Genes Affecting Cotton Fiber Length: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Data Sources and Retrieval Methods
4.2. Literature Inclusion and Exclusion Criteria
4.3. Literature Screening and Data Extraction
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.J.; Sreedasyam, A.; Ando, A.; Song, Q.; Schmutz, J. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat. Genet. 2020, 52, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Thyssen, G.N.; Delhom, C.D.; Fang, D.D.; Naoumkina, M.; Florane, C.B.; Li, P.; Jenkins, J.N.; McCarty, J.C.; Zeng, L.; et al. Genome-wide association studies of bundle and single fiber length traits reveal the genetic basis of within-sample variation in upland cotton fiber length. Front. Plant Sci. 2024, 15, 1472675. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Shahid, A.A.; Shakoor, S.; Ahmed, M.; Iftikhar, S.; Usmaan, M.; Sadaqat, S.; Latif, A.; Iqbal, A.; Rao, A.Q. Tissue specific expression of bacterial cellulose synthase (Bcs) genes improves cotton fiber length and strength. Plant Sci. 2023, 328, 111576. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Zhang, W.; Wang, L.; Wen, X.; Wu, J.; Ren, Y.; Fu, R. Functional dyeing of cellulose macromolecule/synthetic fibers two-component fabrics with sustainable microbial prodigiosins. Int. J. Biol. Macromol. 2024, 278, 134964. [Google Scholar] [CrossRef]
- Wu, M.; Pei, W.; Wedegaertner, T.; Zhang, J.; Yu, J. Genetics, Breeding and Genetic Engineering to Improve Cottonseed Oil and Protein: A Review. Front. Plant Sci. 2022, 13, 864850. [Google Scholar] [CrossRef]
- Perk, E.A.; Laxalt, A.M.; Cerrudo, I. CRISPR-Cas9 Protocol for Efficient Gene Knockout and Transgene-free Plant Generation. Bio Protoc. 2024, 14, 5012. [Google Scholar] [CrossRef]
- Hsu, P.; Lander, E.; Zhang, F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef]
- Li, T.; Liu, B.; Spalding, M.H.; Weeks, D.P.; Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 2012, 30, 390–392. [Google Scholar] [CrossRef]
- Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013, 152, 1173–1183. [Google Scholar] [CrossRef]
- Hu, J.H.; Miller, S.M.; Geurts, M.H.; Tang, W.; Chen, L.; Sun, N.; Zeina, C.M.; Gao, X.; Rees, H.A.; Lin, Z.; et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018, 556, 57–63. [Google Scholar] [CrossRef]
- Lin, Q.; Zong, Y.; Xue, C.; Wang, S.; Jin, S.; Zhu, Z.; Wang, Y.; Anzalone, A.V.; Raguram, A.; Doman, J.L.; et al. Prime genome editing in rice and wheat. Nat. Biotechnol. 2020, 38, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Desai, D.; Panchal, H.; Patel, S.; Nayak, K. CRISPR–CAS9 Gene Editing: A Review. Int. J. Adv. Res. 2020, 8, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Gahlaut, V.; Jaiswal, V.; Kumar, S. Role of Small RNA and RNAi Technology Toward Improvement of Abiotic Stress Tolerance in Plants; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Liu, Y.; Lyu, R.; Singleton, J.J.; Patra, B.; Pattanaik, S.; Yuan, L. A Cotyledon-based Virus-Induced Gene Silencing (Cotyledon-VIGS) approach to study specialized metabolism in medicinal plants. Plant Methods 2024, 20, 26. [Google Scholar] [CrossRef]
