Cell-Penetrating Peptide-Mediated Delivery of Gene-Silencing Nucleic Acids to the Invasive Common Reed Phragmites australis via Foliar Application
Abstract
:1. Background
2. Methods
2.1. P. australis Growth Conditions
2.2. Cell-Penetrating Peptide (CPP) Design and Synthesis
2.3. P. australis Phytoene Desaturase (PaPDS)-Expressing Plasmid Construction and dsRNA Production
2.4. Design and Synthesis of Antisense Oligo (ASO) and Artificial microRNA (amiRNA)
2.5. Cell-Penetrating Peptide/Gene-Silencing Agent (CPP:GSA) Complexation and Topical Application
2.6. Preparation and Observation of Leaf Cross-Section Slides
2.7. Confocal Microscopy Observation
2.8. RNA Extraction, Reverse Transcription, and Quantitative Polymerase Chain Reaction (qPCR)
2.9. Data Analysis
3. Results
3.1. Tissue Uptake of CPPs via Topical Application on P. australis Leaf
3.2. CPP-Mediated In Vivo Uptake of GSA by P. australis Leaf
3.3. Determination of Appropriate CPP:GSA Ratios
3.4. Screening-Effective GSAs for Gene Silencing in P. australis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gucker, C.L. Phragmites australis. In: Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). 2008. Available online: https://www.fs.usda.gov/database/feis/plants/graminoid/phraus/all.html (accessed on 21 January 2025).
- Global Invasive Species Database. Species Profile: Phragmites australis. 2020. Available online: http://www.iucngisd.org/gisd/species.php?sc=301. (accessed on 6 August 2024).
- Chambers, R.M.; Meyerson, L.A.; Saltonstall, K. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot. 1999, 64, 261–273. [Google Scholar] [CrossRef]
- Sturtevant, R.; Fusaro, A.; Conard, W.; Iott, S.; Wishahm, L.; Van Zeghbroeck, J. Phragmites australis Australis (Cav.) Trin. Ex Steud.: U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville, FL. 2024. Available online: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=2937 (accessed on 19 February 2024).
- Rudrappa, T.; Choi, Y.S.; Levia, D.F.; Legates, D.R.; Lee, K.H.; Bais, H.P. Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity. Plant Signal Behav. 2009, 4, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Weidenhamer, J.D.; Li, M.; Allman, J.; Bergosh, R.G.; Posner, M. Evidence does not support a role for gallic acid in Phragmites australis invasion success. J. Chem. Ecol. 2013, 39, 323–332. [Google Scholar] [CrossRef]
- Saltonstall, K. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA 2002, 99, 2445–2449. [Google Scholar] [CrossRef] [PubMed]
- Saltonstall, K. Fact Sheet: Giant Reed. Plant Conservation Alliance’s Alien Plant Working Group. 2005. Available online: https://www.invasive.org/alien/fact/pdf/phau1.pdf (accessed on 8 July 2024).
- Tulbure, M.G.; Johnston, C.A.; Auger, D.L. Rapid Invasion of a Great Lakes Coastal Wetland by Non-native Phragmites australis and Typha. J. Great Lakes Res. 2007, 33 (Suppl. 3), 269–279. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Kowalski, K.P.; Mazur, M.L.C.; Scarbrough, K.A.; Powell, R.B.; Brooks, C.N.; Huberty, B.; Jenkins, L.K.; Banda, E.C.; Galbraith, D.M.; et al. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support. J. Great Lakes Res. 2013, 39 (Suppl. 1), 65–77. [Google Scholar] [CrossRef]
- Michigan Department of Environmental Quality (MDEQ). A Guide to the Control and Management of Invasive Phragmites, 3rd ed.; MDEQ: Lansing, MI, USA, 2014. Available online: https://www.michigan.gov/-/media/Project/Websites/invasives/Documents/Response/Status/egle-ais-guide-phragmites.pdf?rev=99773b1ab927407ba5cd7e4532a3ad4d (accessed on 21 January 2025).
- Tilley, D.J.; St John, L. Plant guide for common reed (Phragmites australis). USDA-Natural Resources Conservation Service, Aberdeen Plant Materials Center, Idaho; 83210–0296; 2012. Available online: https://plants.usda.gov/DocumentLibrary/plantguide/pdf/pg_phau7.pdf (accessed on 21 January 2025).
