High-Quality Genome Assembly and Transcriptome of Rhododendron platypodum Provide Insights into Its Evolution and Heat Stress Response
Abstract
:1. Introduction
2. Results
2.1. Genome Assembly and Assessment
2.2. Genome Annotation of R. platypodum
2.3. Phylogenetic and Gene Family Expansion and Contraction Analysis
2.4. Differential Expression of Physicochemical Properties and Genes in R. platypodum Under Heat Stress
2.5. Transcription Factor Expression Analysis
3. Discussion
3.1. Unique Genetic Features of R. platypodum
3.2. Unique Evolutionary Characteristics of R. platypodum
3.3. Coordinated Analysis of Physiology and Transcriptome in R. platypodum Under Heat Stress
3.4. Transcription Factors in R. platypodum Under Heat Stress
4. Material and Methods
4.1. Plant Samples, Sequencing Process, and Assembly
4.2. Assembly Quality Assessment
4.3. Repeat Annotation
4.4. Gene Annotation
4.5. Functional Annotation, Non-Coding RNA Annotation, and Gene Family Identification
4.6. Phylogenetic Analysis
4.7. Gene Family Expansion and Contraction Analysis
4.8. RNA Sequencing, Gene Expression Analysis, and Physiological Measurements
4.9. Weighted Correlation Network Analysis and Gene Network Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.-J.; Li, J.-T.; Wang, H.-L.; Han, J.-W.; Zhang, K.; Dong, S.-W.; Zhang, Y.-Z.; Ya, H.-Y.; Cheng, Y.-W.; Sun, S.-S. The Chromosome-Scale Genome Assembly, Annotation and Evolution of Rhododendron henanense Subsp. Lingbaoense. Mol. Ecol. Resour. 2022, 22, 988–1001. [Google Scholar] [CrossRef] [PubMed]
- Väinölä, A. Polyploidization and Early Screening of Rhododendron Hybrids. Euphytica 2000, 112, 239–244. [Google Scholar] [CrossRef]
- Shen, S.-K.; Wu, F.-Q.; Yang, G.-S.; Wang, Y.-H.; Sun, W.-B. Seed Germination and Seedling Emergence in the Extremely Endangered Species Rhododendron protistum Var. Giganteum-the World’s Largest Rhododendron. Flora 2015, 216, 65–70. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Y.; Liu, D.; Sun, W.; Liu, X.; Wan, Y.; Zhang, X.; Zhang, R.; Yun, Q.; Wang, J.; et al. Chromosome-Level Genome Assembly and Population Genetic Analysis of a Critically Endangered Rhododendron Provide Insights into Its Conservation. Plant J. 2021, 107, 1533–1545. [Google Scholar] [CrossRef]
- Choudhary, S.; Thakur, S.; Majeed, A.; Bhardwaj, P. Adaptability of Rhododendrons in High Altitude Habitats. J. For. Res. 2021, 32, 449–460. [Google Scholar] [CrossRef]
- Ma, Y.; Nielsen, J.; Chamberlain, D.F.; Li, X.; Sun, W. The Conservation of Rhododendrons Is of Greater Urgency than Has Been Previously Acknowledged in China. Biodivers. Conserv. 2014, 23, 3149–3154. [Google Scholar] [CrossRef]
- Ma, L.; Li, L.; Fang, W.; Dong, Z.; Liu, Y.; Wang, C.; Xie, Y.; Li, M.; Arif, M.; Wang, H. Genetic Variability and Population Divergence of Rhododendron platypodum Diels in China in the Context of Conservation. Front. For. Glob. Change 2024, 7, 1320995. [Google Scholar] [CrossRef]
- Gibbs, D.; Chamberlain, D.; Argent, G. The Red List of Rhododendrons; Botanic Garderns Conservation International: Richmond, UK, 2011; ISBN 1-905164-35-1. [Google Scholar]
