4.44 | 0.31 | 19.88 | 2.13 | ||
4 µM | 5.18 | 0.04 | 3.44 | 0.07 | 11.12 | 2.04 | ||
BAP | 0 µM | 6.87 | 0.02 | 4.98 | 0.26 | 18.25 | 0.33 | |
1 µM | 6.91 | 0.03 | 6.58 | 0.16 | 20.79 | 0.71 | ||
2 µM | 6.23 | 0.01 | 5.43 | 0.16 | 16.04 | 3.71 | ||
3 µM | 5.67 | 0.03 | 4.76 | 0.18 | 14.29 | 2.71 | ||
4 µM | 4.83 | 0.24 | 3.14 | 0.49 | 12.58 | 0.75 | ||
Meta-topolin | 0 µM | 6.87 | 0.02 | 4.98 | 0.26 | 18.25 | 0.33 | |
1 µM | 7.49 | 0.15 | 7.50 | 0.07 | 14.38 | 4.46 | ||
2 µM | 6.99 | 0.37 | 5.25 | 0.51 | 15.63 | 2.29 | ||
3 µM | 5.93 | 0.02 | 4.27 | 0.02 | 12.88 | 0.46 | ||
4 µM | 5.68 | 0.07 | 4.24 | 0.21 | 10.37 | 1.13 | ||
2iP | 0 µM | 6.87 | 0.02 | 4.98 | 0.26 | 18.25 | 0.33 | |
1 µM | 6.54 | 0.05 | 5.91 | 0.38 | 10.79 | 0.63 | ||
2 µM | 6.59 | 0.07 | 5.32 | 1.36 | 10.58 | 0.25 | ||
3 µM | 7.22 | 0.05 | 7.89 | 0.26 | 11.21 | 1.79 | ||
4 µM | 7.54 | 0.03 | 7.55 | 0.02 | 9.37 | 2.29 | ||
Statistical analysis of data | p | p | p | |||||
G | <0.001 | <0.001 | 0.007 | |||||
GR | <0.001 | <0.001 | <0.001 | |||||
GRC | <0.001 | <0.001 | 0.003 | |||||
G × GRC | <0.001 | 0.003 | 0.030 | |||||
GR × G | <0.001 | <0.001 | 0.449 | |||||
GRC × GR | <0.001 | <0.001 | 0.022 | |||||
G × GR × GRC | <0.001 | <0.001 | 0.405 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leto, L.; Guarrasi, V.; Agosti, A.; Nironi, M.; Chiancone, B.; Juan Vicedo, J. Effects of Cytokinins on Morphogenesis, Total (Poly)Phenolic Content and Antioxidant Capacity of In Vitro-Cultured Hop Plantlets, cvs. Cascade and Columbus. Plants 2025, 14, 418. https://doi.org/10.3390/plants14030418
Leto L, Guarrasi V, Agosti A, Nironi M, Chiancone B, Juan Vicedo J. Effects of Cytokinins on Morphogenesis, Total (Poly)Phenolic Content and Antioxidant Capacity of In Vitro-Cultured Hop Plantlets, cvs. Cascade and Columbus. Plants. 2025; 14(3):418. https://doi.org/10.3390/plants14030418
Chicago/Turabian StyleLeto, Leandra, Valeria Guarrasi, Anna Agosti, Martina Nironi, Benedetta Chiancone, and Jorge Juan Vicedo. 2025. "Effects of Cytokinins on Morphogenesis, Total (Poly)Phenolic Content and Antioxidant Capacity of In Vitro-Cultured Hop Plantlets, cvs. Cascade and Columbus" Plants 14, no. 3: 418. https://doi.org/10.3390/plants14030418
APA StyleLeto, L., Guarrasi, V., Agosti, A., Nironi, M., Chiancone, B., & Juan Vicedo, J. (2025). Effects of Cytokinins on Morphogenesis, Total (Poly)Phenolic Content and Antioxidant Capacity of In Vitro-Cultured Hop Plantlets, cvs. Cascade and Columbus. Plants, 14(3), 418. https://doi.org/10.3390/plants14030418