- Hazelton, E.L.G.; Mozdzer, T.J.; Burdick, D.M.; Kettenring, K.M.; Whigham, D.F. Phragmites australis management in the United States: 40 years of methods and outcomes. AoB Plants 2014, 6, plu001. [Google Scholar] [CrossRef] [PubMed]
- Eamens, A.; Wang, M.-B.; Smith, N.A.; Waterhouse, P.M. RNA silencing in plants: Yesterday, today, and tomorrow. Plant Physiol. 2008, 147, 456–468. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, Q.; Smith, N.A.A.; Liang, G.; Wang, M.-B. RNA silencing in plants: Mechanisms, technologies and applications in horticultural crops. Curr. Genom. 2016, 17, 476–489. [Google Scholar] [CrossRef] [PubMed]
- Missiou, A.; Kalantidis, K.; Boutla, A.; Tzortzakaki, S.; Tabler, M.; Tsagris, M. Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol. Breed. 2004, 14, 185–197. [Google Scholar] [CrossRef]
- Schwind, N.; Zwiebel, M.; Itaya, A.; Ding, B.; Wang, M.; Krczal, G.; Wassenegger, M. RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol. Plant Path. 2009, 10, 459–469. [Google Scholar] [CrossRef]
- Fairbairn, D.J.; Cavallaro, A.S.; Bernard, M.; Mahalinga-Iyer, J.; Graham, M.W.; Botella, J.R. Host-delivered RNAi: An effective strategy to silence genes in plant parasitic nematodes. Planta 2007, 226, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Davuluri, G.R.; van Tuinen, A.; Fraser, P.D.; Manfredonia, A.; Newman, R.; Burgess, D.; Brummell, D.A.; King, S.R.; Palys, J.; Uhlig, J.; et al. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol. 2005, 23, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Van Eck, J.; Conlin, B.; Garvin, D.F.; Mason, H.; Navarre, D.A.; Brown, C.R. Enhancing beta-carotene content in potato by RNAi mediated silencing of the beta-carotene hydroxylase gene. Am. J. Potato Res. 2007, 84, 331–342. [Google Scholar] [CrossRef]
- Yu, B.; Lydiate, D.J.; Young, L.W.; Schäfer, U.A.; Hannoufa, A. Enhancing the carotenoid content of Brassica napus seeds by down-regulating lycopene epsilon cyclase. Transgenic Res. 2008, 17, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Molesini, B.; Pandolfini, T.; Rotino, G.L.; Dani, V.; Spena, A. Aucsia gene silencing causes Parthenocarpic fruit development in tomato. Plant Physiol. 2009, 149, 534–548. [Google Scholar] [CrossRef] [PubMed]
- Perrimon, N.; Ni, J.-Q.; Perkins, L. In vivo RNAi: Today and tomorrow. Cold Spring Harb. Perspect. Biol. 2010, 2, a003640. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Pal, R.K.; Rajam, M.V. Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of 1-aminopropane-1-carboxylate synthase gene. J. Plant Physiol. 2013, 170, 987–995. [Google Scholar] [CrossRef]
- Atkinson, R.G.; Gunaseelan, K.; Wang, M.Y.; Luo, L.; Wang, T.; Norling, C.L.; Johnston, S.L.; Maddumage, R.; Schröder, R.; Schaffer, R.J. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. J. Exp. Bot. 2011, 62, 3821–3835. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Bermudez, S.; Redondo-Nevado, J.; Munoz-Blanco, J.; Caballero, J.L.; López-Aranda, J.M.; Valpuesta, V.; Pliego-Alfaro, F.; Quesada, M.A.; Mercado, J.A. Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol. 2002, 128, 751–759. [Google Scholar] [CrossRef]
- Dalakouras, A.; Wassenegger, M.; Dadami, E.; Ganopoulos, I.; Pappas, M.L.; Papadopoulou, K. Genetically modified organism-free RNA interference: Exogenous application of RNA molecules in plants. Plant Physiol. 2020, 182, 38–50. [Google Scholar] [CrossRef]