- Bruun-Rasmussen, M.; Madsen, C.T.; Jessing, S.; Albrechtsen, M. Stability of Barley stripe mosaic virus-induced gene silencing in barley. Mol. Plant Microbe Interact. 2007, 20, 1323–1331. [Google Scholar] [CrossRef]
- Kanazawa, A.; Inaba, J.I.; Shimura, H.; Otagaki, S.; Tsukahara, S.; Matsuzawa, A.; Kim, B.M.; Goto, K.; Masuta, C. Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. Plant J. 2011, 65, 156–168. [Google Scholar] [CrossRef]
- Senthil-Kumar, M.; Mysore, K.S. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol. J. 2011, 9, 797–806. [Google Scholar] [CrossRef]
- Jagram, N.; Dasgupta, I. Principles and practice of virus induced gene silencing for functional genomics in plants. Virus Genes. 2023, 59, 173–187. [Google Scholar] [CrossRef]
- Muller, E.; Algavi, Y.M.; Borenstein, E. A meta-analysis study of the robustness and universality of gut microbiome-metabolome associations. Microbiome 2021, 9, 203. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhou, J.; Zhang, Y.; Huang, H.; Han, J.; Cao, B.; Xu, D.; Zhao, Y.; Chen, G. Risk factors associated with amyotrophic lateral sclerosis based on the observational study: A systematic review and meta-analysis. Front. Neurosci. 2023, 17, 1196722. [Google Scholar] [CrossRef]
- Wang, F.; Guo, T.; Jiang, H.; Li, R.; Wang, Q. A comparison of CRISPR/Cas9 and siRNA-mediated ALDH2 gene silencing in human cell lines. Mol. Genet. Genom. 2018, 293, 769–783. [Google Scholar] [CrossRef]
- Wu, C.; Xiao, S.; Zhang, X.; Ren, W.; Shangguan, X.; Li, S.; Zuo, D.; Cheng, H.; Zhang, Y.; Wang, Q.; et al. GhHDZ76, a cotton HD-Zip transcription factor, involved in regulating the initiation and early elongation of cotton fiber development in G. hirsutum. Plant Sci. 2024, 345, 112132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Meng, Q.; Wang, Q.; Zhang, H.; Tian, H.; Wang, T.; Xu, F.; Yan, X.; Luo, M. Cotton sphingosine kinase GhLCBK1 participates in fiber cell elongation by affecting sphingosine-1-phophate and auxin synthesis. Int. J. Biol. Macromol. 2024, 267, 131323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xiao, X.; Li, Z.; Chen, Y.; Li, P.; Peng, R.; Lu, Q.; Wang, Y. Exploring the plasmodesmata callose-binding protein gene family in upland cotton: Unraveling insights for enhancing fiber length. PeerJ 2024, 12, e17625. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Wang, L.; Wang, Y.; Feng, P.; Song, J.; Jia, B.; Yang, S.; Zhang, W.; Wu, M.; Pei, W.; et al. EB1C forms dimer and interacts with protein phosphatase 2A (PP2A) to regulate fiber elongation in upland cotton (Gossypium hirsutum). Int. J. Biol. Macromol. 2024, 256, 128036. [Google Scholar] [CrossRef]
- Wang, H.; Fan, M.; Shen, Y.; Zhao, H.; Weng, S.; Chen, Z.; Xiao, G. GhFAD3-4 Promotes Fiber Cell Elongation and Cell Wall Thickness by Increasing PI and IP(3) Accumulation in Cotton. Plants 2024, 13, 1510. [Google Scholar] [CrossRef]
- Song, J.; Liu, G.; Jin, C.; Pei, W.; Zhang, B.; Jia, B.; Wu, M.; Ma, J.; Liu, J.; Zhang, J.; et al. Co-localization and analysis of miR477b with fiber length quantitative trait loci in cotton. Physiol. Plant 2024, 176, e14303. [Google Scholar] [CrossRef]
