Morpho-Physicochemical, Nutritional Composition and Phenolic Compound Profile of Two Avocado Landraces in Different Ripening Stages
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morpho-Physicochemical Characteristics of Avocado Fruits
2.2. Nutritional Composition of Avocado Fruit Tissues
2.2.1. Peel
2.2.2. Pulp
2.2.3. Seed
2.3. Phenolic Compounds Identification and Quantification by UPLC-DAD/ESI-MS
2.4. Total Phenolic Content and Antioxidant Activity
2.5. Correlation Among TPC, Antioxidant Activity, and Individual Phenolic Compounds
3. Materials and Methods
3.1. Plant Material
3.2. Chemical Reagents
3.3. Morpho-Physicochemical Characteristics of Fresh Fruits
3.3.1. Fruit Traits
3.3.2. Color Measurement
3.3.3. Hardness
3.3.4. pH Measurements, Total Soluble Solid (°Brix), Total Titratable Acidity (TTA), and Maturity Index
3.4. Preparation of Samples
3.5. Nutritional Composition
3.6. Extraction Procedure of Phenolic Compounds
3.7. Total Phenolic Content (TPC) Determination
3.8. DPPH and ABTS+ Radical Assays
3.9. Phenolic Compounds Identification by UPLC-DAD-ESI-MS
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehikioya, C.O.; Osagie, A.M.; Omage, S.O.; Omage, K.; Azeke, M.A. Carbohydrate Digestive Enzyme Inhibition, Hepatoprotective, Antioxidant and Antidiabetic Benefits of Persea americana. Sci. Rep. 2023, 13, 284. [Google Scholar] [CrossRef]
- Ninh, T.T.; Doan, H.T.; Nguyen, M.T.; Tran, T.T.; Dang, P.D.D.; Dinh, S.T.; Nguyen, H.T.; Nong, H.T.; Nguyen, C.X. Genetic Diversity of Avocado (Persea americana Mill.) Germplasm in Vietnam Using RAPD and ISSR Molecular Markers. Aust. J. Crop Sci. 2022, 16, 856–862. [Google Scholar] [CrossRef]
- Donetti, M.; Terry, L.A. Biochemical Markers Defining Growing Area and Ripening Stage of Imported Avocado Fruit Cv. Hass. J. Food Compos. Anal. 2014, 34, 90–98. [Google Scholar] [CrossRef]
- Stephen, J.; Radhakrishnan, M. Avocado (Persea americana Mill.) Fruit: Nutritional Value, Handling and Processing Techniques, and Health Benefits. J. Food Process. Preserv. 2022, 46, e17207. [Google Scholar] [CrossRef]
- Ochoa-Zarzosa, A.; Báez-Magaña, M.; Guzmán-Rodríguez, J.J.; Flores-Alvarez, L.J.; Lara-Márquez, M.; Zavala-Guerrero, B.; Salgado-Garciglia, R.; López-Gómez, R.; López-Meza, J.E. Bioactive Molecules from Native Mexican Avocado Fruit (Persea americana Var. Drymifolia): A Review. Plant Foods Hum. Nutr. 2021, 76, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive Identification of Bioactive Compounds of Avocado Peel by Liquid Chromatography Coupled to Ultra-High-Definition Accurate-Mass Q-TOF. Food Chem. 2018, 245, 707–716. [Google Scholar] [CrossRef]
- Lyu, X.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants 2023, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Olivares, D.; Ulloa, P.A.; Vergara, C.; Hernández, I.; García-Rojas, M.Á.; Campos-Vargas, R.; Pedreschi, R.; Defilippi, B.G. Effects of Delaying the Storage of ‘Hass’ Avocados under a Controlled Atmosphere on Skin Color, Bioactive Compounds and Antioxidant Capacity. Plants 2024, 13, 1455. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant Capacities, Procyanidins and Pigments in Avocados of Different Strains and Cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Espinosa-Alonso, L.G.; Paredes-López, O.; Valdez-Morales, M.; Oomah, B.D. Avocado Oil Characteristics of Mexican Creole Genotypes. Eur. J. Lipid Sci. Technol. 2017, 119, 1600406. [Google Scholar] [CrossRef]
- Ramos-Aguilar, A.L.; Ornelas-Paz, J.; Tapia-Vargas, L.M.; Gardea-Bejar, A.A.; Yahia, E.M.; Ornelas-Paz, J.d.J.; Perez-Martinez, J.D.; Rios-Velasco, C.; Escalante-Minakata, P. Metabolomic Analysis and Physical Attributes of Ripe Fruits from Mexican Creole (Persea Americana Var. Drymifolia) and “Hass” Avocados. Food Chem. 2021, 354, 129571. [Google Scholar] [CrossRef] [PubMed]
- Huaman-Alvino, C.; Chirinos, R.; Gonzales-Pariona, F.; Pedreschi, R.; Campos, D. Physicochemical and Bioactive Compounds at Edible Ripeness of Eleven Varieties of Avocado (Persea americana) Cultivated in the Andean Region of Peru. Int. J. Food Sci. Technol. 2021, 56, 5040–5049. [Google Scholar] [CrossRef]
- Servicio Nacional de Sanidad, I. y C. A. (SENASICA). Avocado Production in Yucatán 2021. 2024. Available online: https://dj.senasica.gob.mx/sias/Statistics/Transversal/EstadisticaProduccionAguacate (accessed on 13 November 2024).