- Fletcher, S.J.; Reeves, P.T.; Hoang, B.T.; Mitter, N. A Perspective on RNAi-Based Biopesticides. Front. Plant Sci. 2020, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jaouannet, M.; Dempsey, D.A.; Imani, J.; Coustau, C.; Kogel, K.-H. RNA-based technologies for insect control in plant production. Biotechnol. Adv. 2020, 39, 107463. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.B.; Dhandapani, R.K.; Duan, J.J.; Palli, S.R. RNA interference in the Asian Longhorned Beetle: Identification of key RNAi genes and reference genes for RT-qPCR. Sci. Rep. 2017, 7, 8913. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Mojica, A.F.; Hunter, W.B.; Aishwarya, V.; Bonilla, S.; Pelz-Stelinski, K.S. Antibacterial FANA oligonucleotides as a novel approach for managing the Huanglongbing pathosystem. Sci. Rep. 2021, 11, 2760. [Google Scholar] [CrossRef]
- Chung, S.H.; Zhang, S.; Song, H.; Whitham, S.A.; Jander, G. Maize resistance to insect herbivory is enhanced by silencing expression of genes for jasmonate-isoleucine degradation using sugarcane mosaic virus. Plant Direct. 2022, 6, e407. [Google Scholar] [CrossRef]
- Waterhouse, P.M.; Graham, M.W.; Wang, M.B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 1998, 95, 13959–13964. [Google Scholar] [CrossRef]
- Chuang, C.-F.; Meyerowitz, E.M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2000, 97, 4985–4990. [Google Scholar] [CrossRef]
- Smith, N.A.; Singh, S.P.; Wang, M.-B.; Stoutjesdijk, P.A.; Green, A.G.; Waterhouse, P.M. Total silencing by intron-spliced hairpin RNAs. Nature 2000, 407, 319–320. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Schiff, M.; Dinesh-Kumar, S.P. Virus-induced gene silencing in tomato. Plant J. 2002, 31, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, P.; Pokorny, J.; Schulze-Lefert, P.; Dudler, R. Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J. 2000, 24, 895–903. [Google Scholar] [PubMed]
- Wu, K.; Wu, Y.; Zhang, C.; Fu, Y.; Liu, Z.; Zhang, X. Simultaneous silencing of two different Arabidopsis genes with a novel virus-induced gene silencing vector. Plant Methods 2021, 17, 6. [Google Scholar] [CrossRef]
- Tang, W.; Weidner, D.A.; Hu, B.Y.; Newton, R.J.; Hu, X.-H. Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing. Plant Sci. 2006, 171, 375–381. [Google Scholar] [CrossRef]
- Kanasty, R.; Dorkin, J.R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967–977. [Google Scholar] [CrossRef]
- Wittrup, A.; Ai, A.; Liu, X.; Hamar, P.; Trifonova, R.; Charisse, K.; Manoharan, M.; Kirchhausen, T.; Lieberman, J. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 2015, 33, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Mitter, N.; Worrall, E.A.; Robinson, K.E.; Li, P.; Jain, R.G.; Taochy, C.; Fletcher, S.J.; Carroll, B.J.; Lu, G.Q.; Xu, Z.P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 2017, 3, 16207. [Google Scholar] [CrossRef] [PubMed]
- Demirer, G.S.; Zhang, H.; Goh, N.S.; González-Grandío, E.; Landry, M.P. Carbon nanotube-mediated DNA delivery without transgene integration in intact plants. Nat. Protoc. 2019, 14, 2954–2971. [Google Scholar] [CrossRef]
- Demirer, G.S.; Zhang, H.; Matos, J.L.; Goh, N.S.; Cunningham, F.J.; Sung, Y.; Chang, R.; Aditham, A.J.; Chio, L.; Cho, M.-J.; et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 2019, 14, 456–464. [Google Scholar] [CrossRef]
