Transcriptomic Profiling Reveals Regulatory Pathways of Tomato in Resistance to Verticillium Wilt Triggered by VdR3e
Abstract
:1. Introduction
2. Results
2.1. VdR3e Protein Triggered Immune Response in Parents of Solanum lycopersicum Cultivar IVF6384
2.2. Identification of DEGs in Parents of IVF6384 Tomato Plants After VdR3e Protein Infiltration Using RNA-Seq
2.3. Functional Analysis of DEGs in Parents of IVF6384 Plants in Response to VdR3e Infiltration
2.4. Analysis of Typical Resistance-Related Pathways Enriched in DEGs
2.5. DEGs Induced by VdR3e Play Important Roles in Immune Response
3. Discussion
4. Materials and Methods
4.1. Plant Growth Conditions
4.2. Infiltration of VdR3e Protein
4.3. ROS Activity
4.4. RNA Extraction, Library Construction, and RNA Sequencing Analysis
4.5. Identification of Differentially Expressed Genes (DEGs)
4.6. Functional Annotation
4.7. Agrobacterium Infiltration Assays
4.8. Reverse Transcription and Quantitative PCR (RT-qPCR)
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jones, J.D.G.; Staskawicz, B.J.; Dangl, J.L. The Plant Immune System: From Discovery to Deployment. Cell 2024, 187, 2095–2116. [Google Scholar] [CrossRef]
- Zipfel, C. Pattern-Recognition Receptors in Plant Innate Immunity. Curr. Opin. Immunol. 2008, 20, 10–16. [Google Scholar] [CrossRef]
- Chinchilla, D.; Bauer, Z.; Regenass, M.; Boller, T.; Felix, G. The Arabidopsis Receptor Kinase FLS2 Binds Flg22 and Determines the Specificity of Flagellin Perception. Plant Cell 2006, 18, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Hurst, C.H.; Turnbull, D.; Xhelilaj, K.; Myles, S.; Pflughaupt, R.L.; Kopischke, M.; Davies, P.; Jones, S.; Robatzek, S.; Zipfel, C.; et al. S-Acylation Stabilizes Ligand-Induced Receptor Kinase Complex Formation during Plant Pattern-Triggered Immune Signaling. Curr. Biol. 2023, 33, 1588–1596.e6. [Google Scholar] [CrossRef] [PubMed]
- Boller, T.; He, S.Y. Innate Immunity in Plants: An Arms Race between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens. Science 2009, 324, 742–744. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Mackey, D.; Holt, B.F., 3rd; Wiig, A.; Dangl, J.L. RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis. Cell 2002, 108, 743–754. [Google Scholar] [CrossRef]
- Mackey, D.; Belkhadir, Y.; Alonso, J.M.; Ecker, J.R.; Dangl, J.L. Arabidopsis RIN4 Is a Target of the Type III Virulence Effector AvrRpt2 and Modulates RPS2-Mediated Resistance. Cell 2003, 112, 379–389. [Google Scholar] [CrossRef]
- Yoon, M.; Middleditch, M.J.; Rikkerink, E.H.A. A Conserved Glutamate Residue in RPM1-INTERACTING PROTEIN4 Is ADP-Ribosylated by the Pseudomonas Effector AvrRpm2 to Activate RPM1-Mediated Plant Resistance. Plant Cell 2022, 34, 4950–4972. [Google Scholar] [CrossRef]
- Thomma, B.P.H.J.; Nürnberger, T.; Joosten, M.H.A.J. Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy. Plant Cell 2011, 23, 4–15. [Google Scholar] [CrossRef]
