The Role of Temperature in the Growth and Flowering of Geophytes
Abstract
:1. Introduction
Genera | Family | Origin | Temperature Requirements, ° C | ||
---|---|---|---|---|---|
Flower Induction and Organogenesis | Flower Maturation and Shoot Development | Aboveground Growth | |||
Allium | Alliaceae | Temperate | 9–13 | 5–8, during 16–24 weeks | 8–11 for two weeks, then 17 |
Hyacinthus | Liliaceae | Irano-Turanian | 17–25 | 4–9, during 10–18 weeks | 10–13 for a couple of days, then 23 |
Iris | Iridaceae | Temperate | 9–15 | 9–13, during 26–28 weeks | above 6 |
Narcissus | Liliaceae | Irano-Turanian | 17–20 | 7–11, during 6–10 weeks | 9–15 |
Tulipa | Liliaceae | Irano-Turanian | 17–25 | 4–9, during 12–18 weeks | 14–16 |
2. Temperature and Flower Induction and Initiation
3. Physiological Changes during Flower Maturation and Shoot Development Affected by Temperature
3.1. Water Status
3.2. Respiration
3.3. Carbohydrate Distribution
4. Endogenous Plant Growth Regulators
4.1. Gibberellins
4.2. Auxins
5. Are Auxin and Gibberellin the Main Agents in the Temperature-Dependent Growth of Geophytes?
6. Temperature and Aboveground Growth and Biomass Production
7. Conclusions
Conflicts of Interest
References
- De Hertogh, A.A.; le Nard, M. The Physiology of Flower Bulbs: A Comprehensive Treatise on the Physiology and Utilization of Ornamental Flowering Bulbous and Tuberous Plants; Elsevier Science Publishers: Amsterdam, The Netherland, 1993; p. 812. [Google Scholar]
- Lapointe, L. How phenology influences physiology in deciduous spring ephemerals. Physiol. Plant. 2001, 113, 151–157. [Google Scholar] [CrossRef]
- Ryberg, M. A morphological study of Corydalis nobilis, Corydalis cava, Corydalis solida and some allied species, with special reference to their underground organs. Acta Horti Bergiani 1959, 19, 15–119. [Google Scholar]
- Gorin, N.; Heidema, F.T. Starch contents of freeze-dried anthers and α-amylase activity of their extracts as criteria that dry-stored bulbs (Tulipa gesneriana L.) cultivar “apelddorn” have been exposed to 5 °C. Sci. Hort. 1985, 26, 183–189. [Google Scholar] [CrossRef]
- Lambrechts, H.; Rook, F.; Kollöfel, C. Carbohydrate status of tulip bulbs during cold-induced flower stalk elongation and flowering. Plant Physiol. 1994, 104, 515–520. [Google Scholar]
- Rebers, M.; Vermeer, E.; Knegt, E.; Shelton, C.J.; Plas, L.H.W. Gibberellin levels and cold-induced floral stalk elongation in tulip. Physiol. Plant. 1995, 94, 687–691. [Google Scholar] [CrossRef]
- Zemah, H.; Bendel, P.; Rabinowitch, H.D.; Kamenetsky, R. Visualization of morphological structure and water status during storage of Allium aflatunense bulbs by NMR imaging. Plant Sci. 1999, 147, 65–73. [Google Scholar] [CrossRef]
- Van der Toorn, A.; Zemah, H.; van As, H.; Bendel, P.; Kamenetsky, R. Developmental changes and water status in tulip bulbs during storage: Visualization by NMR imaging. J. Exp. Bot. 2000, 51, 1277–1287. [Google Scholar] [CrossRef]
- Van Kilsdonk, M.G.; Nicolay, M.G.; Franssen, J.M.; Kolloffel, C. Bud abortion in tulip bulbs studied by magnetic resonance imaging. J. Exp. Bot. 2002, 53, 1603–1611. [Google Scholar] [CrossRef]
- Kamenetsky, R.; Zemah, H.; Ranwala, A.P.; Vergelt, F.; Ranwala, N.K.; Miller, W.B.; van As, H.; Bendel, P. Water status and carbohydrate pools in tulip bulbs during dormancy release. New Phytol. 2003, 158, 109–118. [Google Scholar] [CrossRef]
- Khodorova, N.V.; Miroslavov, E.A.; Shavarda, A.L.; Laberche, J.C.; Boitel-Conti, M. Bud development in corydalis (Corydalis bracteata) requires low temperature: A study of developmental and carbohydrate changes. Ann. Bot. 2010, 105, 891–903. [Google Scholar] [CrossRef]
