Differences in Accumulation of Rare Earth Elements by Plants Cultivated in Soil and Substrates from Industrial Waste Materials
Abstract
:1. Introduction
2. Results
2.1. Plant Growth
2.2. Tolerance Index
2.3. Change of Substrate pH
2.4. Accumulation of REEs in Plant Tissues
2.5. Bioconcentration Factor and Translocation Factor
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Analysis of Substrate Components
4.3. Plant and Substrate Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BAF | Bioaccumulation factor |
CRM | Critical raw material |
REE | Rare earth elements |
TF | Translocation factor |
TI | Tolerance index |
References
- Corzo Remigio, A.; Chaney, R.L.; Baker, A.J.M.; Edraki, M.; Erskine, P.D.; Echevarria, G.; van der Ent, A. Phytoextraction of high value elements and contaminants from mining and mineral wastes: Opportunities and limitations. Plant Soil 2020, 449, 11–37. [Google Scholar] [CrossRef]
- Okoroafor, P.U.; Kunisch, N.; Epede, M.N.; Ogunkunle, C.U.; Heilmeier, H.; Wiche, O. Phytoextraction of rare earth elements, germanium and other trace elements as affected by fertilization and liming. Environ. Technol. Innov. 2022, 28, 102607. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Castro, F.D.; Prasad, S.; Rtimi, S. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: A review on progress, challenges, and perspectives. Environ. Sci. Pollut. Res. 2020, 27, 36052–36074. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, N.; Jean, M.L.; Berthelot, C.; Chalot, M.; Gross, E.M.; Blaudez, D. Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus. Sci. Rep. 2019, 9, 8458. [Google Scholar] [CrossRef]
- Kastori, R.R.; Maksimović, V.I.; Putnik-Delić, I.M. Rare earth elements in environment and effect plants- A review. Matica Srp. J. Nat. Sci. 2023, 144, 51–72. [Google Scholar] [CrossRef]
- Dinh, T.; Dobo, Z.; Kovacs, H. Phytomining of rare earth elements—A review. Chemosphere 2022, 297, 134259. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Ritcher, H.; Sparovek, G.; Schnug, E. Phycological and biochemical effect of rare earth elements on plants and their agricultar significance: A review. J. Plant Nutr. 2019, 30, 332–341. [Google Scholar]
- Agathokleus, E.; Kitao, M.; Calabrese, E.J. Hormetic dose response induced by lanthanum in plants. Environ. Pollut. 2019, 244, 332–341. [Google Scholar] [CrossRef]
- Xu, X.; Wand, Z. Phosphorus uptake and translocation in field grown maize after application of rare earth-containing fertilizer. J. Plant Nutr. 2007, 20, 557–568. [Google Scholar] [CrossRef]
- Liang, T.; Zhang, S.; Wang, L.; Kung, H.T.; Wang, Y.; Hu, A.; Ding, S. Environmental biogeochemical behaviors of rare earth elements in soil- plant system. Environ. Geochem. Health 2005, 27, 301–311. [Google Scholar] [CrossRef]
- Sager, M.; Wiche, O. Rare earth elements (REE): Origins, dispersion, and environmental implications—A comprehensive review. Environments 2024, 11, 24. [Google Scholar] [CrossRef]