- Ma, L.-H.; Zhu, H.-X.; Wang, C.-Y.; Li, M.-Y.; Wang, H.-Y. The Complete Chloroplast Genome of Rhododendron platypodum (Ericaceae): An Endemic and Endangered Species from China. Mitochondrial DNA Part B Resour. 2021, 6, 196–197. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Wu, X.; Wen, X.; Li, D.; Zhou, H.; Li, Z.; Liu, B.; Wei, J.; Chen, F.; et al. High-Quality Evergreen Azalea Genome Reveals Tandem Duplication-Facilitated Low-Altitude Adaptability and Floral Scent Evolution. Plant Biotechnol. J. 2021, 19, 2544–2560. [Google Scholar] [CrossRef]
- Yang, F.-S.; Nie, S.; Liu, H.; Shi, T.-L.; Tian, X.-C.; Zhou, S.-S.; Bao, Y.-T.; Jia, K.-H.; Guo, J.-F.; Zhao, W.; et al. Chromosome-Level Genome Assembly of a Parent Species of Widely Cultivated Azaleas. Nat. Commun. 2020, 11, 5269. [Google Scholar] [CrossRef]
- Nie, S.; Zhao, S.-W.; Shi, T.-L.; Zhao, W.; Zhang, R.-G.; Tian, X.-C.; Guo, J.-F.; Yan, X.-M.; Bao, Y.-T.; Li, Z.-C.; et al. Gapless Genome Assembly of Azalea and Multi-Omics Investigation into Divergence between Two Species with Distinct Flower Color. Hortic. Res. 2023, 10, uhac241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, P.; Cai, Y.; Ma, L.; Li, S.; Li, S.; Xie, W.; Song, J.; Peng, L.; Yan, H.; et al. The Draft Genome Assembly of Rhododendron delavayi Franch. Var. Delavayi. GigaScience 2017, 6, gix076. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Geng, X.; Mao, L.; Yi, Y.; Gong, J.; Xu, X. Transcriptome Analysis and Identification of the Genes Associated with the Heat Stress Response in Four Rhododendron Species. Sci. Hortic. 2022, 303, 111176. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, W.; Hu, X.; Shi, Y.; Liu, Y.; Zhong, Y.; Wang, P.; Deng, S.; Niu, J.; Yu, X. Physiological and Transcriptomic Analysis Revealed the Involvement of Crucial Factors in Heat Stress Response of Rhododendron hainanense. Gene 2018, 660, 109–119. [Google Scholar] [CrossRef]
- Oba, E.G.; Hu, J.; Zhang, Z.; Li, S.; Peng, L.; Wang, J.; Xie, W. Physiological Response of Three Micropropagated Plantlets of Rhododendron Hybrids for Heat Stress. Eur. J. Hortic. Sci. 2021, 86, 300–307. [Google Scholar] [CrossRef]
- Ma, W.; Liang, W.; Zhao, B. Effect of Relative Air Humidity and High Temperature on the Physiological and Anatomical Responses of Two Rhododendron Cultivars. Hortscience 2019, 54, 1115–1123. [Google Scholar] [CrossRef]
- Cheng, H.; Wan, Z.; Xu, Y.; Shen, J.; Li, X.; Jin, S. Transcriptome and Photosynthetic Analyses Provide New Insight into the Molecular Mechanisms Underlying Heat Stress Tolerance in Rhododendron × Pulchrum Sweet. Tree Physiol. 2024, 44, tpad133. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Y.; Liu, X.; Li, Q.; Yi, X.; Chen, C.; Wang, L.; Liao, J. Transcriptome Analysis Reveals Key Genes in Response to High-Temperature Stress in Rhododendron Molle. BioResources 2024, 19, 8238–8256. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, F.; Liu, G.; Abudureheman, R.; Bai, S.; Wu, X.; Zhang, C.; Ma, Y.; Wang, X.; Zha, Q.; et al. Transcriptome and Coexpression Network Analysis Reveals Properties and Candidate Genes Associated with Grape (Vitis vinifera L.) Heat Tolerance. Front. Plant Sci. 2023, 14, 1270933. [Google Scholar] [CrossRef]
- Wen, S.; Cai, X.; Yang, K.; Hong, Y.; Fan, F.; Wang, Q.; Zhang, B.; Hou, Q.; Leng, Y.; Qiao, G.; et al. Chromosome-Level Genome Assembly of a Rare Karst-Growing Rhododendron Species Provides Insights into Its Evolution and Environmental Adaptation. J. Syst. Evol. 2024, 63, 245–267. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, L.; Wang, X.; Zhang, R.; Jin, G.; Hu, Y.; Yang, H.; Wu, Z.; Ma, Y.; Zhang, C.; et al. Evolutionary History of Two Evergreen Rhododendron Species as Revealed by Chromosome-Level Genome Assembly. Front. Plant Sci. 2023, 14, 1123707. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhang, R.; Ma, Y.; Sun, W. A Haplotype-Resolved Genome Assembly of Rhododendron vialii Based on PacBio HiFi Reads and Hi-C Data. Sci. Data 2023, 10, 451. [Google Scholar] [CrossRef] [PubMed]
