Effects of New Special Formula Fertilizer on Potato Growth, Yield, and Fertilizer Utilization Efficiency
Abstract
:1. Introduction
2. Results
2.1. Effects of Different Fertilizer Treatments on Potato Plant Growth
2.2. Effects of Different Fertilizer Treatments on the Gas Exchange Parameters of Potato Leaves
2.3. Effects of Different Fertilizer Treatments on Potato Yield, Its Components, and Economic Benefits
2.4. Effects of Different Fertilization Treatments on Fertilizer Use Efficiency in Potato
2.5. Correlation and Principal Component Analysis of Potato Indicators Under Different Fertilization Treatments
2.6. Demonstration of the Optimal Fertilizer Formulation for Potato
3. Discussion
4. Materials and Methods
4.1. Overview of the Experimental Area
4.2. Experimental Design
4.3. Measurement Indicators and Methods
4.3.1. Plant Growth
4.3.2. Plant Physiological Indicators Measurement
4.3.3. Aboveground Dry Matter Accumulation Measurement
4.3.4. Photosynthetic Characteristics Measurement
4.3.5. Potato Yield and Yield Components Measurement
4.3.6. Calculation of Fertilizer Partial Factor Productivity (PFP, kg·kg−1)
4.3.7. Calculation of Agronomy Fertilizer Use Efficiency (AFUE, kg·kg−1)
4.3.8. Quality Measurement
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PH | Plant height |
SD | Stem diameter |
DW | Aboveground dry weight |
SPAD | Relative chlorophyll content |
Pn | Net photosynthetic rate |
Tr | Transpiration rate |
Gs | Stomatal conductance |
Ci | Intercellular carbon dioxide concentration |
PFP | Fertilizer partial factor productivity |
AFUE | Agronomy fertilizer use efficiency |
PW | Plant weight |
TN | Tuber number |
MTW | Marketable tuber weight |
MTN | Marketable tuber number |
References
- Naqqash, T.; Hameed, S.; Imran, A.; Hanif, M.K.; Majeed, A.; van Elsas, J.D. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Front. Plant Sci. 2016, 7, 144. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.E.; Petropoulos, S.A.; Selim, D.A.F.H.; Elbagory, M.; Othman, M.M.; Omara, A.E.-D.; Mohamed, M.H. Plant Growth, Yield and Quality of Potato Crop in Relation to Potassium Fertilization. Agronomy 2021, 11, 675. [Google Scholar] [CrossRef]
- Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for sustainable global food security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, J.; Han, Z.; Han, Z.; Li, S.; Zhang, J.; Ma, H.; Han, Y. Screening of differentially expressed microRNAs and target genes in two potato varieties under nitrogen stress. BMC Plant Biol. 2022, 22, 478. [Google Scholar] [CrossRef]
- Chen, X.; Meng, L.; He, B.; Qi, W.; Jia, L.; Xu, N.; Hu, F.; Lv, Y.; Song, W. Comprehensive Transcriptome Analysis Uncovers Hub Long Non-coding RNAs Regulating Potassium Use Efficiency in Nicotiana tabacum. Front. Plant Sci. 2022, 13, 777308. [Google Scholar] [CrossRef]
- Yang, X.; Gao, Q.; Cai, L.; Dong, W.; Ye, Y.; Qin, Y.; Zhou, H.; Xiong, X.; Hu, X. Effects of new fertilizers and their combined ap-plication on the growth, yield and tuber quality of spring potato. J. Hunan Agric. Univ. (Nat. Sci.) 2022, 48, 550–555. [Google Scholar] [CrossRef]