- Dreher, M.L.; Davenport, A.J. Hass Avocado Composition and Potential Health Effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; Quero, J.; Osada, J.; Martín-Belloso, O.; Rodríguez-Yoldi, M.J. Phenolic-Rich Extracts from Avocado Fruit Residues as Functional Food Ingredients with Antioxidant and Antiproliferative Properties. Biomolecules 2021, 11, 977. [Google Scholar] [CrossRef] [PubMed]
- Salameh, M.; Nacouzi, D.; Lahoud, G.; Riachy, I.; El Kayal, W. Evaluation of Postharvest Maturity Indices of Commercial Avocado Varieties Grown at Various Elevations Along Lebanon’ s Coast. Front. Plant Sci. 2022, 13, 895964. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Zúñiga, S.M.; Corrales-García, J.E.; Gutiérrez-Grijalva, E.P.; García-Mateos, R.; Pérez-Rubio, V.; Heredia, J.B. Fatty Acid Profile, Total Carotenoids, and Free Radical-Scavenging from the Lipophilic Fractions of 12 Native Mexican Avocado Accessions. Plant Foods Hum. Nutr. 2019, 74, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Tochihuitl-Martiñón, G.A.; Saucedo-Veloz, C.; López-jiménez, A.; Chávez-Franco, S.H.; Arellano-ostoa, G.; Guerra-Ramírez, D. Quality and Shelf Life of Three Physiological States of Fruits of Avocado Variety Lonjas. Rev. Mex. Cienc. Agrícolas 2023, 14, 555–566. [Google Scholar]
- Márquez, C.J.; Yepes, D.P.; Alimentos, I.D.; Sanchez, L. Changes Physical-Chemical of Cvocado (Persea americana mill. cv. “hass”). In Postharvest for Two Municipalities of Antioquia; Facultad de Ciencias Agricolas: Monteria, Colombia, 2014; Volume 19. [Google Scholar]
- Hailu, W.; Bekele, T. Quality and Phsio-Chemical Changes Associated with Processing and Properties of Fruits and Vegetables. Cogent Food Agric. 2024, 10, 2419957. [Google Scholar] [CrossRef]
- Surukite, O.; Kafeelah, Y.; Olusegun, F.; Damola, O. Qualitative Studies on Proximate Analysis and Characterization of Oil from Persea americana (Avocado Pear). J. Nat. Sci. Res. 2013, 3, 68–74. [Google Scholar]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado By-Products: Nutritional and Functional Properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Viera, W.; Gaona, P.; Samaniego, I.; Sotomayor, A.; Viteri, P.; Noboa, M.; Merino, J.; Mejía, P.; Park, C.H. Mineral Content and Phytochemical Composition of Avocado Var. Hass Grown Using Sustainable Agriculture Practices in Ecuador. Plants 2023, 12, 1791. [Google Scholar] [CrossRef] [PubMed]