- Soza, V.L.; Lindsley, D.; Waalkes, A.; Ramage, E.; Patwardhan, R.P.; Burton, J.N.; Adey, A.; Kumar, A.; Qiu, R.; Shendure, J.; et al. The Rhododendron Genome and Chromosomal Organization Provide Insight into SharedWhole-Genome Duplications across the Heath Family (Ericaceae). Genome Biol. Evol. 2019, 11, 3353–3371. [Google Scholar] [CrossRef]
- Mao, X.; Wang, J.; Zhang, L.; Jiang, Y.; Geng, Y.; Ma, T.; Cai, L.; Huang, S.; Hollingsworth, P.; Mao, K.; et al. Pervasive Hybridization during Evolutionary Radiation of Rhododendron Subgenus Hymenanthes in Mountains of Southwest China. Natl. Sci. Rev. 2022, 9, nwac276. [Google Scholar] [CrossRef]
- Gantuz, M.; Morales, A.; Bertoldi, M.V.; Ibañez, V.N.; Duarte, P.F.; Marfil, C.F.; Masuelli, R.W. Hybridization and Polyploidization Effects on LTR-Retrotransposon Activation in Potato Genome. J. Plant. Res. 2022, 135, 81–92. [Google Scholar] [CrossRef]
- Storchova, H.; Kruger, M. Methods for Assembling Complex Mitochondrial Genomes in Land Plants. J. Exp. Bot. 2024, 75, 5169–5174. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, K.-L.; Ren, M.-Z.; Wang, Z.-W.; Li, J.-H.; Sun, W.-J.; Zhao, X.; Fu, X.-X.; Ye, J.-F.; Liu, B.; et al. Coping with Alpine Habitats: Genomic Insights into the Adaptation Strategies of Triplostegia Glandulifera (Caprifoliaceae). Hortic. Res. Engl. 2024, 11, uhae077. [Google Scholar] [CrossRef]
- Li, W.; Zhu, T.; Yang, H.; Zhang, C.; Zou, X. Distribution Characteristics and Risk Assessment of Heavy Metals in Soils of the Typical Karst and Non-Karst Areas. Land 2022, 11, 1346. [Google Scholar] [CrossRef]
- Ji, W.; Yang, Z.; Yu, T.; Yang, Q.; Wen, Y.; Wu, T. Potential Ecological Risk Assessment of Heavy Metals in the Fe-Mn Nodules in the Karst Area of Guangxi, Southwest China. Bull. Environ. Contam. Toxicol. 2021, 106, 51–56. [Google Scholar] [CrossRef]
- Aloisi, I.; Piccini, C.; Cai, G.; Del Duca, S. Male Fertility under Environmental Stress: Do Polyamines Act as Pollen Tube Growth Protectants? Int. J. Mol. Sci. 2022, 23, 1874. [Google Scholar] [CrossRef] [PubMed]
- Ramasubbu, R.; Sreekala, A.K.; Pandurangan, A.G.; Kulloli, S.K. Reproductive Ecology of Impatiens Platyadena Fischer, a Critically Endangered Balsam of Western Ghats. Curr. Sci. 2011, 100, 1550–1554. [Google Scholar]
- Wu, B.; Liu, X.; Xu, K.; Zhang, B. Genome-Wide Characterization, Evolution and Expression Profiling of UDP-Glycosyltransferase Family in Pomelo (Citrus grandis) Fruit. BMC Plant Biol. 2020, 20, 459. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Li, P.; Wang, T.; Zheng, C.; Hou, B. An Arabidopsis Cytokinin-Modifying Glycosyltransferase UGT76C2 Improves Drought and Salt Tolerance in Rice. Front. Plant Sci. 2020, 11, 560696. [Google Scholar] [CrossRef]
- Zoong Lwe, Z.; Sah, S.; Persaud, L.; Li, J.; Gao, W.; Raja Reddy, K.; Narayanan, S. Alterations in the Leaf Lipidome of Brassica Carinata under High-Temperature Stress. BMC Plant Biol. 2021, 21, 404. [Google Scholar] [CrossRef]