- Shao, G. Studies on agronomic traits, tuber quality and starch physico-chemical characteristics of different potatoes in Aral region. Master’s Thesis, Tarim University, Alar, China, 2024. [Google Scholar]
- Hao, X.; Zhang, B.; Liu, Y.; Yan, S. Effects of ammonium sulfate synergistic measures on yield, nitrogen uptake and utilization of maize. Soil Fertil. Sci. China 2024, 209–215. [Google Scholar] [CrossRef]
- Ierna, A.; Pandino, G.; Lombardo, S.; Mauromicale, G. Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization. Agric. Water Manag. 2011, 101, 35–41. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–20. [Google Scholar]
- Yang, L.; Bai, J.; Liu, J.; Zeng, N.; Cao, W. Green manuring effect on changes of soil nitrogen fractions, maize growth, and nutrient uptake. Agronomy 2018, 8, 261. [Google Scholar] [CrossRef]
- Ayyub, C.M.; Wasim Haidar, M.; Zulfiqar, F.; Abideen, Z.; Wright, S.R. Potato tuber yield and quality in response to different nitrogen fertilizer application rates under two split doses in an irrigated sandy loam soil. J. Plant Nutr. 2019, 42, 1850–1860. [Google Scholar] [CrossRef]
- Gitari, H.I.; Karanja, N.N.; Gachene, C.K.; Kamau, S.; Sharma, K.; Schulte-Geldermann, E. Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems. Field Crops Res. 2018, 222, 78–84. [Google Scholar] [CrossRef]
- Abdo, A.I.; Elrys, A.S.; Abdel-Fattah, M.K.; Desoky, E.-S.M.; Huitong, L.; Wang, L. Mitigating nitrate accumulation in potato tubers under optimum nitrogen fertilization with K-humate and calcium chloride. J. Clean. Prod. 2020, 259, 121108. [Google Scholar] [CrossRef]
- Hui, Z.; Li, C.; Shi, W.; Zhang, J.; Wang, D. A study on the use of fulvic acid to improve growth and resistance in continuous cropping of potato. Acta Prataculturae Sin. 2013, 22, 130. [Google Scholar]
- Alsudays, I.M.; Alshammary, F.H.; Alabdallah, N.M.; Alatawi, A.; Alotaibi, M.M.; Alwutayd, K.M.; Alharbi, M.M.; Alghanem, S.M.; Alzuaibr, F.M.; Gharib, H.S. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC Plant Biol. 2024, 24, 191. [Google Scholar] [CrossRef]
- Ali, Z.; Khan, H.; Raza, A. RESPONSE OF POTATO TO FULVIC ACID AND INORGANIC FERTILIZERS: Nuclear Institute for Food and Agriculture, GT Road, Tarnab, Peshawar, Pakistan. Pak. J. Agric. Agric. Eng. Vet. Sci. 2018, 34, 120–125. [Google Scholar]
- Selladurai, R.; Purakayastha, T.J. Effect of humic acid multinutrient fertilizers on yield and nutrient use efficiency of potato. J. Plant Nutr. 2016, 39, 949–956. [Google Scholar] [CrossRef]
- Zhuang, Z.; Li, X. Effects of humic acid nitrogen fertilization on corn yield, nitrogen utilization and nitrogen loss. J. Plant Nutr. Fertil. 2016, 22, 1232–1239. [Google Scholar] [CrossRef]
- Moradi, P.; Pasari, B.; Fayyaz, F. The effects of fulvic acid application on seed and oil yield of safflower cultivars. J. Cent. Eur. Agric. 2017, 18. [Google Scholar] [CrossRef]
- Mahmoud, S.; El-Tanahy, A.; Marzouk, N.M.; Abou-Hussein, S. Effect of fulvic acid and effective microorganisms (EM) on the vegetative growth and productivity of onion plants. Curr. Sci. Int. 2019, 8, 368–377. [Google Scholar]