- Bangar, S.P.; Dunno, K.; Dhull, S.B.; Kumar Siroha, A.; Changan, S.; Maqsood, S.; Rusu, A.V. Avocado Seed Discoveries: Chemical Composition, Biological Properties, and Industrial Food Applications. Food Chem. X 2022, 16, 100507. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Domínguez-Avila, J.A.; Yahia, E.M.; Belmonte-Herrera, B.H.; Wall-Medrano, A.; Montalvo-González, E.; González-Aguilar, G.A. Avocado Fruit and By-Products as Potential Sources of Bioactive Compounds. Food Res. Int. 2020, 138, 109774. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.W.; Wong, C.N.Y.; Pin, W.K.; Wong, M.H.Y.; Kwok, C.Y.; Chan, R.Y.K.; Yu, P.H.F.; Chan, S.W. Chlorogenic Acid Exhibits Cholesterol Lowering and Fatty Liver Attenuating Properties by Up-Regulating the Gene Expression of PPAR-α in Hypercholesterolemic Rats Induced with a High-Cholesterol Diet. Phyther. Res. 2013, 27, 545–551. [Google Scholar] [CrossRef]
- Gonçalves, D.; Gouveia, C.S.S.; Ferreira, M.J.; Ganança, J.F.T.; Pinto, D.C.G.; Pinheiro de Carvalho, M.A.A. Comparative Analysis of Antioxidant and Fatty Acid Composition in Avocado (Persea americana Mill.) Fruits: Exploring Regional and Commercial Varieties. Food Chem. 2024, 442, 138403. [Google Scholar] [CrossRef] [PubMed]
- Restrepo-Serna, D.L.; Cardona-Alzate, C.A. The Avocado Peel as a Source of Catechins: A Comparison between Extraction Technologies and the Influence of Fruit Variety. Sustain. Chem. Pharm. 2024, 39, 101556. [Google Scholar] [CrossRef]
- Ugur, Y. Changes in the Phenolic, Melatonin, Sugar Contents and Antioxidant Capacity, Depending on Ripening Stage in Different Cornelian Cherry (Cornus mas L.) Fruits. ChemistrySelect 2024, 9, e202304682. [Google Scholar] [CrossRef]
- Martínez-Gutiérrez, E. Study of Influence of Extraction Method on the Recovery Bioactive Compounds from Peel Avocado. Molecules 2023, 28, 2557. [Google Scholar] [CrossRef] [PubMed]
- Medina-Torres, N.; Cuevas-Bernardino, J.C.; Ayora-Talavera, T.; Patrón-Vázquez, J.A.; Rodríguez-Buenfil, I.; Pacheco, N. Changes in the Physicochemical, Rheological, Biological, and Sensorial Properties of Habanero Chili Pastes Affected by Ripening Stage, Natural Preservative and Thermal Processing. Rev. Mex. Ing. Quim. 2021, 20, 195–212. [Google Scholar] [CrossRef]
- Hernández, H.; Pacheco, N.; Garruña, R.; Cuevas-Bernardino, J.C.; Pierre, J.F.; Martínez-Castillo, J.; Andueza-Noh, R.H. Physicochemical and Nutritional Traits of Sweet Potato (Ipomoea batatas (L.) Lam) Landraces Grown in Traditional Farming Systems. Chil. J. Agric. Res. 2024, 84, 757–768. [Google Scholar] [CrossRef]
- Astudillo-Ordóñez, C.E.; Rodríguez, P. Physicochemical Parameters of Avocado Persea Americana Mill. Cv. Hass (Lauraceae) Grown in Antioquia (Colombia) for Export. Corpoica Cienc. Tecnol. Agropecu. 2018, 19, 393–402. [Google Scholar]
- AOAC Association of Official Analytical Chemistry International. Official Methods of Analysis; AOAC: Rockville, MD, USA, 2005. [Google Scholar]