- Ramos, S.J.; Dinali, G.S.; Oliveira, C.; Martins, G.C.; Moreira, C.G.; Siqueira, J.O.; Guilherme, L.R. Rareearth elements in the soil enviroment. Land Pollut. 2016, 2, 28–50. [Google Scholar]
- Adeel, M.; Lee, J.Y.; Zain, M.; Rizwan, M.; Nawab, A.; Ahmad, M.A.; Shafiq, M.; Yi, H.; Jilani, G.; Javed, R.; et al. Cryptic footprints of rare earth elements on natural resources and living organisms. Environ. Int. 2019, 127, 785–800. [Google Scholar] [CrossRef]
- Brouzitotis, A.A.; Giarra, A.; Libralato, G.; Pagano, G.; Guida, M.; Trifuoggi, M. Toxicity of rare earth elements: An overview on human health impact. Front. Environ. Sci. 2022, 10, 948041. [Google Scholar]
- Amato, A.; Becci, A.; Birloaga, I.; De Michelis, I.; Ferella, F.; Innocenzi, V.; Ippolito, N.M.; Pillar, C.; Gomez, J.; Vegliò, F.; et al. Sustainability analysis of innovative technologies for the rare earth elements recovery. Renew. Sustain. Energy Rev. 2019, 106, 41–53. [Google Scholar] [CrossRef]
- Soudek, P.; Petrova, S.; Benešová, D.; Vanek, T. Phytoextraction of toxic metals by sunflower and corn plants. J. Food Agric. Environ. 2019, 8, 383–390. [Google Scholar]
- Nnaji, N.D.; Onyeaka, H.; Miri, T.; Ugwa, C. Bioaccumulation for heavy metal removal: A review. SN Appl. Sci. 2019, 5, 125. [Google Scholar] [CrossRef]
- Phang, L.Y.; Mingyuan, L.; Mohammadi, M. Phytoremediation as a viable ecological and socioeconomic management strategy. Environ. Sci. Pollut. Res. 2024, 31, 50126–55041. [Google Scholar] [CrossRef]
- Gawroński, S.; Łutczyk, G.; Szulc, W.; Rutkowska, B. Urban mining: Phytoextraction of noble and rare earth elements from urban soils. Arch. Environ. Prot. 2022, 48, 24–33. [Google Scholar]
- Sharma, S.; Tiwari, S.; Hasan, A.; Saxena, V.; Pandery, L.M. Recent advances in conventional and contemporary methods for remediation of heavy metal- contaminated soils. Biotech 2018, 3, 216. [Google Scholar] [CrossRef]
- Takarina, N.D.; Pin, D.G. Bioconcentration Factor (BCF) and Translocation Factor (TF) of heavy metal Mangrove trees of Blankan Fish Farma. Makara J. Sci. 2017, 21, 78–81. [Google Scholar] [CrossRef]
- Brunetti, G.; Farrag, K.; Soler-Rovira, P.; Nigro, F. Greenhouse and field studies on Cr, Cu, Pb and Zn pytoextraction by Brassica napus from contaminated soils in the Apulia Region, Southern Italy. Geoderma 2011, 160, 517–523. [Google Scholar] [CrossRef]
- Mocek-Płóciniak, A.; Mencel, J.; Zakrzewski, W.; Roszkowski, S. Phytoremediation as an effective remedy for removing trace elements from ecosystems. Plants 2023, 12, 1653. [Google Scholar] [CrossRef]
- Rabbani, M.; Taqi Rabbani, M.; Muthoni, F.; Sun, Y.; Vahidi, E. Advancing phytomining: Harnessing plant potential for sustainable rare earth element extraction. Bioresour. Technol. 2024, 401, 130751. [Google Scholar] [CrossRef]