- Aminifard, M.; Aroiee, H.; Nemati, H.; Azizi, M.; Jaafar, H.Z. Fulvic acid affects pepper antioxidant activity and fruit quality. Afr. J. Biotechnol. 2012, 11, 13179–13185. [Google Scholar]
- Lotfi, R.; Pessarakli, M.; Gharavi-Kouchebagh, P.; Khoshvaghti, H. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity. Crop J. 2015, 3, 434–439. [Google Scholar] [CrossRef]
- Feng, Z.; Kang, Y.; Wan, S.; Liu, S. Effects of drip fertigation levels on potato growth and the water and fertilizer efficiency on sandy soil in Inner Mongolia. Agric. Res. Arid Areas 2017, 35, 242–249. [Google Scholar]
- Zhang, T.; Xing, Y.; Xie, K.; Mi, F.; Li, Z.; Wang, X. Effect of Water Fertilizer Regulation on Potato Tuber Quality, Water and Fertilizer Use Efficiency. Acta Agric. Boreali-Occident. Sin. 2024, 33, 842–850. [Google Scholar]
- Zhang, R.; Zhang, W.; Kang, Y.; Shi, M.; Yang, X.; Li, H.; Yu, H.; Wang, Y.; Qin, S. Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification. Chem. Biol. Technol. Agric. 2022, 9, 79. [Google Scholar] [CrossRef]
- Yang, Y.; Karthikeyan, A.; Yin, J.; Jin, T.; Ren, R.; Fang, F.; Cai, H.; Liu, M.; Wang, D.; Li, K. The E3 ligase GmPUB21 negatively regulates drought and salinity stress response in soybean. Int. J. Mol. Sci. 2022, 23, 6893. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, J.; Li, Y.; Zhang, Z.; Dai, Y. Research progress on the effects of humic acid on drought tolerance of plants. J. North. Agric. 2019, 47, 91–97. [Google Scholar]
- Fang, Z.; Wang, X.; Zhang, X.; Zhao, D.; Tao, J. Effects of fulvic acid on the photosynthetic and physiological characteristics of Paeonia ostii under drought stress. Plant Signal. Behav. 2020, 15, 1774714. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, Y.; Yin, X.; Yang, S. Sulfur-induced resistance against Pseudomonas syringae pv. actinidiae via triggering salicylic acid signaling pathway in kiwifruit. Int. J. Mol. Sci. 2021, 22, 12710. [Google Scholar] [CrossRef]
- Guo, Y. Effects of Biological Source Fertilizer on Potato Growth, Yield and Quality. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2024. [Google Scholar]
- Yuan, Y.; Yang, F.; Liu, Z.; Cheng, K. Artificial humic acid improves P availability via regulating P-cycling microbial communities for crop growth. Plant Soil 2024, 1–18. [Google Scholar] [CrossRef]
- Rajendiran, S.; Purakayastha, T. Effect of humic acid multinutrient complex fertilizers on yield and quality of tomato and potato. Veg. Sci. 2014, 41, 155–159. [Google Scholar]
- Alenazi, M.; Wahb-Allah, M.A.; Abdel-Razzak, H.S.; Ibrahim, A.A.; Alsadon, A. Water regimes and humic acid application influences potato growth, yield, tuber quality and water use efficiency. Am. J. Potato Res. 2016, 93, 463–473. [Google Scholar] [CrossRef]
- Xiong, Q.; Wang, S.; Lu, X.; Xu, Y.; Zhang, L.; Chen, X.; Xu, G.; Tian, D.; Zhang, L.; Jing, J. The effective combination of humic acid phosphate fertilizer regulating the form transformation of phosphorus and the chemical and microbial mechanism of its phosphorus availability. Agronomy 2023, 13, 1581. [Google Scholar] [CrossRef]