- Kwak, S.Y.; Lew, T.T.S.; Sweeney, C.J.; Koman, V.B.; Wong, M.H.; Bohmert-Tatarev, K.; Snell, K.D.; Seo, J.S.; Chua, N.H.; Strano, M.S. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 2019, 14, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.H.; Hendrix, B.; Hoffer, P.; Sanders, R.A.; Zheng, W. Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant Physiol. 2020, 184, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Demirer, G.S.; Zhang, H.; Ye, T.; Goh, N.S.; Aditham, A.J.; Cunningham, F.J.; Fan, C.; Landry, M.P. DNA nanostructures coordinate gene silencing in mature plants. Proc. Natl. Acad. Sci. USA 2019, 116, 7543–7548. [Google Scholar] [CrossRef] [PubMed]
- Copolovici, D.M.; Langel, K.; Eriste, E.; Langel, Ü. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano 2014, 8, 1972–1994. [Google Scholar] [CrossRef] [PubMed]
- Samboju, N.C.; Samuel, J.P.; Lin, G.; Webb, S.R.; Burroughs, F. Plant Peptide γ-Zein for Delivery of Biomolecules into Plant Cells. U.S. Patent US8581036B2, 12 November 2013. [Google Scholar]
- Zhang, Q.; Gao, H.; He, Q. Taming cell penetrating peptides: Never too old to teach old dogs new tricks. Mol. Pharm. 2015, 12, 3105–3118. [Google Scholar] [CrossRef]
- Chugh, A.; Eudes, F.; Shim, Y. Cell-penetrating peptides: Nanocarrier for macromolecule delivery in living cells. IUBMB Life 2010, 62, 183–193. [Google Scholar] [CrossRef]
- Derossi, D.; Joliot, A.; Chassaing, G.; Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 1994, 269, 10444–10450. [Google Scholar] [CrossRef] [PubMed]
- Vivés, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 1997, 272, 16010–16017. [Google Scholar] [CrossRef]
- Pooga, M.; Langel, U. Synthesis of cell-penetrating peptides for cargo delivery. Methods Mol. Biol. 2005, 298, 77–89. [Google Scholar] [PubMed]
- Lakshmanan, M.; Kodama, Y.; Yoshizumi, T.; Sudesh, K.; Numata, K. Rapid and efficient gene delivery into plant cells using designed peptide carriers. Biomacromolecules 2013, 14, 10–16. [Google Scholar] [CrossRef]
- Numata, K.; Ohtani, M.; Yoshizumi, T.; Demura, T.; Kodama, Y. Local gene silencing in plants via synthetic dsRNA and carrier peptide. Plant Biotechnol. J. 2014, 12, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Thagun, C.; Horii, Y.; Mori, M.; Fujita, S.; Ohtani, M.; Tsuchiya, K.; Kodama, Y.; Odahara, M.; Numata, K. Non-transgenic gene modulation via spray delivery of nucleic acid/peptide complexes into plant nuclei and chloroplasts. ACS Nano. 2022, 16, 3506–3521. [Google Scholar] [CrossRef]
- Chang, M.; Chou, J.C.; Chen, C.P.; Liu, B.R.; Lee, H.J. Noncovalent protein transduction in plant cells by macropinocytosis. New Phytol. 2007, 174, 46–56. [Google Scholar] [CrossRef]
- Chang, M.; Chou, J.C.; Lee, H.J. Cellular internalization of fluorescent proteins via arginine-rich intracellular delivery peptide in plant cells. Plant Cell Physiol. 2005, 46, 482–488. [Google Scholar] [CrossRef]
- Lu, S.-W.; Hu, J.-W.; Liu, B.R.; Lee, C.-Y.; Li, J.-F.; Chou, J.-C.; Lee, H.-J. Arginine-rich intracellular delivery peptides synchronously deliver covalently and noncovalently linked proteins into plant cells. J. Agric. Food Chem. 2010, 58, 2288–2294. [Google Scholar] [CrossRef]
- Chen, C.-P.; Chou, J.-C.; Liu, B.R.; Chang, M.; Lee, H.-J. Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Lett. 2007, 581, 1891–1897. [Google Scholar] [CrossRef] [PubMed]