- Khodorova, N.V. A study of adaptation to cold in a geophyte species (Corydalis bracteata (Steph.) Pers, Fumariaceae DC.) and an approach of secondary metabolism during plant development. PhD Thesis, Jules Verne University of Picardy, Amiens, France, 2011; p. 181. [Google Scholar]
- Kamenetsky, R.; Okubo, H. Ornamental Geophytes: From Basic Science to Sustainable Production; CRC Press: Boca Raton, FL, USA, 2013; p. 578. [Google Scholar]
- Noy-Porat, T.; Flaishman, M.A.; Eshel, A.; Sandler-Ziv, D.; Kamenetsky, R. Florogenesis of the Mediterranean geophyte Narcissus tazetta and temperature requirements for flower initiation and differentiation. Sci. Hort. 2009, 120, 138–142. [Google Scholar] [CrossRef]
- Corbesier, L.; Coupland, G. The quest for florigen: Review of recent progress. J. Exp. Bot. 2003, 57, 3395–3403. [Google Scholar] [CrossRef]
- Horvath, D. Common mechanisms regulate flowering and dormancy. Plant Sci. 2009, 177, 523–531. [Google Scholar] [CrossRef]
- Wiebe, H.J. Effects of temperature and daylength on bolting of leek (Allium porrum L.). Sci. Hort. 1994, 59, 177–185. [Google Scholar] [CrossRef]
- Ofir, M.; Kigel, J. Opposite effects of daylength and temperature on flowering and summer dormancy of Poa bulbosa. Ann. Bot. 2006, 97, 659–666. [Google Scholar] [CrossRef]
- Kim, S.H.; Niedziela, C.E.; Nelson, P.V.; de Hertogh, A.A.; Swallow, W.H.; Mingis, N.C. Growth and development of Lilium longiflorum “Nellie White” during bulb production under controlled environments: II. Effects of shifting day/night temperature regimes on scale bulblets. Sci. Hort. 2007, 112, 89–94. [Google Scholar] [CrossRef]
- Kim, S.H.; Niedziela, C.E.; Nelson, P.V.; de Hertogh, A.A.; Swallow, W.H.; Mingis, N.C. Growth and development of Lilium longiflorum “Nellie White” during bulb production under controlled environments: I. Effects of constant, variable and greenhouse day/night temperature regimes on scale and stem bulblets. Sci. Hort. 2007, 112, 95–98. [Google Scholar] [CrossRef]
- Niedziela, C.E.; Kim, S.H.; Nelson, P.V.; de Hertogh, A.A. Effects of N-P-K deficiency and temperature regime on the growth and development of Lilium longiflorum “Nellie White” during bulb production under phytotron conditions. Sci. Hort. 2008, 116, 430–436. [Google Scholar] [CrossRef]
- Balk, P.A.; de Boer, A.D. Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein γTIP. Planta 1999, 209, 346–354. [Google Scholar] [CrossRef]
- Eisenbarth, D.; Weig, A.R. Dynamics of aquaporins and water relations during hypocotyl elongation in Ricinus communis L. seedlings. J. Exp. Bot. 2005, 56, 1831–1842. [Google Scholar] [CrossRef]
- Ehlert, C.; Maurel, C.; Tardieu, F.; Simonneau, T. Aquaporin-Mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiol. 2009, 150, 1093–1104. [Google Scholar] [CrossRef]
- Samach, A.; Wigge, P.A. Ambient temperature perception in plants. Curr. Opin. Plant Biol. 2005, 8, 483–486. [Google Scholar] [CrossRef]
- Kannerworff, W.A.; van der Plas, L.H.W. Respiration of bulb scale fragments of tulip after storage at 5 °C. Plant Sci. 1994, 104, 31–38. [Google Scholar] [CrossRef]
- Lee, A.K.; Suh, J.K.; Roh, M.S. Flowering and changes in respiration in Asiatic hybrid lilies as influenced by bulb vernalization. Sci. Hort. 2002, 123, 366–371. [Google Scholar]
- Khodorova, N.V.; Koteyeva, N.K; Miroslavov, E.A. Ultrastructural changes in phloem parenchyma cells in Corydalis bracteata (Fumariaceae) growing outdoors and indoors. Botanicheskii. Z. 2007, 92, 1011–1023. [Google Scholar]
- Gandin, A.; Gutjahr, S.; Dizengremel, P.; Lapointe, L. Source-Sink imbalance increases with growth temperature in the spring geophyte Erythronium americanum. J. Exp. Bot. 2011, 62, 3467–3479. [Google Scholar] [CrossRef]