- Moore, C.E.; Meacham-Hensold, K.; Lemonnier, P.; Slattery, R.A.; Benjamin, C.; Bernacchi, C.J.; Lawson, T.; Cavanagh, A.P. The Effect of Increasing Temperature on Crop Photosynthesis: From Enzymes to Ecosystems. J. Exp. Bot. 2021, 72, 2822–2844. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Sadok, W.; Lopez, J.R.; Smith, K.P. Transpiration Increases under High-Temperature Stress: Potential Mechanisms, Trade-Offs and Prospects for Crop Resilience in a Warming World. Plant Cell Environ. 2021, 44, 2102–2116. [Google Scholar] [CrossRef]
- Tan, H.; Xiao, L.; Gao, S.; Li, Q.; Chen, J.; Xiao, Y.; Ji, Q.; Chen, R.; Chen, W.; Zhang, L. TRICHOME AND ARTEMISININ REGULATOR 1 Is Required for Trichome Development and Artemisinin Biosynthesis in Artemisia annua. Mol. Plant. 2015, 8, 1396–1411. [Google Scholar] [CrossRef]
- Huggins, T.D.; Mohammed, S.; Sengodon, P.; Ibrahim, A.M.H.; Tilley, M.; Hays, D.B. Changes in Leaf Epicuticular Wax Load and Its Effect on Leaf Temperature and Physiological Traits in Wheat Cultivars (Triticum aestivum L.) Exposed to High Temperatures during Anthesis. J. Agron. Crop Sci. 2018, 204, 49–61. [Google Scholar] [CrossRef]
- Jensen, N.B.; Ottosen, C.-O.; Zhou, R. Exogenous Melatonin Alters Stomatal Regulation in Tomato Seedlings Subjected to Combined Heat and Drought Stress through Mechanisms Distinct from ABA Signaling. Plants 2023, 12, 1156. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.R.; Assmann, S.M. Hormone Interactions in Stomatal Function. Plant Mol.Biol. 2009, 69, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Xiong, L. General Mechanisms of Drought Response and Their Application in Drought Resistance Improvement in Plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, P.; Luo, Z.; Abdel-Haleem, H. Drought and High Heat Stresses Modify Brassica napus L. Leaf Cuticular Wax. Plant Stress 2024, 13, 100513. [Google Scholar] [CrossRef]
- Tahmasebi, A.; Ashrafi-Dehkordi, E.; Shahriari, A.G.; Mazloomi, S.M.; Ebrahimie, E. Integrative Meta-Analysis of Transcriptomic Responses to Abiotic Stress in Cotton. Prog. Biophys. Mol. Biol. 2019, 146, 112–122. [Google Scholar] [CrossRef]
- Li, G.-Z.; Liu, J.; Wang, Y.-Y.; Han, A.-Q.; Liu, H.-T.; Guo, T.-C.; Han, Q.-X.; Kang, G.-Z. TaWRKY24-1D, Interacts with TaERFL1a, Regulates DHAR-Mediated ASA-GSH Biosynthesis to Enhance Drought Tolerance in Wheat. Plant Growth Regul. 2024, 104, 713–725. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Zhang, R.; Wu, B.; Xiao, G. Expression Identification of Three OsWRKY Genes in Response to Abiotic Stress and Hormone Treatments in Rice. Plant Signal. Behav. 2023, 18, 2292844. [Google Scholar] [CrossRef]
- Wang, L.; Lu, W.; Ran, L.; Dou, L.; Yao, S.; Hu, J.; Fan, D.; Li, C.; Luo, K. R2R3-MYB Transcription Factor MYB6 Promotes Anthocyanin and Proanthocyanidin Biosynthesis but Inhibits Secondary Cell Wall Formation in Populus Tomentosa. Plant J. 2019, 99, 733–751. [Google Scholar] [CrossRef]
- Lim, G.-H.; Kim, S.W.; Ryu, J.; Kang, S.-Y.; Kim, J.-B.; Kim, S.H. Upregulation of the MYB2 Transcription Factor Is Associated with Increased Accumulation of Anthocyanin in the Leaves of Dendrobium bigibbum. Int. J. Mol. Sci. 2020, 21, 5653. [Google Scholar] [CrossRef]
- Pratyusha, D.S.; Sarada, D.V.L. MYB Transcription Factors-Master Regulators of Phenylpropanoid Biosynthesis and Diverse Developmental and Stress Responses. Plant Cell Rep. 2022, 41, 2245–2260. [Google Scholar] [CrossRef]