- Dubiella, U.; Seybold, H.; Durian, G.; Komander, E.; Lassig, R.; Witte, C.P.; Schulze, W.X.; Romeis, T. Calcium-Dependent Protein Kinase/NADPH Oxidase Activation Circuit Is Required for Rapid Defense Signal Propagation. Proc. Natl. Acad. Sci. USA 2013, 110, 8744–8749. [Google Scholar] [CrossRef] [PubMed]
- Aerts, N.; Pereira Mendes, M.; Van Wees, S.C.M. Multiple Levels of Crosstalk in Hormone Networks Regulating Plant Defense. Plant J. 2021, 105, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Asai, T.; Tena, G.; Plotnikova, J.; Willmann, M.R.; Chiu, W.L.; Gomez-Gomez, L.; Boller, T.; Ausubel, F.M.; Sheen, J. MAP Kinase Signalling Cascade in Arabidopsis Innate Immunity. Nature 2002, 415, 977–983. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, X.; Cui, X.; Wang, J.; Wang, Y.; Sun, M.; Zhao, P.; Yang, B.; Wang, Q.; Jiang, Y.Q. The Transcription Factor WRKY22 Modulates Ethylene Biosynthesis and Root Development through Transactivating the Transcription of ACS5 and ACO5 in Arabidopsis. Physiol. Plant. 2024, 176, e14371. [Google Scholar] [CrossRef]
- Nicaise, V.; Roux, M.; Zipfel, C. Recent Advances in PAMP-Triggered Immunity against Bacteria: Pattern Recognition Receptors Watch over and Raise the Alarm. Plant Physiol. 2009, 150, 1638–1647. [Google Scholar] [CrossRef]
- Abbasi, S.; Sadeghi, A.; Omidvari, M.; Tahan, V. The Stimulators and Responsive Genes to Induce Systemic Resistance against Pathogens: An Exclusive Focus on Tomato as a Model Plant. Biocatal. Agric. Biotechnol. 2021, 33, 101993. [Google Scholar] [CrossRef]
- Food and Agriculture Organization Statistics (FAOSTAT). Available online: http://www.fao.org/faostat/en/#data (accessed on 7 May 2024).
- Panno, S.; Davino, S.; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy 2021, 11, 2188. [Google Scholar] [CrossRef]
- Castello, I.; Baglieri, A.; Montoneri, E.; Vitale, A. Utilization of Municipal Biowaste-Derived Compounds to Reduce Soilborne Fungal Diseases of Tomato: A Further Step Toward Circular Bioeconomy. GCB Bioenergy 2025, 17, e70027. [Google Scholar] [CrossRef]
- Acharya, B.; Ingram, T.W.; Oh, Y.; Adhikari, T.B.; Dean, R.A.; Louws, F.J. Opportunities and Challenges in Studies of Host-Pathogen Interactions and Management of Verticillium dahliae in Tomatoes. Plants 2020, 9, 1622. [Google Scholar] [CrossRef]
- Vara Prasad, M.N. (Ed.) Agrochemicals Detection, Treatment and Remediation: Pesticides and Chemical Fertilizers; Butterworth-Heinemann: Oxford, UK, 2020; ISBN 9780081030172. [Google Scholar]
- Deng, Y.; Ning, Y.; Yang, D.L.; Zhai, K.; Wang, G.L.; He, Z. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. Mol. Plant 2020, 13, 1402–1419. [Google Scholar] [CrossRef]
- Robatzek, S.; Bittel, P.; Chinchilla, D.; Köchner, P.; Felix, G.; Shiu, S.H.; Boller, T. Molecular Identification and Characterization of the Tomato Flagellin Receptor LeFLS2, an Orthologue of Arabidopsis FLS2 Exhibiting Characteristically Different Perception Specificities. Plant Mol. Biol. 2007, 64, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Meindl, T.; Boller, T.; Felix, G. The Bacterial Elicitor Flagellin Activates Its Receptor in Tomato Cells According to the Address-Message Concept. Plant Cell 2000, 12, 1783–1794. [Google Scholar] [CrossRef] [PubMed]