- Chang, Q.; Diao, F.; Wang, Q.; Pan, L.; Dang, Z.; Guo, W. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environ. Pollut. 2018, 241, 607–615. [Google Scholar] [CrossRef]
- Netty, S.; Wardiyati, T.; Maghfoer, M.D.; Handayanto, E. Bioaccumulation of nickel by five wild plant species on nickel-contaminated soil. J. Eng. 2013, 3, 2278–8719. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrion and soil remediation. Appl. Enviroental Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Clemente, R.; Piechur, D.J.; Bernal, M.P. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environ. Pollut. 2003, 138, 46–58. [Google Scholar] [CrossRef]
- Xu, J.M.; Tang, C.; Chen, Z.L. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol. Biochem. 2006, 28, 709–719. [Google Scholar] [CrossRef]
- Gajic, G.; Djurdjević, L.; Kostić, O.; Jarić, S.; Mitrović, M.; Pavlović, P. Ecological potential of plants for phytoremediation and ecorestoration of fly ash desposits and mine wastes. Front. Environ. Sci. 2018, 6, 124. [Google Scholar] [CrossRef]
- Tsonev, T.; Lidon, F.J.C. Zinc in plants—A overview. Emir. J. Food Agric. 2024, 24, 322–333. [Google Scholar]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Mir, A.R.; Pitchel, J.; Hayat, S. Copper:uptake, toxicity and tolerance in plants and managament of Cu-contaminated soil. BioMetals 2021, 34, 737–759. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Pandita, S.; Sidhu, G.P.S.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef] [PubMed]
- Asare, M.O.; Száková, M.O.; Tlustoš, P. The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils- a comprehensive review. Environ. Sci. Pollut. Res. 2022, 30, 11378–11398. [Google Scholar] [CrossRef] [PubMed]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Bali, A.S.; Sidhu, G.P.S. Arsenic acquisition, toxicity and tolerance in plants- from physiology to remediation: A review. Chemosphee 2021, 283, 131050. [Google Scholar] [CrossRef]
- Zulfigar, U.; Farooq, M.; Hussain, S.; Maqsood, M.; Hussain, M.; Ishfaq, M.; Ahmad, M.; Anjum, Z. Lead toxicity in plants: Impacts and remediation. J. Environ. Manag. 2019, 250, 109557. [Google Scholar] [CrossRef]
- Mleczek, P.; Borowiak, K.; Budka, A.; Niedzielski, P. Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road. Environ. Sci. Pollut. Res. 2018, 25, 23695–23711. [Google Scholar] [CrossRef]
- He, H.; Fan, C.; Peng, Q.; Wu, M.; Zheng, J.; Wu, G.L. Bioaccumulation and translocation of rare earth elements in two forage legumes grown in soils treated with coal fly ash. Chem. Geol. 2019, 528, 119284. [Google Scholar] [CrossRef]