- Stitt, M.; Hurry, V. A plant for all seasons: Alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 2002, 5, 199–206. [Google Scholar] [CrossRef]
- Guy, C.; Kaplan, F.; Kopka, J.; Selbig, J.; Hincha, D.K. Metabolomics of temperature stress. Physiol. Plant. 2008, 132, 220–235. [Google Scholar]
- Ranwala, A.P.; Miller, W.B. Analysis of nonstructural carbohydrates in storage organs of 30 ornamental geophytes by high-performance anion-exchange chromatography with pulsed amperometric detection. New Phytol. 2008, 180, 421–433. [Google Scholar] [CrossRef]
- Hobson, G.E.; Davies, J.N. Mitochondrial activity and carbohydrate levels in tulip bulbs in relation to cold treatment. J. Exp. Bot. 1977, 28, 559–568. [Google Scholar] [CrossRef]
- Lambrechts, H.; Kollöfel, C. Soluble and insoluble invertase activity in elongating Tulipa gesneriana flower stalk. Physiol. Plant. 1993, 89, 830–834. [Google Scholar] [CrossRef]
- Ranwala, A.P.; Miller, W.B. Gibberellin-Mediated changes in carbohydrate metabolism during flower stalk elongation in tulips. Plant Growth Regul. 2008, 55, 241–248. [Google Scholar] [CrossRef]
- Weschke, W.; Panitz, R.; Gubatz, S.; Wang, Q.; Radchuk, R.; Weber, H.; Wobus, U. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues in barley caryopses during early development. Plant J. 2003, 3, 395–341. [Google Scholar]
- Sreenivasulu, N.; Altschmied, L.; Radchuk, V.; Gubatz, S.; Wobus, U.; Weschke, W. Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant J. 2004, 37, 539–553. [Google Scholar] [CrossRef]
- Salerno, G.L.; Curatti, L. Origin of sucrose metabolism in higher plants: When, how and why? Trends Plant Sci. 2003, 8, 63–69. [Google Scholar] [CrossRef]
- Roitsch, T.; Gonzalez, M.C. Function and regulation of plant invertases: Sweet sensations. Trends Plant Sci. 2004, 9, 606–613. [Google Scholar] [CrossRef]
- Koch, K. Sucrose metabolism: Regulatory mechanism and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef]
- Aung, L.H.; de Hertogh, A.A. Temperature regulation of growth and endogenous abscisic acid-like content of Tulipa gesneriana L. Plant. Physiol. 1979, 63, 1111–1116. [Google Scholar] [CrossRef]
- Letham, D.S.; Smith, H.G.; Willcocks, D.A. Cytokinin metabolism in Narcissus bulbs: Chilling promotes acetylation of zeatin riboside. Funct. Plant Biol. 2003, 30, 525–532. [Google Scholar] [CrossRef]
- Hsu, Y.F.; Tzeng, J.D.; Liu, M.C.; Yei, F.L.; Chung, M.C.; Wang, C.S. Identification of anther-specific/predominant genes regulated by gibberellin during development of lily anthers. J. Plant Physiol. 2008, 165, 553–563. [Google Scholar] [CrossRef]
- Rieu, I.; Ruiz-Rivero, O.; Fernandez-Garcia, N.; Griffiths, J.; Powers, S.J.; Gong, F.; Linhartova, T.; Eriksson, S.; Nilsson, O.; Thomas, S.G.; et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 2008, 53, 488–504. [Google Scholar]
- King, R.W.; Evans, L.T. Gibberellins and flowering of grasses and cereals: Prizing open the lid of the “florigen” black box. Annu. Rev. Plant Biol. 2003, 54, 307–328. [Google Scholar] [CrossRef]
- Rebers, M.; Romeijn, G.; Knegt, E.; van der Plas, L.H.W. Effects of exogenous gibberellins and paclobutrazol on floral stalk growth of tulip sprouts isolated from cooled and non-cooled tulip bulbs. Physiol. Plant. 1994, 92, 661–667. [Google Scholar] [CrossRef]
- Rietveld, P.L.; Wilkinson, C.; Franssen, H.M.; Balk, P.A.; van der Plas, L.H.V.; Weisbeek, P.J.; Douwe de Boer, A. Low temperature sensing in tulip (Tulipa gesneriana L.) is mediated through an increased response to auxin. J. Exp. Bot. 2000, 51, 587–594. [Google Scholar] [CrossRef]
- Perrot-Rechenmann, C. Cellular responses to auxin: Division versus expansion. Cold Spring Harb. Perspect. Biol. 2010, 2, a001446. [Google Scholar] [CrossRef]