- Rozan, M.A.A.G.; Boriy, E.G.; Bayomy, H.M. Chemical Composition, Bioactive Compounds and Antioxidant Activity of Six Avocado Cultivars Persea americana Mill. (Lauraceae) Grown in Egypt. Emirates J. Food Agric. 2021, 33, 815–826. [Google Scholar]
- Žilić, S.; Serpen, A.; Akillioĝlu, G.; Janković, M.; Gökmen, V. Distributions of Phenolic Compounds, Yellow Pigments and Oxidative Enzymes in Wheat Grains and Their Relation to Antioxidant Capacity of Bran and Debranned Flour. J. Cereal Sci. 2012, 56, 652–658. [Google Scholar] [CrossRef]
- Jiménez-Morales, K.; Castañeda-Pérez, E.; Herrera-Pool, E.; Ayora-Talavera, T.; Cuevas-Bernardino, J.C.; García-Cruz, U.; Pech-Cohuo, S.C.; Pacheco, N. Ultrasound-Assisted Extraction of Phenolic Compounds from Different Maturity Stages and Fruit Parts of Cordia Dodecandra A. DC.: Quantification and Identification by UPLC-DAD-ESI-MS/MS. Agric. 2022, 12, 2127. [Google Scholar] [CrossRef]
- Niang, L.; Mahamat, S.A.; Ayessou, N.C.; Cisse, M.; Diop, C.M. Antioxidant Activity of Hydro-Acetonic, Hydro-Methanolic and Aqueous Leaf and Bark Extracts of Sclerocaria birrea (A. Rich.) Hochst. Food Nutr. Sci. 2021, 12, 429–438. [Google Scholar] [CrossRef]
Day 1 | Day 2 | Day 3 | Day 4 | |
---|---|---|---|---|
L* | 51.8 ± 2.35 a | 53.37 ± 2.35 a | 52.93 ± 3.61 a | 48.57 ± 1.23 a |
a* | −9.56 ± 0.86 b | −8.73 ± 0.64 ab | −7.67 ± 1.11 ab | −6.53 ± 0.81 a |
b* | 22.93 ± 1.60 b | 22.13 ± 1.35 b | 26.23 ± 2.32 a | 26.53 ± 2.25 a |
C* (Chroma) | 24.88 ± 1.14 b | 23.79 ± 1.51 b | 27.33 ± 2.33 a | 27.34 ± 2.24 a |
(Hue) Angle | 1112.74 ± 3.27 a | 111.52 ± 2.16 ab | 106.24 ± 1.22 ab | 103.96 ± 1.95 b |
Hardness (N) | 43.37 ± 3.14 a | 41.86 ± 0.37 a | 39.84 ± 2.53 a | 7.16 ± 0.64 b |
pH | 6.44 ± 0.11 b | 6.52 ± 0.05 ab | 6.715 ± 0.15 ab | 6.85 ± 0.02 a |
°Brix | 1.50 ± 0.72 a | 1.50 ± 0.71 a | 2.00 ± 0.00 a | 2.00 ± 0.00 a |
TTA (as% tartaric acid) | 5.46 ± 0.01 a | 5.44 ± 0.00 a | 5.45 ± 0.01 a | 2.73 ± 0.01 b |
Maturity index | 0.18 ± 0.00c | 0.20 ± 0.02c | 0.37 ± 0.01 b | 0.73 ± 0.00 a |
Day 1 | Day 2 | Day 3 | Day 4 | |
---|---|---|---|---|
L* | 53.27 ± 1.70 a | 41.67 ± 1.71 b | 45.83 ± 1.23 b | 45.23 ± 1.60 b |
a* | −8.5 ± 0.30 a | −8.07 ± 0.67 a | −8.00 ± 0.89 a | −7.73 ± 0.68 a |
b* | 15.83 ± 1.10 a | 16.33 ± 0.95 a | 17.33 ± 1.03 a | 17.70 ± 1.31 a |
C* (Chroma) | 17.98 ± 1.37 a | 18.22 ± 1.14 a | 19.09 ± 1.15 a | 19.32 ± 1.43 a |
(Hue) Angle | 118.30 ± 6.69 a | 116.26 ± 0.61 a | 114.76 ± 2.12 a | 113.60 ± 1.09 a |
Hardness (N) | 45.28 ± 4.29 a | 42.38 ± 1.65 a | 40.33 ± 1.02 a | 7.69 ± 1.41 b |
pH | 6.05 ± 0.49 b | 6.05± 0.49 b | 6.77 ± 0.06 b | 7.27 ± 0.33 a |
°Brix | 1.00 ± 0.00 c | 2.00 ± 0.00 b | 2.00 ± 0.00 b | 3.00 ± 0.00 a |
TTA (as% tartaric acid) | 8.19 ± 0.02 a | 5.44 ± 0.00 b | 5.45 ± 0.01 b | 2.73 ± 0.01 c |