- Le Jean, M.; Montargès-Pelletier, E.; Rivard, C.; Grosjean, N.; Chalot, M.; Vantelon, D.; Spiers, K.M.; Blaudez, D. Locked up inside the vessels: Rare rarth elements are transferred and stored in the conductive tissues of the accumulating fern Dryopteris Erythrosora. Environ. Sci. Technol. 2023, 57, 2768–2778. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Li, K.; Wang, T. State of rare earth elements in different environmental components in mining areas of China. Environ. Monit. Assess. 2014, 186, 1499–1513. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Liu, C.; Liu, W.; Guo, M.; Morel, J.L.; Huot, H.; Yu, H.; Tang, Y.; Qiu, R. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China. Int. J. Phytoremediation 2018, 20, 415–423. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, H.; Liu, C.; Guo, M.; Zhu, S.; Cao, Y.; Qiu, R.; Morel, J.L.; van der Ent, A.; Tang, Y. Variation in rare earth element (REE), aluminium (Al.) and silicon (Si) accumulation among populations of the hyperaccumulator Dicranopteris linearis in southern China. Plant Soil 2021, 461, 565–578. [Google Scholar] [CrossRef]
- Challaraj, E.S.; Anandkumar, B.; Natesan, M.; Maruthamuthu, S. Efficacy of rare earth elements on the physioloical and biochemical characteristics of Zea mays L. Aust. J. Crop Sci. 2019, 4, 289–294. [Google Scholar]
- Carpenter, D.; Boutin, C.; Allison, J.E.; Parsons, J.L.; Ellis, D.M. Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS ONE 2015, 10, 0129936. [Google Scholar] [CrossRef]
- Krgović, R.; Trifković, J.; Milojković-Opsenica, D.; Manojlović, D.; Marković, M.; Mutić, J. Phytoextraction of metals by Erigeron canadensis L. from fly ash landfill of power plant “Kolubara”. Environ. Sci. Pollut. Res. 2015, 22, 10506–10515. [Google Scholar] [CrossRef]
- Zhuang, P.; Yang, Q.W.; Wang, H.B.; Shu, W.S. Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut. 2007, 184, 235–242. [Google Scholar] [CrossRef]
- Tyler, G. Rare earth elements in soil and plant systems-A review. Plant Soil 2004, 267, 191–206. [Google Scholar] [CrossRef]
- Xiaoquan, S.; Haiou, W.; Shuzhen, Z.; Hanfa, Z.; Yan, Z.; Hong, Y.; Bei, W. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci. 2003, 165, 1343–1353. [Google Scholar]
- Ozaki, T.; Enomoto, S.; Minai, Y.; Ambe, A.; Ambe, F.; Makide, Y. Beneficial effect of rare earth elements on the growth of Dryopteris erythrosora. J. Plant Physiol. 2000, 156, 330–334. [Google Scholar] [CrossRef]
- Cakaj, A.; Hanć, A.; Lisiak-Zielińska, M.; Borowiak, K.; Drapikowska, M. Trifolium pratense and the heavy metal contect in various urban areas. Sustainability 2023, 15, 7325. [Google Scholar] [CrossRef]
- Zhang, C.; Geng, N.; Dai, Y.; Ahmad, Z.; Li, Y.; Han, S.; Zhang, H.; Chen, J.; Yang, J. Accumulation and distribution characteristics of rare earth elements (REEs) in the naturally grown marigold (Tagetes erecta L.) from the soil. Environ. Sci. Pollut. Res. 2023, 30, 46355–46367. [Google Scholar] [CrossRef]
- Azizi, M.; Faz, A.; Zornoza, R.; Martinez-Martinez, S.; Acosta, J.A. Phytoremediation potential of native plant species in mine soils polluted by metal(loid)s and rare earth elements. Plants 2023, 12, 1219. [Google Scholar] [CrossRef]