- Jiao, J.; Zheng, H.; Zhou, X.; Huang, Y.; Niu, Q.; Ke, L.; Tang, S.; Liu, H.; Sun, Y. The functions of laccase gene GhLAC15 in fiber colouration and development in brown-colored cotton. Physiol. Plant 2024, 176, e14415. [Google Scholar] [CrossRef]
- Tang, L.; Liu, C.; Li, X.; Wang, H.; Zhang, S.; Cai, X.; Zhang, J. An aldehyde dehydrogenase gene, GhALDH7B4_A06, positively regulates fiber strength in upland cotton (Gossypium hirsutum L.). Front. Plant Sci. 2024, 15, 1377682. [Google Scholar] [CrossRef]
- Wang, N.N.; Ni, P.; Wei, Y.L.; Hu, R.; Li, Y.; Li, X.B.; Zheng, Y. Phosphatidic acid interacts with an HD-ZIP transcription factor GhHOX4 to influence its function in fiber elongation of cotton (Gossypium hirsutum). Plant J. 2024, 118, 423–436. [Google Scholar] [CrossRef]
- Jia, T.; Wang, H.; Cui, S.; Li, Z.; Shen, Y.; Li, H.; Xiao, G. Cotton BLH1 and KNOX6 antagonistically modulate fiber elongation via regulation of linolenic acid biosynthesis. Plant Commun. 2024, 5, 100887. [Google Scholar] [CrossRef]
- Li, X.; Huang, G.; Zhou, Y.; Wang, K.; Zhu, Y. GhATL68b regulates cotton fiber cell development by ubiquitinating the enzyme required for β-oxidation of polyunsaturated fatty acids. Plant Commun. 2024, 5, 101003. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Ji, M.; You, J.; Zhang, Y.; Lindsey, K.; Zhang, X.; Tu, L.; Wang, M. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. Plant J. 2024, 118, 405–422. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, X.; Li, Y.; Yang, X.; Cheng, W. Zinc Finger Protein8 (GhZFP8) Regulates the Initiation of Trichomes in Arabidopsis and the Development of Fiber in Cotton. Plants 2024, 13, 492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, G.; Song, J.; Jia, B.; Yang, S.; Ma, J.; Liu, J.; Shahzad, K.; Wang, W.; Pei, W.; et al. Analysis of the MIR396 gene family and the role of MIR396b in regulating fiber length in cotton. Physiol. Plant 2022, 174, e13801. [Google Scholar] [CrossRef]
- Xing, K.; Liu, Z.; Liu, L.; Zhang, J.; Qanmber, G.; Wang, Y.; Liu, L.; Gu, Y.; Zhang, C.; Li, S.; et al. N(6)-Methyladenosine mRNA modification regulates transcripts stability associated with cotton fiber elongation. Plant J. 2023, 115, 967–985. [Google Scholar] [CrossRef]
- Liu, L.; Chen, G.; Li, S.; Gu, Y.; Lu, L.; Qanmber, G.; Mendu, V.; Liu, Z.; Li, F.; Yang, Z. A brassinosteroid transcriptional regulatory network participates in regulating fiber elongation in cotton. Plant Physiol. 2023, 191, 1985–2000. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, H.; Zhu, J.; Wang, X.; Jiang, B.; Hou, L.; Xiao, G. A conserved brassinosteroid-mediated BES1-CERP-EXPA3 signaling cascade controls plant cell elongation. Cell Rep. 2023, 42, 112301. [Google Scholar] [CrossRef]
- Kabir, N.; Wang, X.; Lu, L.; Qanmber, G.; Liu, L.; Si, A.; Zhang, L.; Cao, W.; Yang, Z.; Yu, Y.; et al. Functional characterization of TBL genes revealed the role of GhTBL7 and GhTBL58 in cotton fiber elongation. Int. J. Biol. Macromol. 2023, 241, 124571. [Google Scholar] [CrossRef]
- Song, Q.; Gao, W.; Du, C.; Sun, W.; Wang, J.; Zuo, K. GhXB38D represses cotton fibre elongation through ubiquitination of ethylene biosynthesis enzymes GhACS4 and GhACO1. Plant Biotechnol. J. 2023, 21, 2374–2388. [Google Scholar] [CrossRef]