- Chugh, A.; Eudes, F. Translocation and nuclear accumulation of monomer and dimer of HIV-1 Tat basic domain in triticale mesophyll protoplasts. Biochim. Biophys. Acta 2007, 1768, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Chugh, A.; Eudes, F. Cellular uptake of cell-penetrating peptides pVEC and transportan in plants. J. Pept. Sci. 2008, 14, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Mäe, M.; Myrberg, H.; Jiang, Y.; Paves, H.; Valkna, A.; Langel, Ü. Internalisation of cell-penetrating peptides into tobacco protoplasts. Biochim. Biophys. Acta-Biomembr. 2005, 1669, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Unnamalai, N.; Kang, B.G.; Lee, W.S. Cationic oligopeptide-mediated delivery of dsRNA for post-transcriptional gene silencing in plant cells. FEBS Lett. 2004, 566, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Eggenberger, K.; Mink, C.; Wadhwani, P.; Ulrich, A.S.; Nick, P. Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells. ChemBioChem 2011, 12, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Yadav, B.K.; Chugh, A. Marine antimicrobial peptide tachyplesin as an efficient nanocarrier for macromolecule delivery in plant and mammalian cells. FEBS J. 2015, 282, 732–745. [Google Scholar] [CrossRef]
- Ng, K.K.; Motoda, Y.; Watanabe, S.; Othman, A.S.; Kigawa, T.; Kodama, Y.; Numata, K. Intracellular delivery of proteins via fusion peptides in intact plants. PLoS ONE 2016, 11, e0154081. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Huang, Y.-W.; Aronstam, R.S.; Lee, H.-J. Cellular delivery of noncovalently-associated macromolecules by cell-penetrating peptides. Curr. Pharm. Biotechnol. 2014, 15, 267–275. [Google Scholar] [CrossRef]
- Pujals, S.; Sabidó, E.; Tarragó, T.; Giralt, E. All-D proline-rich cell-penetrating peptides: A preliminary in vivo internalization study. Biochem. Soc. Trans. 2007, 35 Pt 4, 794–796. [Google Scholar] [CrossRef] [PubMed]
- Sadler, K.; Eom, K.D.; Yang, J.L.; Dimitrova, Y.; Tam, J.P. Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry 2002, 41, 14150–14157. [Google Scholar] [CrossRef]
- Raikhel, N. Nuclear targeting in plants. Plant Physiol. 1992, 100, 1627–1632. [Google Scholar] [CrossRef] [PubMed]
- Pooga, M.; Hällbrink, M.; Zorko, M.; Langel, Ü. Cell penetration by transportan. FASEB J. 1998, 12, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Crombez, L.; Aldrian-Herrada, G.; Konate, K.; Nguyen, Q.N.; McMaster, G.K.; Brasseur, R.; Heitz, F.; Divita, G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol. Ther. 2009, 17, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Hearst, S.M.; Shao, Q.; Lopez, M.; Raucher, D.; Vig, P.J.S. The design and delivery of a PKA inhibitory polypeptide to treat SCA1. J. Neurochem. 2014, 131, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, P. Naturally Derived Cell-Penetrating Peptides and Applications in Gene Regulation: A Study on Internalization Mechanisms and Endosomal Escape. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 2006. [Google Scholar]
- Varkouhi, A.K.; Scholte, M.; Storm, G.; Haisma, H.J. Endosomal escape pathways for delivery of biologicals. J. Control Release 2011, 151, 220–228. [Google Scholar] [CrossRef]
- Lönn, P.; Kacsinta, A.D.; Cui, X.-S.; Hamil, A.S.; Kaulich, M.; Gogoi, K.; Dowdy, S.F. Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci. Rep. 2016, 6, 32301. [Google Scholar] [CrossRef]