- Kotelnikova, A.D.; Ragova, O.B.; Stolbova, V.V. Lanthanides in the Soil: Routes of Entry, Content, Effect on Plants, and Genotoxicity (a Review). Degrad. Rehabil. Conserv. Soils 2021, 54, 117–134. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Stark, H.J.; Wennrich, R.; Levizou, E.; Merbach, I.; Rinklebe, J. Phytoremediation potential od twelve wild plant species for toxic elements in a contaminated soil. Environ. Int. 2021, 146, 106233. [Google Scholar] [CrossRef]
- Sasmaz, M.; Akgul, B.; Yildirim, D.; Sasmaz, A. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Katahya) mining area, Turkey. Int. J. Phytoremedation 2016, 18, 69–76. [Google Scholar] [CrossRef]
- Khashj, S.; Karimi, B.; Makhdoumi, P. Phytoremediation with Festuca arundinacea: A mini review. J. Health Rep. Technol. 2018, 4, e86625. [Google Scholar] [CrossRef]
- Albornoza, C.B.; Larsen, K.; Landa, R.; Quirga, M.A.; Najle, R.; Marcovecchio, J. Lead and zinc determinations in Festuca arundinacea and Cyndon dactylon collected from contaminated soils in Tandil (Buenos Aires Provinces), Argentina. Environ. Earth Sci. 2016, 75, 42. [Google Scholar]
- Steligia, T.; Kluk, D. Application of Festuca arundinacea in phytoremediatin of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicol. Environ. Saf. 2020, 194, 110409. [Google Scholar] [CrossRef]
- Batty, L.C.; Anslow, M. Effect of a Polycyclic Aromatic Hydrocarbon on the phytoremediation of zinc by two plants species (Brassica juncea and Festuca Arundinacea). Int. J. Phytoremediation 2008, 10, 236–251. [Google Scholar] [CrossRef] [PubMed]
- Ziarati, P.; Vambol, V.; Vambol, S. Use of inductively coupled plasma optical emission spectrometry detection in determination of arsenic bioaccumulaition in Trifolium pratense L. from contaminated soil. Ecol. Quest. 2019, 31, 15–22. [Google Scholar]
- Manke, J.; Praspaliauskas, M.; Pedisius, N.; Sujetoviene, G. Evaluation of phytoremediation efficiency of shooting range soil using the bioaccumulation potential and sensitivity of different plant species. Ecol. Eng. 2024, 198, 107134. [Google Scholar] [CrossRef]
- Zand, A.D.; Muhling, K.H. Phytoremediation cability and copper uptake of maize (Zea mays L.) in copper contaminated soils. Pollutans 2022, 2, 53–65. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Zia-ur-Rehman, M.; Abbas, Z.; Hannan, F. Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: A critical review. Environ. Geochem. Health 2017, 39, 259–277. [Google Scholar]
- Boros-Lajszer, E.; Adiloglu, S.; Goker, M. Phytoremediation: Elimination of hexavalent chromium heavy metal using corn (Zea mays L.). Cereal Res. Commun. 2021, 49, 65–72. [Google Scholar]
- Wyszkowska, J.; Kucharski, J. Phytoremediation of soil contaminated with nickel, cadmium an cobalt. Int. J. Phytoremediation 2021, 23, 252–262. [Google Scholar]