- Wang, J.; Tang, H.; Gong, W.; Hu, W.; Gou, G. Effects of water and fertilizer coupling on growth, nutrients absorption and fertilizer use of Zanthoxylum bungeanum Maxim ‘Hanyuan’ seedling. J. Nanjing For. Univ. (Nat. Sci.) 2016, 59, 33. [Google Scholar]
- Hu, H.; Xiao, S.; Gao, S.; Wang, X. Effect of fulvic acid organic-inorganic compound fertilizer on the yield of winter potato. Yunnan Agric. Sci. Technol. 2018, 6, 11–13. [Google Scholar]
- Guo, Y.; Ma, Z.; Ren, B.; Zhao, B.; Liu, P.; Zhang, J. Effects of humic acid added to controlled-release fertilizer on summer maize yield, nitrogen use efficiency and greenhouse gas emission. Agriculture 2022, 12, 448. [Google Scholar] [CrossRef]
- Ni, H.; Zhao, J.; Yang, Z. Effects of compound fertilizer decrement and water-soluble humic acid fertilizer application on soil properties, bacterial community structure, and shoot yield in Lei Bamboo (Phyllostachys praecox) plantations in subtropical China. Forests 2024, 15, 400. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, X.; Zhang, Y. The Impact of Humic Acid Fertilizers on Crop Yield and Nitrogen Use Efficiency: A Meta-Analysis. Agronomy 2024, 14, 2763. [Google Scholar] [CrossRef]
- Xu, X.; Yan, S.; Wang, J.; Niu, Y.; Wei, W.; Liu, S. Organic Amendment Enhances Maize Yield Through Improved Photosynthesis, Endogenous Hormones, and Defense Enzymes. Agronomy 2024, 14, 2816. [Google Scholar] [CrossRef]
- Erro, J.; Urrutia, O.; Baigorri, R.; Fuentes, M.; Zamarreño, A.; Garcia-Mina, J. Incorporation of humic-derived active molecules into compound NPK granulated fertilizers: Main technical difficulties and potential solutions. Chem. Biol. Technol. Agric. 2016, 3, 1–15. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Chen, G. Impact of humic acids on phosphorus retention and transport. J. Soil Sci. Plant Nutr. 2020, 20, 2431–2439. [Google Scholar] [CrossRef]
- Xu, J.; Mohamed, E.; Li, Q.; Lu, T.; Yu, H.; Jiang, W. Effect of humic acid addition on buffering capacity and nutrient storage capacity of soilless substrates. Front. Plant Sci. 2021, 12, 644229. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, Y.; Zhang, W.; Yue, Y.; Yang, B.; Xu, L.; Zhao, X. Control of nitrogen leaching and ammonia volatilization by developing a kind of humic acid-matrix slow release urea. J. Plant Nutr. Fertil. 2024, 30, 801–811. [Google Scholar]
- Liu, X.; Yang, J.; Yao, R. Synergistic effects of fertilizer reduction and fulvic acid application on decreasing NaCl content and N, P availability of salinized soil. J. Plant Nutr. Fertil. 2021, 27, 1339–1350. [Google Scholar]
- Li, M.; Zou, W.; Han, X.; Yan, J.; Chen, X.; Lu, X. Long-term balanced NPK fertilization increases soybean yield, grain nutrient and isoflavone contents and improves fertility of soybean fields. J. Plant Nutr. Fertil. 2024, 30, 2221–2229. [Google Scholar]
- Mostafa, M.; El-Boray, M.; El-Baz, E.; Omar, A.S. Effect of Fulvic Acid and Some Nutrient Elements on King Ruby Grapevines Growth, Yield and Chemical Properties of Berries. J. Plant Prod. 2017, 8, 321–328. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, J.; Wang, Z.; Hu, D.; Jiang, Y.; Han, Y.; Wang, Y. Fulvic acid alleviates the stress of low nitrogen on maize by promoting root development and nitrogen metabolism. Physiol. Plant. 2024, 176, e14249. [Google Scholar] [CrossRef]