- Okubo, H.; Uemoto, S. Changes in endogenous gibberellin and auxin activities during first internode elongation in tulip flower stalk. Plant Cell Physiol. 1985, 26, 709–719. [Google Scholar]
- Heggie, L.; Halliday, K.J. The highs and lows of plant life: Temperature and light interactions in development. Int. J. Dev. Biol. 2005, 49, 675–687. [Google Scholar] [CrossRef]
- O’Neill, D.P.; Ross, J.J. Auxin regulation of the gibberellin pathway in pea. Plant Physiol. 2002, 130, 1974–1982. [Google Scholar] [CrossRef]
- Ozga, J.A.; Yu, J.; Reinecke, D.M. Pollination-, development-, and auxin-specific regulation of gibberellin 3bet-hydroxylase gene expression in pea fruits and seeds. Plant Physiol. 2003, 131, 1137–1146. [Google Scholar] [CrossRef]
- Ross, J.J.; Davidson, S.E.; Wolbang, C.M.; Bayly-Stark, E.; Smith, J.J.; Reid, J.B. Developmental regulation of the gibberellin pathway in pea shoots. Funct. Plant Biol. 2003, 30, 83–89. [Google Scholar] [CrossRef]
- Demason, D.A. Auxin-Cytokinin and auxin-gibberellin interactions during morphogenesis of the compound leaves of pea (Pisum sativum). Planta 2005, 222, 151–166. [Google Scholar] [CrossRef]
- Björkland, S.; Antti, H.; Uddestrand, I.; Moritz, T.; Sundberg, B. Cross-Talk between gibberellin and auxin in development of poplar wood: Gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J. 2007, 52, 499–511. [Google Scholar] [CrossRef]
- Samach, A. Control of flowering. In Plant Biotechnology and Agriculture. Prospects for the 21st Century; Altman, A., Ed.; Academic Press: London, UK, 2012; Chapter 25; p. 387. [Google Scholar]
- Mamushina, N.S.; Zubkova, E.K. Effect of temperature on potential photosynthesis and photosynthetic carbon metabolism in C3 plants with different seasonal patterns of development. Russ. J. Plant Physiol. 1996, 43, 313–318. [Google Scholar]
- Mamushina, N.S.; Voznesenskaya, E.V.; Zubkova, E.K.; Maslova, T.G.; Miroslavov, E.A. Structural and functional changes of mesophyll cells during leaf growth in two species of spring ephemers. Russ. J. Plant Physiol. 2002, 49, 171–178. [Google Scholar] [CrossRef]
- Mamushina, N.S.; Zubkova, E.K.; Yudina, O.S. Metabolism of 14C-Glycine as a substrate for photorespiration of the leaf at different developmental stages of ephemeroides. Russ. J. Plant Physiol. 2008, 55, 41–47. [Google Scholar] [CrossRef]
- Lapointe, L.; Lerat, S. Annual growth of the spring ephemeral Erythronium americanum as a function of temperature and mycorrhizal status. Can. J. Bot. 2006, 84, 39–48. [Google Scholar] [CrossRef]
- Badri, M.A.; Minchin, P.E.; Lapointe, L. Effects of temperature on the growth of spring ephemerals: Crocus vernus. Physiol. Plant. 2007, 130, 67–76. [Google Scholar] [CrossRef]
- Lundmark, M.; Hurry, V.; Lapointe, L. Low temperature maximizes growth of Crocus vernus (L.) Hill via changes in carbon partitioning and corm development. J. Exp. Bot. 2009, 60, 2203–2213. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Khodorova, N.V.; Boitel-Conti, M. The Role of Temperature in the Growth and Flowering of Geophytes. Plants 2013, 2, 699-711. https://doi.org/10.3390/plants2040699
Khodorova NV, Boitel-Conti M. The Role of Temperature in the Growth and Flowering of Geophytes. Plants. 2013; 2(4):699-711. https://doi.org/10.3390/plants2040699
Chicago/Turabian StyleKhodorova, Nadezda V., and Michèle Boitel-Conti. 2013. "The Role of Temperature in the Growth and Flowering of Geophytes" Plants 2, no. 4: 699-711. https://doi.org/10.3390/plants2040699
APA StyleKhodorova, N. V., & Boitel-Conti, M. (2013). The Role of Temperature in the Growth and Flowering of Geophytes. Plants, 2(4), 699-711. https://doi.org/10.3390/plants2040699