- Jean, M.L.; Grosjean, N.; Spiers, K.; Rivard, C.; Montarges-Pelletier, E.; Flayac, J.; Gross, E.; Thomine, S.; Merlot, S.; Blaudeza, D. Ferns for rare earth elements (REE)- toward deciphering REE transfer to plants using the accumulating fern Dryopteris erythrosora. In Proceedings of the Final Conference of the COST NOTICE TD1407: Network on Technology-Critical Elements- from Environmental Proces to Human Healt Threats, Zagreb, Croatia, 2–3 April 2019. [Google Scholar]
- Madanan, M.T.; Shan, I.K.; Varghese, G.K.; Kaushal, R.K. Application of Aztec marigold (Tagetes erecta L.) for phytoremediation of heavy metal polluted lateritic soil. Environ. Chem. Ecotoxicol. 2021, 3, 17–22. [Google Scholar] [CrossRef]
- DIN/ISO 13878:1998; Soil quality—Determination of total nitrogen content by dry combustion (“elemental analysis”). ISO: Geneva, Switzerland, 1998.
- ISO 10694:1995; Soil quality—Determination of organic and total carbon after dry combustion (elementary analysis). ISO: Geneva, Switzerland, 1995.
Species of Plants | Substrate 2 | Substrate 3 | Substrate 4 |
---|---|---|---|
A. millefolium | 0.33 | 0.25 | 0.30 |
T. pratense L. | 0.15 | 0.10 | 0.45 |
F. arundinacea | 0.55 | 0.68 | 0.69 |
S. alba | 1.30 | 0.44 | 1.12 |
Z. mays | 0.83 | 0.73 | 0.61 |
Tagetes sp. | 0.77 | 0.41 | 0.67 |
T. martimum | 0.65 | 0.39 | 0.31 |
D. erythosora | 0.48 | 0.43 | 0.59 |
Species | Substrate 1 | Substrate 2 | Substrate 3 | Substrate 4 |
---|---|---|---|---|
Initial pH | 6.60 | 7.50 | 7.80 | 7.10 |
Achillea millefolium | 5.15 ± 0.031 k | 7.31 ± 0.057 d | 7.55 ± 0.059 c | 7.18 ± 0.021 f |
Trifolium pratense L. | 5.28 ± 0.065 j | 7.55 ± 0.069 c | 7.67 ± 0.035 b | 7.17 ± 0.032 f |
Festuca arundinacea | 5.33 ± 0.038 ij | 7.54 ± 0.026 c | 7.69 ± 0.095 b | 7.23 ± 0.047 e |
Sinapis alba | 5.88 ± 0.131 g | 7.49 ± 0.036 | 7.75 ± 0.006 a | 7.15 ± 0.114 f |
Zea mays | 5.53 ± 0.159 I | 7.52 ± 0.026 cd | 7.76 ± 0.017 a | 7.16 ± 0.021 f |
Tagetes sp. | 5.40 ± 0.057 i | 7.55 ± 0.032 c | 7.70 ± 0.095 b | 7.18 ± 0.025 f |
Tripleurosperm maritimum | 5.67 ± 0.055 h | 7.58 ± 0.006 c | 7.78 ± 0.020 a | 7.15 ± 0.025 f |
Dryopteris erythrosora | 5.83 ± 0.186 g | 7.57 ± 0.115 c | 7.89 ± 0.044 a | 7.26 ± 0.046 e |
Type of Substrate | Species | La | Ce | Eu | Gd |
---|---|---|---|---|---|
substrate 1 | Achillea millefolium | 0.02 | 0.02 | 0.13 | 0.02 |
substrate 1 | Trifolium pratense L. | 0.004 | 0.006 | 0.13 | 0.01 |
substrate 1 | Festuca arundinacea | 0.07 | 0.07 | 0.40 | 0.11 |
substrate 1 | Sinapsis alba | 0.08 | 0.09 | 0.37 | 0.11 |
substrate 1 | Zea mays | 0.11 | 0.10 | 0.47 | 0.13 |
substrate 1 | Tagetes sp. | 0.02 | 0.02 | 0.23 | 0.03 |
substrate 1 | Triplerosperum martimum | 0.04 | 0.04 | 0.13 | 0.05 |
substrate 1 | Dryopteris erythosora | 0.09 | 0.07 | 0.28 | 0.08 |
substrate 2 | Achillea millefolium | 0.06 | 0.04 | 0.03 | 0.04 |
substrate 2 | Trifolium pratense L. | 0.09 | 0.08 | 0.12 | 0.06 |
substrate 2 | Festuca arundinacea | 0.005 | 0.005 | 0.09 | 0.005 |
substrate 2 | Sinapsis alba | 0.01 | 0.008 | 0.05 | 0.008 |