- Song, Q.; Gao, W.; Du, C.; Wang, J.; Zuo, K. Cotton microtubule-associated protein GhMAP20L5 mediates fiber elongation through the interaction with the tubulin GhTUB13. Plant Sci. 2023, 327, 111545. [Google Scholar] [CrossRef]
- Liú, R.; Xiāo, X.; Gōng, J.; Lǐ, J.; Yán, H.; Gě, Q.; Lú, Q.; Lǐ, P.; Pān, J.; Shāng, H.; et al. Genetic linkage analysis of stable QTLs in Gossypium hirsutum RIL population revealed function of GhCesA4 in fiber development. J. Adv. Res. 2023, 65, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gao, Y.; Chen, F.; Luo, J.; Qiao, M.; Li, M.; Persson, S.; Zeng, W.; Xu, W. Down-regulation of xylan biosynthetic GhGT47Bs in cotton impedes fibre elongation and secondary wall thickening during fibre transition. Plant Biotechnol. J. 2024, 22, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, J.; Liu, L.; Qanmber, G.; Liu, Z.; Xing, K.; Lu, L.; Liu, L.; Ma, S.; Li, F.; et al. Cell cycle-dependent kinase inhibitor GhKRP6, a direct target of GhBES1.4, participates in BR regulation of cell expansion in cotton. Plant J. 2023, 115, 1729–1745. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, Z.; Ge, X.; Lu, L.; Qin, W.; Qanmber, G.; Liu, L.; Wang, Z.; Li, F. Brassinosteroids regulate cotton fiber elongation by modulating very-long-chain fatty acid biosynthesis. Plant Cell 2023, 35, 2114–2131. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, Y.; Pei, W.; Wu, M.; Ma, Q.; Liu, J.; Song, J.; Jia, B.; Liu, S.; Wu, J.; et al. Expressed genes and their new alleles identification during fibre elongation reveal the genetic factors underlying improvements of fibre length in cotton. Plant Biotechnol. J. 2022, 20, 1940–1955. [Google Scholar] [CrossRef]
- Lu, R.; Li, Y.; Zhang, J.; Wang, Y.; Zhang, J.; Li, Y.; Zheng, Y.; Li, X.B. The bHLH/HLH transcription factors GhFP2 and GhACE1 antagonistically regulate fiber elongation in cotton. Plant Physiol. 2022, 189, 628–643. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, Y.; Zhu, L.; Jiang, B.; Wang, H.; Gao, R.; Friml, J.; Xiao, G. Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum). Plant Cell 2022, 34, 4816–4839. [Google Scholar] [CrossRef]
- Shi, Z.; Chen, X.; Xue, H.; Jia, T.; Meng, F.; Liu, Y.; Luo, X.; Xiao, G.; Zhu, S. GhBZR3 suppresses cotton fiber elongation by inhibiting very-long-chain fatty acid biosynthesis. Plant J. 2022, 111, 785–799. [Google Scholar] [CrossRef]
- Zhu, L.; Dou, L.; Shang, H.; Li, H.; Yu, J.; Xiao, G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience 2021, 24, 102199. [Google Scholar] [CrossRef]
- Huang, J.; Chen, F.; Guo, Y.; Gan, X.; Yang, M.; Zeng, W.; Persson, S.; Li, J.; Xu, W. GhMYB7 promotes secondary wall cellulose deposition in cotton fibres by regulating GhCesA gene expression through three distinct cis-elements. New Phytol. 2021, 232, 1718–1737. [Google Scholar] [CrossRef]