- Rogers, S.O.; Bendich, A.J. Extraction of DNA from Plant Tissues. In Plant Molecular Biology Manual; Gelvin, S.B., Schilperoort, R.A., Verma, D.P.S., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 1989; pp. 73–83. ISBN 978-94-010-6918-2. [Google Scholar]
- Cheng, H.; Jarvis, E.D.; Fedrigo, O.; Koepfli, K.-P.; Urban, L.; Gemmell, N.J.; Li, H. Haplotype-Resolved Assembly of Diploid Genomes without Parental Data. Nat. Biotechnol. 2022, 40, 1332–1335. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Durand, N.C.; Shamim, M.S.; Machol, I.; Rao, S.S.P.; Huntley, M.H.; Lander, E.S.; Aiden, E.L. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst. 2016, 3, 95–98. [Google Scholar] [CrossRef]
- Dudchenko, O.; Batra, S.S.; Omer, A.D.; Nyquist, S.K.; Hoeger, M.; Durand, N.C.; Shamim, M.S.; Machol, I.; Lander, E.S.; Aiden, A.P.; et al. De Novo Assembly of the Aedes aegypti Genome Using Hi-C Yields Chromosome-Length Scaffolds. Science 2017, 356, 92–95. [Google Scholar] [CrossRef]
- Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Ou, S.; Chen, J.; Jiang, N. Assessing Genome Assembly Quality Using the LTR Assembly Index (LAI). Nucleic Acids Res. 2018, 46, e126. [Google Scholar] [CrossRef]
- Rhie, A.; Walenz, B.P.; Koren, S.; Phillippy, A.M. Merqury: Reference-Free Quality, Completeness, and Phasing Assessment for Genome Assemblies. Genome Biol. 2020, 21, 245. [Google Scholar] [CrossRef]
- Benson, G. Tandem Repeats Finder: A Program to Analyze DNA Sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, H. LTR_FINDER: An Efficient Tool for the Prediction of Full-Length LTR Retrotransposons. Nucleic Acids Res. 2007, 35, W265–W268. [Google Scholar] [CrossRef]
- Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. RepeatModeler2 for Automated Genomic Discovery of Transposable Element Families. Proc. Natl. Acad. Sci. USA 2020, 117, 9451–9457. [Google Scholar] [CrossRef] [PubMed]
- Chen, N. Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. Curr. Protoc. Bioinform. 2004, 4, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Jurka, J. Repbase Update—A Database and an Electronic Journal of Repetitive Elements. Trends Genet. 2000, 16, 418–420. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a Database of Repetitive Elements in Eukaryotic Genomes. Mob. DNA 2015, 6, 11. [Google Scholar] [CrossRef]
- Gertz, E.M.; Yu, Y.-K.; Agarwala, R.; Schaffer, A.A.; Altschul, S.F. Composition-Based Statistics and Translated Nucleotide Searches:: Improving the TBLASTN Module of BLAST. BMC Biol. 2006, 4, 4. [Google Scholar] [CrossRef]
- Slater, G.S.; Birney, E. Automated Generation of Heuristics for Biological Sequence Comparison. BMC Bioinform. 2005, 6, 31. [Google Scholar] [CrossRef]
- Stanke, M.; Steinkamp, R.; Waack, S.; Morgenstern, B. AUGUSTUS: A Web Server for Gene Finding in Eukaryotes. Nucleic Acids Res. 2004, 32, W309–W312. [Google Scholar] [CrossRef]
- Stanke, M.; Morgenstern, B. AUGUSTUS: A Web Server for Gene Prediction in Eukaryotes That Allows User-Defined Constraints. Nucleic Acids Res. 2005, 33, W465–W467. [Google Scholar] [CrossRef]