- Şanlı, A.; Cansever, G.; Ok, F.Z. Effects of Humic Acid Applications along with Reduced Nitrogen Fertilization on Potato Tuber Yield and Quality. Turk. J. Agric.-Food Sci. Technol. 2024, 12, 2895–2900. [Google Scholar] [CrossRef]
- Hou, W.; Tränkner, M.; Lu, J.; Yan, J.; Huang, S.; Ren, T.; Cong, R.; Li, X. Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. BMC Plant Biol. 2019, 19, 1–13. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. Optimizing nitrogen fertilization to improve qualitative performances and physiological and yield responses of potato (Solanum tuberosum L.). Agronomy 2020, 10, 352. [Google Scholar] [CrossRef]
- Zhou, L.; Yuan, L.; Zhao, B.; Li, Y.; Zhang, S. Advances in humic acid structures and their regulatory role in maize roots. J. Plant Nutr. Fertil. 2022, 28, 334–343. [Google Scholar]
- Yu, S.; Niu, Y.; Wang, Z.; Li, F.; Chai, L.; Feng, B.; Han, Y.; Wang, Y. Effects of fulvic acid addition rate on wheat growth and root morphology under low nitrogen stress. J. Plant Nutr. Fertil. 2023, 29, 323–333. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, T.; Jiang, W.; Li, P.; Shi, P.; Xu, G.; Cheng, S.; Cheng, Y.; Fan, Z.; Wang, X. Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China. Agric. Water Manag. 2022, 261, 107351. [Google Scholar] [CrossRef]
- Wang, X.; Guo, T.; Wang, Y.; Xing, Y.; Wang, Y.; He, X. Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA. Agric. Water Manag. 2020, 237, 106180. [Google Scholar] [CrossRef]
- Shrestha, B.; Stringam, B.L.; Darapuneni, M.K.; Lombard, K.A.; Sanogo, S.; Higgins, C.; Djaman, K. Effect of Irrigation and Nitrogen Management on Potato Growth, Yield, and Water and Nitrogen Use Efficiencies. Agronomy 2024, 14, 560. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, M. Coupling effects of irrigation amount and fertilization rate on yield, quality, water and fertilizer use efficiency of different potato varieties in northwest China. Agric. Water Manag. 2023, 287, e108446. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, X.; Sun, S.; Zhang, Z.; Cui, C.; Chen, X.; Liang, Z.; Hu, B. One year and multipoint comparative test of ‘Xisen 6’. J. Agric. 2021, 11, 13. [Google Scholar]
- Cao, Y.; Lv, S.; Tang, Z. Research on the Performance of New Potato Variety Xisen 6 in Wuwei City and Its Techniques for High Yielding Production. Bull. Agric. Sci. Technol. 2019, 10, 75–77. [Google Scholar]
- Luo, Z.; Zhao, Y.; Li, Z.; Wang, X.; Xiang, L.; Jin, P.; Liu, E. Selection of Potato Varieties in the Southern Xinjiang Region. Xinjiang Agric. Sci. Technol. 2024, 18–19. [Google Scholar] [CrossRef]
- Li, J.; Xing, B.; Yang, R.; Sun, H.; Liu, Y. Comparative Experiment on Different Potato Varieties in Yecheng County. Bull. Agric. Sci. Technol. 2024, 9, 58–60+65. [Google Scholar]
- Cheng, M.; Wang, H.; Zhang, F.; Wang, X.; Liao, Z.; Zhang, S.; Yang, Q.; Fan, J. Effects of irrigation and fertilization regimes on tuber yield, water-nutrient uptake and productivity of potato under drip fertigation in sandy regions of northern China. Agric. Water Manag. 2023, 287, 108459. [Google Scholar] [CrossRef]