Maturity index | 0.12 ± 0.00 c | 0.37 ± 0.02 b | 0.37 ± 0.01 b | 1.09 ± 0.00 a |
Tissue | Moisture (%) | Ash (%) | Fat (%) | Protein (%) | Crude Fiber (%) | Carbohydrate (%) |
---|---|---|---|---|---|---|
RLAPe | 11.15 ± 0.23 c | 3.82 ± 0.74 bc | 6.27 ± 0.58d | 5.96 ± 0.00 de | 23.47 ± 0.09 b | 48.81 ± 0.26 c |
ULAPe | 11.03 ± 0.72 cd | 4.62 ± 0.62 ab | 4.89 ± 0.60 ef | 5.96 ± 0.00 de | 24.40 ± 0.00 b | 49.20 ± 0.98 c |
RCAPe | 9.98 ± 0.29 cde | 3.82 ± 0.06 bc | 5.50 ± 0.20 de | 8.02 ± 0.27 c | 29.88 ± 0.02 a | 42.74 ± 0.05 e |
UCAPe | 9.54 ± 0.17 def | 4.42 ± 0.14 ab | 3.35 ± 0.14 gh | 6.34 ± 0.53 d | 28.63 ± 0.89 a | 47.71 ± 1.53 cd |
RLAPu | 17.88 ± 0.22 b | 3.81 ± 0.08 bc | 22.55 ± 0.01 a | 8.58 ± 0.53 bc | 10.08 ± 0.01 c | 37.10 ± 0.27 f |
ULAPu | 21.23 ± 0.80 a | 4.61 ± 0.13 ab | 19.14 ± 0.06 b | 9.32 ± 0.00 b | 11.16 ± 1.06 c | 34.65 ± 2.35 f |
RCAPu | 7.75 ± 0.70 g | 5.25 ± 0.20 a | 23.5 ± 0.18 a | 8.02 ± 0.01 c | 11.64 ± 0.30 c | 44.30 ± 0.80 de |
UCAPu | 8.35 ± 0.91 fg | 4.50 ± 0.14 ab | 16.25 ± 0.05 c | 12.20 ±0.12 a | 10.67 ± 0.13 c | 48.60 ± 0.19 c |
RLASe | 1.95 ± 0.10 h | 3.20 ± 0.05 cde | 4.10 ± 0.13 fg | 5.21 ± 0.00 e | 5.58 ± 0.36 de | 80.03 ± 0.40 a |
ULASe | 1.84 ± 0.39 h | 3.70 ± 0.06 bcd | 3.72 ± 0.17 gh | 5.59 ± 0.00 de | 5.31 ± 0.10 de | 80.05 ± 0.37 a |
RCASe | 8.34 ± 0.38 fg | 2.55 ± 0.01 e | 2.88 ± 0.37 h | 4.02 ± 0.08 f | 7.20 ± 0.57 d | 75.04 ± 0.49 b |
UCASe | 6.83 ± 0.22 g | 2.77 ± 0.25d e | 4.09 ± 0.06 fg | 6.28 ± 0.12 d | 4.49 ± 0.42 e | 75.53 ± 0.51 b |
CN | RT | [M-H]- | (m/z) | TI | Concentrations (µM g−1 dw) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RLAPe | ULAPe | RCAPe | UCAPe | RLAPu | ULAPu | UCAPu | RCAPu | RLASe | ULASe | RCASe | UCASe | |||||
1 | 8.85 | 353 | 179, 707, 353, 191 | Neochlorogenic acid | 0.09 ± 0.00 b | 0.04 ± 0.00 b | 0.01 ± 0.00 b | NQ | ND | ND | NQ | NQ | 0.87 ± 0.02 a | 0.83 ± 0.09 a | 0.71 ± 0.03 a | 0.68 ± 0.03 a |
2 | 9.325 | 353 | 707, 353, 191 | Chlorogenic acid | 2.32 ± 0.05 a | 0.83 ± 0.05 c | 0.27 ± 0.01 de | 0.14 ± 0.01 ef | 0.01 ± 0.01 f | NQ | NQ | 0.01 ± 0.00 f | 1.00 ± 0.06 b | 0.78 ± 0.10 c | 0.06 ± 0.01 f | 0.31 ± 0.02 d |
3 | 9.47 | 289 | 245, 289, 205, 203 | Catechin | 0.55 ± 0.00 a | 0.19 ± 0.04 bcd | 0.25 ± 0.01 bc | 0.13 ± 0.01 cde | 0.04 ± 0.01 e | 0.02 ± 0.00 e | 0.06 ± 0.01 e | 0.02 ± 0.00 e | 0.24 ± 0.02 bc | 0.54 ± 0.07 a | 0.28 ± 0.08 b | 0.44 ± 0.02 a |
4 | 10.07 | 179 | 179, 124 | Caffeic acid | 0.11 ± 0.01 a | 0.05 ± 0.01 b | NQ | 0.02 ± 0.00 cd | NQ | NQ | 0.01 ± 0.00 f | NQ | 0.05 ± 0.00 b | 0.04 ± 0.01 bc | NQ | 0.02 ± 0.00 de |
5 | 11.151 | 463 | 463, 300, 271 | Quercetin-3-O-hexoside | 0.31 ± 0.06 a | 0.16 ± 0.04 b | 0.17 ± 0.00 b | 0.10 ± 0.00 b | ND | ND | NQ | NQ | NQ | NQ | 0.17 ± 0.00 b | NQ |