- García-Plazaola, J.I.; Fernández-Marín, B.; Duke, S.O.; Hernandez, A.; López-Arbeloa, F.; Becerril, J.M. Autofluorescence: Biological functions and technical applications. Plant Sci. 2015, 236, 136–145. [Google Scholar] [CrossRef]
- Usha, K.; Singh, B. Potential applications of remote sensing in horticulture—A review. Sci. Hortic. 2013, 153, 71–83. [Google Scholar] [CrossRef]
- Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.H.; Karlen, Y.; Bakker, O.; van den Hoff, M.J.B.; Moorman, A.F.M. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009, 37, e45. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhao, S.; Zhong, S.; Wang, Z.; Ding, B.; Li, Y. A simple method for construction of artificial microRNA vector in plant. Biotechnol. Lett. 2014, 36, 2117–2123. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, J.; Neundorf, I. Peptide vectors for the nonviral delivery of nucleic acids. Acc. Chem. Res. 2012, 45, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Mo, R.H.; Zaro, J.L.; Shen, W.-C. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Mol. Pharm. 2012, 9, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Vaissière, A.; Aldrian, G.; Konate, K.; Lindberg, M.F.; Jourdan, C.; Telmar, A.; Seisel, Q.; Fernandez, F.; Viguier, V.; Genevois, C.; et al. A retro-inverso cell-penetrating peptide for siRNA delivery. J. Nanobiotechnol. 2017, 15, 34. [Google Scholar] [CrossRef]
- Sood, P.; Bhattacharya, A.; Sood, A. Problems and possibilities of monocot transformation. Biol. Plantarum. 2011, 55, 1–15. [Google Scholar] [CrossRef]
- Giuliano, G.; Bartley, G.E.; Scolnik, P.A. Regulation of carotenoid biosynthesis during tomato development. Plant Cell 1993, 5, 379–387. [Google Scholar]
- Kumagai, M.H.; Donson, J.; Della-Cioppa, G.; Harvey, D.; Hanley, K.; Grill, L.K. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. USA 1995, 92, 1679–1683. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, M.; Jeong, E.S.; Lee, J.M.; Choi, D. Harnessing anthocyanin-rich fruit: A visible reporter for tracing virus-induced gene silencing in pepper fruit. Plant Methods 2017, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Naing, A.H.; Kyu, S.Y.; Pe, P.P.W.; Park, K.I.; Lee, J.M.; Lim, K.B.; Kim, C.K. Silencing of the phytoene desaturase (PDS) gene affects the expression of fruit-ripening genes in tomatoes. Plant Methods 2019, 15, 110. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.H.; Kowalski, K.P.; Quach, Q.N.; Wijesinghege, C.; Tanford, P.; Dassanayake, M.; Clay, K. Novel genome characteristics contribute to the invasiveness of Phragmites australis (common reed). Mol. Ecol. 2022, 31, 1142–1159. [Google Scholar] [CrossRef] [PubMed]
- Dias, N.; Stein, C.A. Antisense oligonucleotides: Basic concepts and mechanisms. Mol. Cancer Ther. 2002, 1, 347–355. [Google Scholar] [PubMed]
- Chery, J. RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J. 2016, 4, 35–50. [Google Scholar] [CrossRef]
- Rasmussen, A.A.; Eriksen, M.; Gilany, K.; Udesen, C.; Franch, T.; Petersen, C.; Valentin-Hansen, P. Regulation of ompA mRNA stability: The role of a small regulatory RNA in growth phase-dependent control. Mol. Microbiol. 2005, 58, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, A.A.; Johansen, J.; Nielsen, J.S.; Overgaard, M.; Kallipolitis, B.; Valentin-Hansen, P. A conserved small RNA promotes silencing of the outer membrane protein YbfM. Mol. Microbiol. 2009, 72, 566–577. [Google Scholar] [CrossRef]