substrate 2 | Zea mays | 0.01 | 0.01 | 0.02 | 0.008 |
substrate 2 | Tagetes sp. | 0.01 | 0.01 | 0.09 | 0.05 |
substrate 2 | Triplerosperum martimum | 0.009 | 0.009 | 0.01 | 0.005 |
substrate 2 | Dryopteris erythosora | 0.005 | 0.01 | 0.09 | 0.02 |
substrate 3 | Achillea millefolium | 0.001 | 0.002 | 0.01 | 0.0007 |
substrate 3 | Trifolium pratense L. | 0.008 | 0.004 | 0.01 | 0.006 |
substrate 3 | Festuca arundinacea | 0.006 | 0.006 | 0.03 | 0.006 |
substrate 3 | Sinapsis alba | 0.003 | 0.003 | 0.008 | 0.003 |
substrate 3 | Zea mays | 0.005 | 0.006 | 0.06 | 0.006 |
substrate 3 | Tagetes sp. | 0.005 | 0.006 | 0.03 | 0.006 |
substrate 3 | Triplerosperum martimum | 0.008 | 0.007 | 0.008 | 0.007 |
substrate 3 | Dryopteris erythosora | 0.01 | 0.01 | 0.01 | 0.008 |
substrate 4 | Achillea millefolium | 0.06 | 0.03 | 0.12 | 0.02 |
substrate 4 | Trifolium pratense L. | 0.06 | 0.08 | 0.18 | 0.12 |
substrate 4 | Festuca arundinacea | 0.09 | 0.02 | 0.21 | 0.02 |
substrate 4 | Sinapsis alba | 0.02 | 0.02 | 0.14 | 0.15 |
substrate 4 | Zea mays | 0.02 | 0.02 | 0.09 | 0.01 |
substrate 4 | Tagetes sp. | 0.01 | 0.005 | 0.11 | 0.02 |
substrate 4 | Triplerosperum martimum | 0.02 | 0.01 | 0.06 | 0.01 |
substrate 4 | Dryopteris erythosora | 0.03 | 0.01 | 0.27 | 0.03 |
Type of Substrate | Species | La | Ce | Eu | Gd |
---|---|---|---|---|---|
substrate 1 | Achillea millefolium | 0.80 | 0.87 | 1.00 | 1.00 |
substrate 1 | Trifolium pratense L. | 2.00 | 1.78 | 1.05 | 1.00 |
substrate 1 | Festuca arundinacea | b.d. | 0.01 | 0.19 | b.d. |
substrate 1 | Sinapsis alba | b.d. | 0.03 | 0.22 | b.d. |
substrate 1 | Zea mays | b.d. | 0.02 | b.d. | b.d. |
substrate 1 | Tagetes sp. | 0.18 | 0.21 | 0.39 | 0.34 |
substrate 1 | Triplerosperum martimum | 0.04 | 0.06 | 1.00 | 0.22 |
substrate 1 | Dryopteris erythosora | 1.17 | 0.97 | 0.93 | 0.83 |
substrate 2 | Achillea millefolium | 0.54 | 0.20 | b.d. | 0.30 |
substrate 2 | Trifolium pratense L. | 0.17 | 0.07 | b.d. | 0.10 |
substrate 2 | Festuca arundinacea | b.d. | 0.10 | b.d. | b.d. |
substrate 2 | Sinapsis alba | b.d. | 0.24 | b.d. | b.d. |
substrate 2 | Zea mays | b.d. | 0.10 | b.d. | b.d. |
substrate 2 | Tagetes sp. | b.d. | 0.22 | b.d. | b.d. |
substrate 2 | Triplerosperum martimum | 0.13 | 0.24 | b.d. | b.d. |
substrate 2 | Dryopteris erythosora | 0.47 | 1.80 | 0.25 | 4.03 |
substrate 3 | Achillea millefolium | 0.40 | 0.83 | b.d. | b.d. |
substrate 3 | Trifolium pratense L. | 1.13 | 0.06 | b.d. | 0.58 |
substrate 3 | Festuca arundinacea | b.d. | 0.04 | b.d. | b.d. |
substrate 3 | Sinapsis alba | b.d. | 0.03 | b.d. | b.d. |
substrate 3 | Zea mays | b.d. | 0.02 | b.d. | b.d. |
substrate 3 | Tagetes sp. | b.d. | 0.01 | b.d. | b.d. |
substrate 3 | Triplerosperum martimum | 0.05 | 0.01 | b.d. | b.d. |
substrate 3 | Dryopteris erythosora | 0.24 | 0.20 | 0.39 | 0.63 |
substrate 4 | Achillea millefolium | 0.85 | 0.16 | b.d. | 0.29 |
substrate 4 | Trifolium pratense L. | b.d. | 0.01 | b.d. | b.d. |