- Ron, M.; Avni, A. The Receptor for the Fungal Elicitor Ethylene-Inducing Xylanase Is a Member of a Resistance-like Gene Family in Tomato. Plant Cell 2004, 16, 1604–1615. [Google Scholar] [CrossRef] [PubMed]
- Leibman-Markus, M.; Gupta, R.; Pizarro, L.; Bar, M. The LeEIX Locus Determines Pathogen Resistance in Tomato. Phytopathology 2023, 113, 277–285. [Google Scholar] [CrossRef]
- Martin, G.B.; Brommonschenkel, S.H.; Chunwongse, J.; Frary, A.; Ganal, M.W.; Spivey, R.; Wu, T.; Earle, E.D.; Tanksley, S.D. Map-Based Cloning of a Protein Kinase Gene Conferring Disease Resistance in Tomato. Science 1993, 262, 1432–1436. [Google Scholar] [CrossRef]
- Mucyn, T.S.; Clemente, A.; Andriotis, V.M.E.; Balmuth, A.L.; Oldroyd, G.E.D.; Staskawicz, B.J.; Rathjen, J.P. The Tomato NBARC-LRR Protein Prf Interacts with Pto Kinase in Vivo to Regulate Specific Plant Immunity. Plant Cell 2006, 18, 2792–2806. [Google Scholar] [CrossRef]
- Mysore, K.S.; Crasta, O.R.; Tuori, R.P.; Folkerts, O.; Swirsky, P.B.; Martin, G.B. Comprehensive Transcript Profiling of Pto- and Prf-Mediated Host Defense Responses to Infection by Pseudomonas syringae pv. Tomato. Plant J. 2002, 32, 299–315. [Google Scholar] [CrossRef]
- Zhang, N.; Gan, J.; Carneal, L.; González-Tobón, J.; Filiatrault, M.; Martin, G.B. Helper NLRs Nrc2 and Nrc3 Act Codependently with Prf/Pto and Activate MAPK Signaling to Induce Immunity in Tomato. Plant J. 2024, 117, 7–22. [Google Scholar] [CrossRef]
- Zhou, J.; Loh, Y.T.; Bressan, R.A.; Martin, G.B. The Tomato Gene Pti1 Encodes a Serine/Threonine Kinase That Is Phosphorylated by Pto and Is Involved in the Hypersensitive Response. Cell 1995, 83, 925–935. [Google Scholar] [CrossRef]
- Zhou, J.; Tang, X.; Martin, G.B. The Pto Kinase Conferring Resistance to Tomato Bacterial Speck Disease Interacts with Proteins That Bind a Cis-Element of Pathogenesis-Related Genes. EMBO J. 1997, 16, 3207–3218. [Google Scholar] [CrossRef]
- Tang, Q.; Zheng, X.D.; Guo, J.; Yu, T. Tomato SlPti5 Plays a Regulative Role in the Plant Immune Response against Botrytis cinerea through Modulation of ROS System and Hormone Pathways. J. Integr. Agric. 2022, 21, 697–709. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (PLH). Scientific opinion on the pest cate-gorisation of Verticillium dahliae Kleb. EFSA J. 2014, 12, 3928. [Google Scholar] [CrossRef]
- Castello, I.; D’Emilio, A.; Baglieri, A.; Polizzi, G.; Vitale, A. Management of Chrysanthemum Verticillium Wilt through VIF Soil Mulching Combined with Fumiga-tion at Label and Reduced Rates. Agriculture 2022, 12, 141. [Google Scholar] [CrossRef]
- Castello, I.; D’Emilio, A.; Danesh, Y.; Vitale, A. Enhancing the Effects of Solari-zation-Based Approaches to Suppress Verticillium dahliae Inocula Affecting Tomato in Greenhouse. J. Agric. Food Res. 2024, 18, 101355. [Google Scholar] [CrossRef]