- Dean, N.M.; McKay, R.; Condon, T.P.; Bennett, C.F. Inhibition of protein kinase C-alpha expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. J. Biol. Chem. 1994, 269, 16416–16424. [Google Scholar] [CrossRef] [PubMed]
- Golshirazi, G.; Ciszewski, L.; Lu-Nguyen, N.; Popplewell, L. Antisense Oligonucleotide Targeting of 3’-UTR of mRNA for Expression Knockdown. Methods Mol Biol. 2018, 1828, 91–124. [Google Scholar] [PubMed]
- Czarnecki, O.; Bryan, A.C.; Jawdy, S.S.; Yang, X.; Cheng, Z.-M.; Chen, J.-G.; Tuskan, G.A. Simultaneous knockdown of six non-family genes using a single synthetic RNAi fragment in Arabidopsis thaliana. Plant Methods 2016, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Zabala-Pardo, D.; Gaines, T.; Lamego, F.P.; Avila, L.A. RNAi as a tool for weed management: Challenges and opportunities. Adv. Weed Sci. 2022, 40, e020220096. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.; Morran, S.; MacGregor, D.R.; McElroy, J.S.; Neve, P.; Neto, C.; Vila-Aiub, M.M.; Sandoval, M.V.; Menéndez, A.I.; Kreiner, J.M.; et al. Current status of community resources and priorities for weed genomics research. Genome Biol. 2024, 25, 139. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, Z.; Wang, H.; Meng, H.; Cao, Y. Mesoporous Silica Nanoparticles Mediate SiRNA Delivery for Long-Term Multi-Gene Silencing in Intact Plants. Adv. Sci. 2024, 11, e2301358. [Google Scholar] [CrossRef] [PubMed]
- Pal, G.; Ingole, K.D.; Yavvari, P.S.; Verma, P.; Kumari, A.; Chauhan, C.; Chaudhary, D.; Srivastava, A.; Bajaj, A.; Vemanna, R.S. Exogenous application of nanocarrier-mediated double-stranded RNA manipulates physiological traits and defence response against bacterial diseases. Mol. Plant Pathol. 2024, 25, e13417. [Google Scholar] [CrossRef] [PubMed]
- Stokstad, E. The perfect pesticide? Science 2024, 384, 1398–1401. [Google Scholar] [CrossRef]
CPP | Amino Acid Sequence | Origin | Classification | Charge | Plant Cell | Reference |
---|---|---|---|---|---|---|
γ-Zein | VRLPPPVRLPPPVRLPPP | γ-zein storage protein from maize | Proline-rich | (+3) | Protoplast | [49,70] |
Bac7 | RRIRPRPPRLPRPRPRPLPFPRPG | natural protegrin bactenecin family | Proline-rich | (+9) | Unknown | [71] |
Bp100 | KKLFKKILKYL | natural protegrin from Hyalophora cecropia | Cationic | (+5) | Living tobacco cells | [66] |
SV40 NLS | PKKKRKV | simian virus 40 | Cationic | (+5) | Plant nuclei | [72] |
Penetratin | RQIKIWFQNRRMKWKK | natural protegrin Drosophila-antennapedia | Cationic | (+7) | Protoplast | [64] |
Tachyplesin | KWCFRVCYRGICYRRCRGK | marine antimicrobial peptides | Cationic | (+7) | Root tip, coleoptile & hypocotyl | [67] |
Tat | YGRKKRRQRRR | HIV-1 Tat protein | Cationic | (+8) | Root tip, epidermal & mesophyll protoplast | [58,59,62] |
Polyarginine (R9) | RRRRRRRRR | synthetic | Cationic | (+9) | Root tip & epidermal | [58,59,60,61] |
Polyarginine (R12) | RRRRRRRRRRRR | synthetic | Cationic | (+12) | Suspension cells | [65] |
(KH)9-Bp100 | KHKHKHKHKHKHKHKHKHKKLFKKILKYL | fusion of synthetic (KH)9 and natural Bp100 | Cationic | (+23) | Intact leaf cells of Arabidopsis thaliana | [56] |
R9-Bp100, (KH)9-Bp100, R9-Tat2 | Refer to above | refer to above for components | Cationic | varied | Intact leaf cells | [55] |