substrate 4 | Festuca arundinacea | b.d. | 0.05 | b.d. | b.d. |
substrate 4 | Sinapsis alba | b.d. | 0.12 | b.d. | b.d. |
substrate 4 | Zea mays | 0.06 | 0.09 | b.d. | b.d. |
substrate 4 | Tagetes sp. | b.d. | 0.19 | b.d. | b.d. |
substrate 4 | Triplerosperum martimum | 1.56 | 0.21 | b.d. | 0.49 |
substrate 4 | Dryopteris erythosora | 0.69 | 1.16 | 0.24 | 1.17 |
Soil | Ash | Smelter Waste | Compost (GWDA) | Peat | |
---|---|---|---|---|---|
Substrate 1 | 95% | - | - | 5% | - |
Substrate 2 | - | 30% | - | 20% | 50% |
Substrate 3 | - | 30% | - | 20% | 50% |
Substrate 4 | - | - | 40% | 20% | 40% |
Element | Soil | Paper Industry Ash | Power Plant Ash | Smelter Waste |
---|---|---|---|---|
Li | 2.4 | 19.2 | 11.3 | 3.2 |
Be | 0.1 | 2.1 | 0.8 | 1.5 |
Al | 3674 | 59,437 | 15,669 | 10,064 |
V | 10.5 | 174.1 | 35.5 | 54.7 |
Cr | 7.6 | 104.7 | 46.6 | 41.9 |
Mn | 143 | 447 | 631 | 6228 |
Fe | 4689 | 54,200 | 14,031 | 23,6248 |
Co | 1.6 | 30.5 | 15 | 14.7 |
Ni | 4.3 | 85.1 | 53.4 | 70.3 |
Cu | 3.1 | 48.4 | 498.03 | 16.2 |
Zn | 14.3 | 113.7 | 892.72 | 126,228 |
As | 2.0 | 22.8 | 9.3 | 2724.46 |
Se | 0.1 | 23.1 | 1.1 | 12.2 |
Sr | 0.5 | 30.9 | 36.1 | 3.1 |
Mo | 0.1 | 2.9 | 3.7 | 13.7 |
Ag | 0.1 | 0.2 | 4.7 | 39.8 |
Cd | 0.1 | 5.2 | 11.2 | 573.6 |
Sn | 0.1 | 2.0 | 22.6 | 0.5 |
Sb | 0.0 | 0.4 | 16.4 | 7.2 |
Ba | 19.3 | 317.9 | 797.7 | 50.5 |
La | 6.2 | 67 | 8.9 | 7.0 |
Ce | 13.1 | 120.4 | 18.6 | 16.6 |
Eu | 0.1 | 2.27 | 0.5 | 0.2 |
Gd | 0.9 | 12.45 | 1.9 | 1.5 |
Tl | 0.05 | 0.64 | 0.4 | 19.4 |
Pb | 9.3 | 40.7 | 117.4 | 21,782.9 |
Bi | b.d. | 0.7 | 6.3 | 0.1 |
Na | 21.1 | 285 | 8770 | 62.8 |
Mg | 651 | 4235 | 10,300 | 16,277 |
K | 1209 | 733 | 18,455 | 1721 |
Ca | 987 | 151,265 | 130,492 | 37,220 |
pH in H2O | 6.60 | 7.93 | 11.26 | 8.55 |
EC µS/cm | 146 | 1238 | 11,080 | 200 |
Total nitrogen % N | 0.07 | 0.05 | 0.02 | 0.12 |
Total carbon % C | 0.75 | 3.79 | 1.78 | 20.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gmur, D.; Siebielec, G.; Pecio, M. Differences in Accumulation of Rare Earth Elements by Plants Cultivated in Soil and Substrates from Industrial Waste Materials. Plants 2025, 14, 589. https://doi.org/10.3390/plants14040589
Gmur D, Siebielec G, Pecio M. Differences in Accumulation of Rare Earth Elements by Plants Cultivated in Soil and Substrates from Industrial Waste Materials. Plants. 2025; 14(4):589. https://doi.org/10.3390/plants14040589
Chicago/Turabian StyleGmur, Dominika, Grzegorz Siebielec, and Monika Pecio. 2025. "Differences in Accumulation of Rare Earth Elements by Plants Cultivated in Soil and Substrates from Industrial Waste Materials" Plants 14, no. 4: 589. https://doi.org/10.3390/plants14040589
APA StyleGmur, D., Siebielec, G., & Pecio, M. (2025). Differences in Accumulation of Rare Earth Elements by Plants Cultivated in Soil and Substrates from Industrial Waste Materials. Plants, 14(4), 589. https://doi.org/10.3390/plants14040589