- Zhu, S.; Li, Y.; Zhang, X.; Liu, F.; Xue, F.; Zhang, Y.; Kong, Z.; Zhu, Q.-H.; Sun, J. GhAlaRP, a cotton alanine rich protein gene, involves in fiber elongation process. Crop J. 2020, 9, 313–324. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Gong, S.Y.; Qin, L.X.; Nie, X.Y.; Liu, D.; Zheng, Y.; Li, X.B. GhKNL1 controls fiber elongation and secondary cell wall synthesis by repressing its downstream genes in cotton (Gossypium hirsutum). J. Integr. Plant Biol. 2022, 64, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wu, H.; Qanmber, G.; Ali, F.; Wang, L.; Liu, Z.; Yu, D.; Wang, Q.; Xu, A.; Yang, Z. Genome-Wide Study of the GATL Gene Family in Gossypium hirsutum L. Reveals that GhGATL Genes Act on Pectin Synthesis to Regulate Plant Growth and Fiber Elongation. Genes 2020, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.F.; Zhao, B.; Huang, C.C.; Chen, Z.W.; Zhao, T.; Liu, H.R.; Hu, G.J.; Shangguan, X.X.; Shan, C.M.; Wang, L.J.; et al. The miR319-Targeted GhTCP4 Promotes the Transition from Cell Elongation to Wall Thickening in Cotton Fiber. Mol. Plant 2020, 13, 1063–1077. [Google Scholar] [CrossRef]
- Sun, H.; Hao, P.; Gu, L.; Cheng, S.; Wang, H.; Wu, A.; Ma, L.; Wei, H.; Yu, S. Pectate lyase-like Gene GhPEL76 regulates organ elongation in Arabidopsis and fiber elongation in cotton. Plant Sci. 2020, 293, 110395. [Google Scholar] [CrossRef]
- Liu, Z.H.; Chen, Y.; Wang, N.N.; Chen, Y.H.; Wei, N.; Lu, R.; Li, Y.; Li, X.B. A basic helix-loop-helix protein (GhFP1) promotes fibre elongation of cotton (Gossypium hirsutum) by modulating brassinosteroid biosynthesis and signalling. New Phytol. 2020, 225, 2439–2452. [Google Scholar] [CrossRef]
- Feng, H.; Li, X.; Chen, H.; Deng, J.; Zhang, C.; Liu, J.; Wang, T.; Zhang, X.; Dong, J. GhHUB2, a ubiquitin ligase, is involved in cotton fiber development via the ubiquitin-26S proteasome pathway. J. Exp. Bot. 2018, 69, 5059–5075. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, B.; Singh, S.K.; Rai, K.M.; Singh, S.P.; Sable, A.; Pant, P.; Saxena, G.; Sawant, S.V. Role of GhHDA5 in H3K9 deacetylation and fiber initiation in Gossypium hirsutum. Plant J. 2018, 95, 1069–1083. [Google Scholar] [CrossRef]
- Qin, L.X.; Chen, Y.; Zeng, W.; Li, Y.; Gao, L.; Li, D.D.; Bacic, A.; Xu, W.L.; Li, X.B. The cotton β-galactosyltransferase 1 (GalT1) that galactosylates arabinogalactan proteins participates in controlling fiber development. Plant J. 2017, 89, 957–971. [Google Scholar] [CrossRef]
- Cheng, Y.; Lu, L.; Yang, Z.; Wu, Z.; Qin, W.; Yu, D.; Ren, Z.; Li, Y.; Wang, L.; Li, F.; et al. GhCaM7-like, a calcium sensor gene, influences cotton fiber elongation and biomass production. Plant Physiol. Biochem. 2016, 109, 128–136. [Google Scholar] [CrossRef]
- Liu, G.J.; Xiao, G.H.; Liu, N.J.; Liu, D.; Chen, P.S.; Qin, Y.M.; Zhu, Y.X. Targeted Lipidomics Studies Reveal that Linolenic Acid Promotes Cotton Fiber Elongation by Activating Phosphatidylinositol and Phosphatidylinositol Monophosphate Biosynthesis. Mol. Plant 2015, 8, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Z.T.; Li, M.; Wei, X.Z.; Li, X.J.; Li, B.Y.; Li, X.B. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling. Plant Biotechnol. J. 2015, 13, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Tu, L.; Hu, H.; Tan, J.; Deng, F.; Tang, W.; Nie, Y.; Zhang, X. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J. Exp. Bot. 2012, 63, 6267–6281. [Google Scholar] [CrossRef]