Bp100, K8, (KH)9, (Bp100)2K8, Bp100(KH)9 | Refer to above for Bp100 and (KH)9 except K8 = KKKKKKKK | refer to above for components except K8 being synthetic | Cationic | varied | Intact leaves | [68] |
Transportan | GWTLNSAGYLLGKINLKALAALAKKIL | neuropeptide galanin and mastoparan chimeria | Bipartite/chimeric | (+4) | Protoplast | [63,64,73] |
pVEC | LLIILRRRIRKQAHAHSK | murine vascular endothelial cadherin | Bipartite/chimeric | (+8) | Protoplast | [63,64] |
CADY | GLWRALWRLLRSLWRLLWRA | synthetic nucleic acid binding peptide | Amphipathic | (+5) | Unknown | [74] |
SynB1 | RGGRLSYSRRRFSTSTGR | porcine protegrin-1 | Amphipathic | (+6) | Unknown | [75] |
CPP Name | Peptide Sequence (N-Terminus → C-Terminus) | Length (aa) |
---|---|---|
γ-Zein | VRLPPPVRLPPPVRLPPPGGFWFG | 24 |
R9 | RRRRRRRRRGGFWFG | 15 |
CADY | GLWRALWRLLRSLWRLLWKGGFWFG | 25 |
γ-Zein-CADY | VRLPPPVRLPPPVRLPPPGGLWRALWRLLRSLWRLLWKGGFWFG | 44 |
R9-CADY | RRRRRRRRRGGLWRALWRLLRSLWRLLWKGGFWFG | 35 |
GSA Class | GSA Name | Nucleic Acid Sequence (5′→ 3′) |
ASO | ASO-1 | T*T*C*AGTTTCACTTCGTCC*A*A*C |
ASO | ASO-2 | T*G*A*TTTCAGTTTCACTTC*G*T*C |
ASO | ASO-3 | T*A*G*CTCTTCCATAGTTGC*A*T*C |
ASO | ASO-4 | T*G*C*TAGCTCTTCCATAGT*T*G*C |
ASO | ASO-5 | A*C*T*TTGATCGGCAGCAAT*T*T*C |
ASO | ASO-6 | A*A*C*AGATCTCGGTGTCTT*C*A*C |
ASO | ASO-7 | T*T*G*TAAACAGATCTCGGT*G*T*C |
ASO | ASO-8 | A*T*T*TCTGCTTCGTGTAAT*C*G*C |
ASO | ASO-9 | T*T*G*TAAAGGTCCTCCTCC*T*A*C |
ASO | ASO-10 | A*A*C*TCAGTCACAATTCAA*C*T*C |
ASO | ASO-11 | A*T*A*TCAACTCAGTCACAA*T*T*C |
ASO | ASO-12 | A*A*T*ATCTGCGATCTCTTT*A*T*C |
amiRNA | amiRNAPDS-1 | UAUUCUUUUAAUGAGAGGCGG |
amiRNA | amiRNAPDS-2 | UUGGUAAAUAUACUAUGCCCC |
amiRNA | amiRNAPDS-3 | UAUAUUAUCCUAAGACGUCGG |
amiRNA | amiRNAPDS-4 | UUGGUAAAUAUACUAUGGCCA |
amiRNA | amiRNAPDS-5 | UUUUAAUGAGAGACGGACCAG |
Atto550-amiDNA | amiDNAPDS-1 | TATTCTTTTAATGAGAGGCGG |
Primer | Sequence (5′-3′) | Note |
---|---|---|
Actin183 F | GGATGATATGGAGAAGATCT | Reference gene (Actin) |
Actin307 R | GGGTCATCTTCTCACTATTA | |
PDS95F | GGAGTTCACTTTTGAGTG | Target gene (PDS) |
PDS251R | GCTAGCTCTTCCATAGTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Q.; Kowalski, K.P.; Golenberg, E.M.; Chung, S.H.; Barker, N.D.; Bickford, W.A.; Gong, P. Cell-Penetrating Peptide-Mediated Delivery of Gene-Silencing Nucleic Acids to the Invasive Common Reed Phragmites australis via Foliar Application. Plants 2025, 14, 458. https://doi.org/10.3390/plants14030458
Ji Q, Kowalski KP, Golenberg EM, Chung SH, Barker ND, Bickford WA, Gong P. Cell-Penetrating Peptide-Mediated Delivery of Gene-Silencing Nucleic Acids to the Invasive Common Reed Phragmites australis via Foliar Application. Plants. 2025; 14(3):458. https://doi.org/10.3390/plants14030458
Chicago/Turabian StyleJi, Qing, Kurt P. Kowalski, Edward M. Golenberg, Seung Ho Chung, Natalie D. Barker, Wesley A. Bickford, and Ping Gong. 2025. "Cell-Penetrating Peptide-Mediated Delivery of Gene-Silencing Nucleic Acids to the Invasive Common Reed Phragmites australis via Foliar Application" Plants 14, no. 3: 458. https://doi.org/10.3390/plants14030458
APA StyleJi, Q., Kowalski, K. P., Golenberg, E. M., Chung, S. H., Barker, N. D., Bickford, W. A., & Gong, P. (2025). Cell-Penetrating Peptide-Mediated Delivery of Gene-Silencing Nucleic Acids to the Invasive Common Reed Phragmites australis via Foliar Application. Plants, 14(3), 458. https://doi.org/10.3390/plants14030458