6 | 11.37 | 163 | 119 | Coumaric acid | 0.12 ± 0.00 a | 0.06 ± 0.01 b | 0.06 ± 0.01 b | 0.06 ± 0.00 b | NQ | NQ | 0.03 ± 0.00 e | NQ | 0.02 ± 0.00 c | 0.01 ± 0.00 d | NQ | 0.02 ± 0.00 c |
7 | 11.93 | 193 | -- | Ferulic acid | 0.04 ± 0.00 a | ND | 0.02 ± 0.00 c | ND | 0.02 ± 0.00 c | 0.02 ± 0.00 c | 0.03 ± 0.00 ab | 0.03 ± 0.00 ab | NQ | ND | ND | NQ |
8 | 12.1 | 433 | 300, 271, 255, 243 | Quercetin-3-O-pentoside | 0.12 ± 0.02 a | 0.06 ± 0.00 b | 0.14 ± 0.00 a | 0.06 ± 0.00 b | ND | ND | ND | ND | NC | ND | ND | NQ |
9 | 12.36 | 433 | 300, 271, 255, 243 | Quercetin-3-O-pentoside 2 | NQ | NQ | 0.05 ± 0.00 a | 0.01 ± 0.00 b | ND | ND | ND | ND | ND | ND | ND | ND |
10 | 12.76 | 447 | 447, 300, 271, 255, 243, 227 | Quercetin-3-O-rhamnoside | 0.03 ± 0.00 c | 0.02 ± 0.00 d | 0.23 ± 0.01 a | 0.21 ± 0.00 b | ND | ND | ND | ND | ND | ND | ND | ND |
11 | 15.19 | 431 | 284, 255, 227 | Kaempferol-3-O-rhamnoside | NQ | 0.01 ± 0.00 a | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Tissue | Avocado Landrace | |||
---|---|---|---|---|
LA | CA | |||
Pe | ULAPe | RLAPe | UCAPe | RCAPe |
Se | ULASe | RLASe | UCASe | RCASe |
Pu | ULAPu | RLAPu | UCAPu | RCAPu |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapata-Luna, R.L.; Pacheco, N.; Herrera-Pool, E.; Román-Guerrero, A.; Ayora-Talavera, T.; Pech-Cohuo, S.C.; Santillán-Fernández, A.; Cuevas-Bernardino, J.C. Morpho-Physicochemical, Nutritional Composition and Phenolic Compound Profile of Two Avocado Landraces in Different Ripening Stages. Plants 2025, 14, 624. https://doi.org/10.3390/plants14040624
Zapata-Luna RL, Pacheco N, Herrera-Pool E, Román-Guerrero A, Ayora-Talavera T, Pech-Cohuo SC, Santillán-Fernández A, Cuevas-Bernardino JC. Morpho-Physicochemical, Nutritional Composition and Phenolic Compound Profile of Two Avocado Landraces in Different Ripening Stages. Plants. 2025; 14(4):624. https://doi.org/10.3390/plants14040624
Chicago/Turabian StyleZapata-Luna, Rosa L., Neith Pacheco, Emanuel Herrera-Pool, Angélica Román-Guerrero, Teresa Ayora-Talavera, Soledad C. Pech-Cohuo, Alberto Santillán-Fernández, and Juan C. Cuevas-Bernardino. 2025. "Morpho-Physicochemical, Nutritional Composition and Phenolic Compound Profile of Two Avocado Landraces in Different Ripening Stages" Plants 14, no. 4: 624. https://doi.org/10.3390/plants14040624
APA StyleZapata-Luna, R. L., Pacheco, N., Herrera-Pool, E., Román-Guerrero, A., Ayora-Talavera, T., Pech-Cohuo, S. C., Santillán-Fernández, A., & Cuevas-Bernardino, J. C. (2025). Morpho-Physicochemical, Nutritional Composition and Phenolic Compound Profile of Two Avocado Landraces in Different Ripening Stages. Plants, 14(4), 624. https://doi.org/10.3390/plants14040624