- Stanke, M.; Keller, O.; Gunduz, I.; Hayes, A.; Waack, S.; Morgenstern, B. AUGUSTUS: Ab Initio Prediction of Alternative Transcripts. Nucleic Acids Res. 2006, 34, W435–W439. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Kovaka, S.; Zimin, A.; Pertea, G.M.; Razaghi, R.; Salzberg, S.L.; Pertea, M. Transcriptome Assembly from Long-Read RNA-Seq Alignments with StringTie2. Genome Biol. 2019, 20, 278. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-Length Transcriptome Assembly from RNA-Seq Data without a Reference Genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.J.; Delcher, A.L.; Mount, S.M.; Wortman, J.R.; Smith, R.K.; Hannick, L.I.; Maiti, R.; Ronning, C.M.; Rusch, D.B.; Town, C.D.; et al. Improving the Arabidopsis Genome Annotation Using Maximal Transcript Alignment Assemblies. Nucleic Acids Res. 2003, 31, 5654–5666. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Korf, I.; Robb, S.M.C.; Parra, G.; Ross, E.; Moore, B.; Holt, C.; Alvarado, A.S.; Yandell, M. MAKER: An Easy-to-Use Annotation Pipeline Designed for Emerging Model Organism Genomes. Genome Res. 2008, 18, 188–196. [Google Scholar] [CrossRef]
- Buchfink, B.; Reuter, K.; Drost, H.-G. Sensitive Protein Alignments at Tree-of-Life Scale Using DIAMOND. Nat. Methods 2021, 18, 366–368. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-Scale Protein Function Classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef]
- Mitchell, A.; Chang, H.-Y.; Daugherty, L.; Fraser, M.; Hunter, S.; Lopez, R.; McAnulla, C.; McMenamin, C.; Nuka, G.; Pesseat, S.; et al. The InterPro Protein Families Database: The Classification Resource after 15 Years. Nucleic Acids Res. 2015, 43, D213–D221. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Lagesen, K.; Hallin, P.; Rodland, E.A.; Stærfeldt, H.-H.; Rognes, T.; Ussery, D.W. RNAmmer:: Consistent and Rapid Annotation of Ribosomal RNA Genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Nawrocki, E.P.; Kolbe, D.L.; Eddy, S.R. Infernal 1.0: Inference of RNA Alignments. Bioinformatics 2009, 25, 1335–1337. [Google Scholar] [CrossRef]
- Kalvari, I.; Nawrocki, E.P.; Ontiveros-Palacios, N.; Argasinska, J.; Lamkiewicz, K.; Marz, M.; Griffiths-Jones, S.; Toffano-Nioche, C.; Gautheret, D.; Weinberg, Z.; et al. Rfam 14: Expanded Coverage of Metagenomic, Viral and microRNA Families. Nucleic Acids Res. 2021, 49, D192–D200. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic Orthology Inference for Comparative Genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Kumar, S.; Suleski, M.; Craig, J.M.; Kasprowicz, A.E.; Sanderford, M.; Li, M.; Stecher, G.; Hedges, S.B. TimeTree 5: An Expanded Resource for Species Divergence Times. Mol. Biol. Evol. 2022, 39, msac174. [Google Scholar] [CrossRef]
- Sanderson, M.J. R8s: Inferring Absolute Rates of Molecular Evolution and Divergence Times in the Absence of a Molecular Clock. Bioinformatics 2003, 19, 301–302. [Google Scholar] [CrossRef]
- Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
- De Bie, T.; Cristianini, N.; Demuth, J.P.; Hahn, M.W. CAFE: A Computational Tool for the Study of Gene Family Evolution. Bioinformatics 2006, 22, 1269–1271. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce Acceleration-Supported Software for Integrated Quality Control and Preprocessing of High-Throughput Sequencing Data. GigaScience 2017, 7, gix120. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Wang, R.; Shu, P.; Zhang, C.; Zhang, J.; Chen, Y.; Zhang, Y.; Du, K.; Xie, Y.; Li, M.; Ma, T.; et al. Integrative Analyses of Metabolome and Genome-Wide Transcriptome Reveal the Regulatory Network Governing Flavor Formation in Kiwifruit (Actinidia chinensis). New Phytol. 2022, 233, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Kohl, M.; Wiese, S.; Warscheid, B. Cytoscape: Software for Visualization and Analysis of Biological Networks. In Data Mining in Proteomics: From Standards to Applications; Hamacher, M., Eisenacher, M., Stephan, C., Eds.; Humana Press: Totowa, NJ, USA, 2011; Volume 696, pp. 291–303. ISBN 1064-3745. [Google Scholar]