- Fradin, E.F.; Thomma, B.P.H.J. Physiology and Molecular Aspects of Verticillium Wilt Diseases Caused by V. dahliae and V. albo-atrum. Mol. Plant Pathol. 2006, 7, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Flor, H.H. Inheritance of pathogenicity in Melampsora lini. Phytopathology 1942, 32, 653–669. [Google Scholar]
- Flor, H.H. Current Status of the Gene-for-Gene Concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Alexander, L.J. Susceptibility of certain Verticillium-resistant tomato varieties to an Ohio isolate of the pathogen. Phytopathology 1962, 52, 998–1000. [Google Scholar]
- Usami, T.; Momma, N.; Kikuchi, S.; Watanabe, H.; Hayashi, A.; Mizukawa, M.; Yoshino, K.; Ohmori, Y. Race 2 of Verticillium dahliae Infecting Tomato in Japan Can Be Split into Two Races with Differential Pathogenicity on Resistant Rootstocks. Plant Pathol. 2017, 66, 230–238. [Google Scholar] [CrossRef]
- Schaible, L.C.; Cannon, O.S.; Waddoups, V. Inheritance of resistance to Verticillium wilt in a tomato cross. Phytopathology 1951, 41, 986–990. [Google Scholar]
- Diwan, N.; Fluhr, R.; Eshed, Y.; Zamir, D.; Tanksley, S.D. Mapping of Ve in Tomato: A Gene Conferring Resistance to the Broad-Spectrum Pathogen, Verticillium dahliae Race 1. Züchter Genet. Breed. Res. 1999, 98, 315–319. [Google Scholar] [CrossRef]
- Fradin, E.F.; Zhang, Z.; Juarez Ayala, J.C.; Castroverde, C.D.M.; Nazar, R.N.; Robb, J.; Liu, C.M.; Thomma, B.P.H.J. Genetic Dissection of Verticillium Wilt Resistance Mediated by Tomato Ve1. Plant Physiol. 2009, 150, 320–332. [Google Scholar] [CrossRef]
- de Jonge, R.; van Esse, H.P.; Maruthachalam, K.; Bolton, M.D.; Santhanam, P.; Saber, M.K.; Zhang, Z.; Usami, T.; Lievens, B.; Subbarao, K.V.; et al. Tomato Immune Receptor Ve1 Recognizes Effector of Multiple Fungal Pathogens Uncovered by Genome and RNA Sequencing. Proc. Natl. Acad. Sci. USA 2012, 109, 5110–5115. [Google Scholar] [CrossRef] [PubMed]
- Chavarro-Carrero, E.A.; Vermeulen, J.P.; Torres, D.E.; Usami, T.; Schouten, H.J.; Bai, Y.; Seidl, M.F.; Thomma, B.P.H.J. Comparative Genomics Reveals the in Planta-Secreted Verticillium dahliae Av2 Effector Protein Recognized in Tomato Plants That Carry the V2 Resistance Locus. Environ. Microbiol. 2021, 23, 1941–1958. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.D.; Usami, T.; Liu, L.; Yang, L.; Huang, J.Q.; Song, J.; Li, R.; Kong, Z.Q.; Li, J.J.; et al. Functional Genomics and Comparative Lineage-Specific Region Analyses Reveal Novel Insights into Race Divergence in Verticillium dahliae. Microbiol. Spectr. 2021, 9, e0111821. [Google Scholar] [CrossRef]
- Tan, Q.; Li, R.; Liu, L.; Wang, D.; Dai, X.F.; Song, L.M.; Zhang, D.D.; Kong, Z.Q.; Klosterman, S.J.; Usami, T.; et al. Functional Characterization of Verticillium dahliae Race 3-Specific Gene VdR3e in Virulence and Elicitation of Plant Immune Responses. Microbiol. Spectr. 2023, 11, e0108323. [Google Scholar] [CrossRef] [PubMed]
- Inderbitzin, P.; Subbarao, K.V. Verticillium Systematics and Evolution: How Confusion Impedes Verticillium Wilt Management and How to Resolve It. Phytopathology 2014, 104, 564–574. [Google Scholar] [CrossRef]