- Xing, Y.; Niu, X.; Wang, N.; Jiang, W.; Gao, Y.; Wang, X. The correlation between soil nutrient and potato quality in loess plateau of China based on PLSR. Sustainability 2020, 12, 1588. [Google Scholar] [CrossRef]
Treatment | Yield (t·ha−1) | Total Revenue (RMB·ha−1) | Cost (RMB·ha−1) | Net Income (RMB·ha−1) | Increase in Income Relative to CF (RMB·ha−1) | Production-to-Investment Ratio |
---|---|---|---|---|---|---|
CK | 26.9 ± 3.5c | 40,326.9 ± 5292.7c | 36,750.0 | 3576.9 ± 5292.7d | −21,407.9 ± 9349.8b | 1.1 ± 0.1c |
CF | 44.2 ± 2.9b | 66,302.3 ± 4267.5b | 41,317.5 | 24,984.8 ± 4267.5c | - | 1.6 ± 0.1b |
F1 | 47.1 ± 0.7b | 70,625.8 ± 1044.9b | 40,732.5 | 29,893.3 ± 1044.9bc | 4908.4 ± 4952.2a | 1.7 ± 0.3b |
F2 | 59.5 ± 2.9a | 89,241.4 ± 4325.1a | 40,732.5 | 48,508.9 ± 4325.1a | 23,523.1 ± 2063.0a | 2.2 ± 0.1a |
F3 | 55.6 ± 1.4b | 83,344.6 ± 2161.3ab | 40,732.5 | 42,612.1 ± 2161.3ab | 17,627.3 ± 3281.6a | 2.1 ± 0.1ab |
Treatment | PFP (kg·kg−1) | AFUE (kg·kg−1) |
---|---|---|
CK | - | - |
CF | 52.5 ± 3.4b | 20.6 ± 7.4a |
F1 | 86.1 ± 1.3a | 36.9 ± 6.3a |
F2 | 100.1 ± 4.9a | 54.9 ± 9.7a |
F3 | 89.2 ± 2.3a | 46.0 ± 7.8a |
Treatment | Composite Score | Rank |
---|---|---|
CK | −2.83 | 5 |
CF | −0.66 | 4 |
F1 | 0.27 | 3 |
F2 | 1.95 | 1 |
F3 | 1.28 | 2 |
Treatment | Tuber Number (tuber·plant−1) | Single-Tuber Weight (g·tuber−1) | Plant Weight (g·plant−1) | Marketable Rate (%) | Yield (t·ha−1) |
---|---|---|---|---|---|
F2 | 5.9 ± 0.23a | 212.58 ± 10.08a | 1235.83 ± 29.90a | 93.82 ± 0.01a | 72.48 ± 1.75a |
CK | 5.2 ± 0.20b | 209.51 ± 7.99a | 1076.67 ± 20.99b | 86.62 ± 0.01b | 63.14 ± 1.23b |
Soil Depth (m) | Water-Soluble Salts (g·kg−1) | Water-Soluble Nitrogen (mg·kg−1) | Organic Matter (g·kg−1) | Available Phosphorus (mg·kg−1) | Total Nitrogen (g·kg−1) | Total Phosphorus (g·kg−1) | Total Potassium (g·kg−1) | pH |
---|---|---|---|---|---|---|---|---|
0~0.2 | 3.4 | 109.9 | 22 | 49.9 | 1.25 | 1.53 | 11.1 | 8.21 |
Treatment | Fulvic Acid (g·L−1) | N (kg·ha−1) | P (kg·ha−1) | K (kg·ha−1) |
---|---|---|---|---|
CK | 0 | 0 | 0 | 0 |
CF | 0 | 258.5 | 245.3 | 338.3 |
F1 | 100 | 173.6 | 161.1 | 212.2 |
F2 | 60 | 185.1 | 172.7 | 236.6 |
F3 | 30 | 208.2 | 190.1 | 225.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Meng, A.; Liu, Y.; Li, J.; Wu, N. Effects of New Special Formula Fertilizer on Potato Growth, Yield, and Fertilizer Utilization Efficiency. Plants 2025, 14, 627. https://doi.org/10.3390/plants14040627
Xu F, Meng A, Liu Y, Li J, Wu N. Effects of New Special Formula Fertilizer on Potato Growth, Yield, and Fertilizer Utilization Efficiency. Plants. 2025; 14(4):627. https://doi.org/10.3390/plants14040627
Chicago/Turabian StyleXu, Fulin, Ajing Meng, Yi Liu, Jiangtao Li, and Nan Wu. 2025. "Effects of New Special Formula Fertilizer on Potato Growth, Yield, and Fertilizer Utilization Efficiency" Plants 14, no. 4: 627. https://doi.org/10.3390/plants14040627
APA StyleXu, F., Meng, A., Liu, Y., Li, J., & Wu, N. (2025). Effects of New Special Formula Fertilizer on Potato Growth, Yield, and Fertilizer Utilization Efficiency. Plants, 14(4), 627. https://doi.org/10.3390/plants14040627