- Pu, L.; Li, Q.; Fan, X.; Yang, W.; Xue, Y. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 2008, 180, 811–820. [Google Scholar] [CrossRef]
- Jing, Q.; Jian, Y.; Yun-Feng, G.; Yan-Wei, S.; Shi-Qiang, G.; Bi-Pei, Z.; Wen, C.; Nam-Hai, C. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing. Plant Physiol. 2012, 160, 738–748. [Google Scholar]
- Burch-Smith, T.M.; Anderson, J.C.; Martin, G.B.; Dinesh-Kumar, S.P. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 2004, 39, 734–746. [Google Scholar] [CrossRef]
- Xia, J.; Guo, Z.; Yang, Z.; Han, H.; Wang, S.; Xu, H.; Yang, X.; Yang, F.; Wu, Q.; Xie, W.; et al. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell 2021, 184, 1693–1705.e17. [Google Scholar] [CrossRef]
- Abdurakhmonov, I.Y.; Ayubov, M.S.; Ubaydullaeva, K.A.; Buriev, Z.T.; Shermatov, S.E.; Ruziboev, H.S.; Shapulatov, U.M.; Saha, S.; Ulloa, M.; Yu, J.Z.; et al. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.). Front. Plant Sci. 2016, 7, 202. [Google Scholar] [CrossRef]
- Si, Z.; Wu, H.; Tian, Y.; Zhang, Z.; Zhang, T.; Hu, Y. Visible gland constantly traces virus-induced gene silencing in cotton. Front. Plant Sci. 2022, 13, 1020841. [Google Scholar] [CrossRef]
- Tian, Y.; Fang, Y.; Zhang, K.; Zhai, Z.; Yang, Y.; He, M.; Cao, X. Applications of Virus-Induced Gene Silencing in Cotton. Plants 2024, 13, 272. [Google Scholar] [CrossRef]
- Ayanoğlu, F.B.; Elçin, A.E.; Elçin, Y.M. Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk. J. Biol.=Turk. Biyol. Derg. 2020, 44, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Boettcher, M.; Mcmanus, M. Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Mol. Cell 2015, 58, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, X.; Liu, H.; Li, Z. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. Nat. Plants 2020, 6, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analysis. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Delhom, C.D.; Wanjura, J.D.; Pelletier, M.G.; Holt, G.A.; Hequet, E.F. Investigation into a practical approach and application of cotton fiber elongation. Cotton Res. 2023, 6, 2. [Google Scholar] [CrossRef]
Number | Author | Year | Technologies | Gene | Cotton Fiber Length | References |
---|---|---|---|---|---|---|
1 | Cuicui Wu | 2024 | CRISPR | GhHDZ76 | Shortening | [22] |
2 | Jian Zhang | 2024 | RNAi | GhLCBK1 | Shortening | [23] |
3 | Haibo Zhang | 2024 | VIGS | GhPDCB9 | Shortening | [24] |
4 | Haoming Mao | 2024 | VIGS | GhEB1C | Shortening | [25] |
5 | Huiqin Wang | 2024 | CRISPR | GhFAD3-4 | Shortening | [26] |
6 | Jikun Song | 2024 | VIGS | STTM-miR477b | Shortening | [27] |
7 | Junye Jiao | 2024 | VIGS | GhLAC15 | Increasing | [28] |
8 | Liyuan Tang | 2024 | VIGS | GhALDH7B4 | Increasing | [29] |
9 | Na-Na Wang | 2024 | RNAi | GhHOX4 | Shortening | [30] |
10 | Tingting Jia | 2024 | RNAi | GhBLH1 | Shortening | [31] |
11 | Tingting Jia | 2024 | CRISPR | GhFAD7A-1 | Shortening | [31] |
12 | Tingting Jia | 2024 | CRISPR | GhKNOX6 | Increasing | [31] |
13 | Xin Li | 2024 | CRISPR | GhATL68b | Shortening | [32] |
14 | Xuehan Tian | 2024 | CRISPR | GhMDHAR1A/GhDHAR2A | Increasing | [33] |