- Su, J.; Yang, L.; Zhu, Q.; Wu, H.; He, Y.; Liu, Y.; Xu, J.; Jiang, D.; Zhang, S. Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biol. 2018, 16, e2004122. [Google Scholar] [CrossRef]
- Dong, N.; Lin, H. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Ma, Q. Lignin biosynthesis and its diversified roles in disease resistance. Genes 2024, 15, 295. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Li, G.; Yang, Y.; Zheng, Z.; Song, F. Ectopic expression of a rice protein phosphatase 2C gene OsBIPP2C2 in tobacco improves disease resistance. Plant Cell Rep. 2009, 28, 985–995. [Google Scholar] [CrossRef]
- Castroverde, C.D.M.; Nazar, R.N.; Robb, J. Verticillium Ave1 Effector Induces Tomato Defense Gene Expression Independent of Ve1 Protein. Plant Signal. Behav. 2016, 11, e1245254. [Google Scholar] [CrossRef]
- Asea, A.A.A.; Calderwood, S.K.; Kaur, P. (Eds.) Heat Shock Proteins and Plants; Springer International Publishing: Cham, Switzerland, 2018; ISBN 9783319834955. [Google Scholar]
- Sun, L.; Wang, Y.-P.; Chen, P.; Ren, J.; Ji, K.; Li, Q.; Li, P.; Dai, S.-J.; Leng, P. Transcriptional Regulation of SlPYL, SlPP2C, and SlSnRK2 Gene Families Encoding ABA Signal Core Components during Tomato Fruit Development and Drought Stress. J. Exp. Bot. 2011, 62, 5659–5669. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Sun, Y.; Wang, H.; Zhao, T.; Xu, X.; Jiang, J.; Li, J. Genome-Wide Identification and Functional Analysis of the ERF2 Gene Family in Response to Disease Resistance against Stemphylium lycopersici in Tomato. BMC Plant Biol. 2021, 21, 72. [Google Scholar] [CrossRef]
- Fryer, M.J.; Oxborough, K.; Mullineaux, P.M.; Baker, N.R. Imaging of Photo-oxidative Stress Responses in Leaves. J. Exp. Bot. 2002, 53, 1249–1254. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “One for All, All for One” Bioinformatics Platform for Biological Big-Data Mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Tan, Q.; Bao, X.; Gong, X.; Zhao, L.; Chen, J.; Liu, L.; Li, R. Transcriptomic Profiling Reveals Regulatory Pathways of Tomato in Resistance to Verticillium Wilt Triggered by VdR3e. Plants 2025, 14, 1243. https://doi.org/10.3390/plants14081243
Wang X, Tan Q, Bao X, Gong X, Zhao L, Chen J, Liu L, Li R. Transcriptomic Profiling Reveals Regulatory Pathways of Tomato in Resistance to Verticillium Wilt Triggered by VdR3e. Plants. 2025; 14(8):1243. https://doi.org/10.3390/plants14081243
Chicago/Turabian StyleWang, Xiao, Qian Tan, Xiyue Bao, Xinyue Gong, Lingmin Zhao, Jieyin Chen, Lei Liu, and Ran Li. 2025. "Transcriptomic Profiling Reveals Regulatory Pathways of Tomato in Resistance to Verticillium Wilt Triggered by VdR3e" Plants 14, no. 8: 1243. https://doi.org/10.3390/plants14081243
APA StyleWang, X., Tan, Q., Bao, X., Gong, X., Zhao, L., Chen, J., Liu, L., & Li, R. (2025). Transcriptomic Profiling Reveals Regulatory Pathways of Tomato in Resistance to Verticillium Wilt Triggered by VdR3e. Plants, 14(8), 1243. https://doi.org/10.3390/plants14081243