R. platypodum | R. bailiense | R. molle | R. irroratum | R. vialii | R. henanense | R. ovatum | R. griersonianum | R. simsii | R. delavayi | R. williamsianum | |
---|---|---|---|---|---|---|---|---|---|---|---|
Number of contigs | 80 | 818 | 34 | 1549 | 18 | 732 | 2668 | 67 | 911 | 209,969 | 98,253 |
N50 of contigs (Mb) | 25.64 | 24.5 | 44.85 | 0.69 | 35.67 | 2.51 | 1.24 | 33.99 | 2.23 | 0.06 | 0.01 |
Number of scaffolds | 46 | 546 | 25 | 1413 | 13 | 300 | - | 48 | 552 | 193,091 | 10,290 |
N50 of scaffolds (Mb) | 49.36 | 61.88 | 52.64 | 51.02 | 42.05 | 50.18 | 41 | 52.93 | 36.35 | 0.64 | 29.01 |
Final genome size (Mb) | 642.25 | 923.3 | 640 | 701.62 | 532.73 | 654.12 | 549.71 | 676.81 | 528.64 | 695.09 | 532.29 |
Complete BUSCOs (%) | 98.8 | 98.3 | 93.4 | 96.8 | 98.5 | 97 | 95.3 | 93.1 | 93.68 | 92.8 | 89 |
GC content of genome (%) | 41 | 41 | 40 | 40 | 39 | 41 | 39 | 41 | 39 | 38 | 39 |
LAI | 21.13 | 11.61 | - | 13.72 | - | - | 18.32 | 21.29 | 17.66 | 11.17 | 5.95 |
Annotation | |||||||||||
Number of predicted genes | 36,522 | 47,567 | 41,600 | 49,421 | 66,464 | 34,379 | 43,623 | 39,510 | 32,999 | 32,938 | 23,559 |
Average gene length (bp) | 6459.24 | 4146.9 | 4492.4 | 4323 | 4948.8 | 6393.37 | 4074 | 5486.7 | 5089.22 | 4434.22 | 4628 |
Average CDS length (bp) | 1131.89 | 1372.17 | 1118.7 | 1096 | 1275.7 | 1208.23 | 1166 | 1204.1 | 1288.73 | 1153.21 | - |
Repeat sequences (Mb) | 447.19 | 562.67 | 349.49 | 334.77 | 278.03 | 417.11 | 245.48 | 385.75 | 250.99 | 359.87 | - |
% | 69.63 | 60.96 | 53.48 | 47.71 | 52.19 | 65.76 | 44.71 | 57 | 47.48 | 51.77 | |
LTR-RT length (Mb) | 308.19 | 402.59 | 277.14 | 229.97 | 144.79 | 321.91 | 156.03 | 167.58 | 89.93 | 260.53 | - |
% | 47.98 | 43.61 | 42.41 | 32.78 | 27.18 | 50.75 | 28.42 | 24.76 | 17.01 | 37.48 | |
Source | This manuscript | [22] | [12] | [23] | [24] | [1] | [10] | [4] | [11] | [23] | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Qin, K.; Chen, W.; Ma, G.; Zhan, Y.; Zhu, H.; Wang, H. High-Quality Genome Assembly and Transcriptome of Rhododendron platypodum Provide Insights into Its Evolution and Heat Stress Response. Plants 2025, 14, 1233. https://doi.org/10.3390/plants14081233
Wang Z, Qin K, Chen W, Ma G, Zhan Y, Zhu H, Wang H. High-Quality Genome Assembly and Transcriptome of Rhododendron platypodum Provide Insights into Its Evolution and Heat Stress Response. Plants. 2025; 14(8):1233. https://doi.org/10.3390/plants14081233
Chicago/Turabian StyleWang, Zizhuo, Kunrong Qin, Wentao Chen, Guanpeng Ma, Yu Zhan, Haoxiang Zhu, and Haiyang Wang. 2025. "High-Quality Genome Assembly and Transcriptome of Rhododendron platypodum Provide Insights into Its Evolution and Heat Stress Response" Plants 14, no. 8: 1233. https://doi.org/10.3390/plants14081233
APA StyleWang, Z., Qin, K., Chen, W., Ma, G., Zhan, Y., Zhu, H., & Wang, H. (2025). High-Quality Genome Assembly and Transcriptome of Rhododendron platypodum Provide Insights into Its Evolution and Heat Stress Response. Plants, 14(8), 1233. https://doi.org/10.3390/plants14081233