15 | Yongchang Liu | 2024 | RNAi | GhZFP8 | Shortening | [34] |
16 | Bingbing Zhang | 2023 | VIGS | STTM-miR396b | Increasing | [35] |
17 | Kun Xing | 2023 | RNAi | GhMYB44 | Increasing | [36] |
18 | Le Liu | 2023 | RNAi, VIGS | GhBES1.4/GhCYP84A1/GhHMG1 | Shortening | [37] |
19 | Liping Zhu | 2023 | CRISPR | GhEXPA3-1 | Shortening | [38] |
20 | Nosheen Kabir | 2023 | VIGS | GhTBL7/GhTBL58 | Shortening | [39] |
21 | Qingwei Song | 2023 | RNAi | GhXB38D | Increasing | [40] |
22 | Qingwei Song | 2023 | RNAi | GhMAP20L5i | Shortening | [41] |
23 | Ruìxián Liú | 2023 | CRISPR, VIGS | GhCesA4 | Shortening | [42] |
24 | Yanjun Guo | 2023 | RNAi | GhGT47B | Shortening | [43] |
25 | Yu Gu | 2023 | VIGS | GhKRP6 | Shortening | [44] |
26 | Zuoren Yang | 2023 | RNAi | GhBES1.4, GhKCS10_At | Shortening | [45] |
27 | Jianjiang Ma | 2022 | CRISPR | Ghmah1 | Shortening | [46] |
28 | Rui Lu | 2022 | RNAi | GhFP2 | Increasing | [47] |
29 | Zailong Tian | 2022 | CRISPR | Ghd27, Ghgrf4 | Shortening | [48] |
30 | Zemin Shi | 2022 | CRISPR, VIGS | GhBZR3 | Increasing | [49] |
31 | Zemin Shi | 2022 | VIGS | GhKCS13 | Shortening | [49] |
32 | Liping Zhu | 2021 | CRISPR | GhARF18 | Shortening | [50] |
33 | Liping Zhu | 2021 | VIGS | GhPIPLC2D | Shortening | [50] |
34 | Junfeng Huang | 2021 | RNAi | GhMYB7 | Increasing | [51] |
35 | Shouhong Zhu | 2021 | CRISPR, RNAi | GhAlaRP | Shortening | [52] |
36 | Yao Wang | 2021 | RNAi | GhKNL1 | Increasing | [53] |
37 | Lei Zheng | 2020 | VIGS | GhGATL15 | Shortening | [54] |
38 | Jun-Feng Cao | 2020 | RNAi | GhTCP4 | Increasing | [55] |
39 | Huiru Sun | 2020 | VIGS | GhPEL76 | Shortening | [56] |
40 | Zhi-Hao Liu | 2019 | RNAi | GhFP1 | Shortening | [57] |
41 | Hao Feng | 2018 | RNAi | GhHUB2 | Shortening | [58] |
42 | Verandra Kumar | 2018 | RNAi | GhHDA5 | Increasing | [59] |
43 | Li-Xia Qin | 2016 | RNAi | GhGalT1 | Increasing | [60] |
44 | Yuan Cheng | 2016 | VIGS | GhCaM7-like | Shortening | [61] |
45 | Gao-Jun Liu | 2015 | VIGS | GhΔ15FAD/GhPIS/GhPIK | Shortening | [62] |
46 | Ying Zhou | 2014 | RNAi | Gh14-3 | Shortening | [63] |
47 | Juan Hao | 2012 | RNAi | GbTCP | Shortening | [64] |
48 | Li Pu | 2008 | RNAi | GhMYB109 | Shortening | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, J.; Chang, S.; Wang, F.; Yang, J.; Ismayil, A.; Wu, P.; Wang, L.; Li, H. Genes Affecting Cotton Fiber Length: A Systematic Review and Meta-Analysis. Plants 2025, 14, 1203. https://doi.org/10.3390/plants14081203
Jiao J, Chang S, Wang F, Yang J, Ismayil A, Wu P, Wang L, Li H. Genes Affecting Cotton Fiber Length: A Systematic Review and Meta-Analysis. Plants. 2025; 14(8):1203. https://doi.org/10.3390/plants14081203
Chicago/Turabian StyleJiao, Jiao, Shihao Chang, Fei Wang, Jiaxin Yang, Asigul Ismayil, Peng Wu, Lei Wang, and Hongbin Li. 2025. "Genes Affecting Cotton Fiber Length: A Systematic Review and Meta-Analysis" Plants 14, no. 8: 1203. https://doi.org/10.3390/plants14081203
APA StyleJiao, J., Chang, S., Wang, F., Yang, J., Ismayil, A., Wu, P., Wang, L., & Li, H. (2025). Genes Affecting Cotton Fiber Length: A Systematic Review and Meta-Analysis. Plants, 14(8), 1203. https://doi.org/10.3390/plants14081203