Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities of Three Plants Commonly Used in Traditional Medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Yield and Total Phenolic Contents
2.2. Phenolic Profile by UPLC-DAD-ESI-TQ-MS Analysis
2.3. Antioxidant Activity
2.4. Cytotoxicity of P. alliaceae, P. niruri and S. reticulata Extracts
3. Materials and Methods
3.1. Materials, Reagents and Solvents
3.2. Phenolic Extracts from P. alliaceae, P. niruri and S. reticulata
3.3. Total Phenolic Content
3.4. Total Proanthocyanidin Content
3.5. UPLC-DAD-ESI-TQ-MS Analysis
3.6. DPPH Radical-Scavenging Activity
3.7. ORAC Antioxidant Activity
3.8. Evaluation of Cytotoxicity
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Arnaez, E.; Moreira, I.; Navarro, M. Manejo Agroecológico de Nueve Especies de Plantas de uso Tradicional Cultivadas en Costa Rica; FLACSO Latin American Institute: San Jose, Costa Rica, 2016; pp. 1–85. [Google Scholar]
- Nunes dos Santos, R.; Vasconcelos Silva, M.G. Constituintes químicos do caule de Senna reticulata Willd. (Leguminoseae). Quim. Nova 2008, 31, 1979–1981. [Google Scholar] [CrossRef]
- Harish, R.; Shivanandappa, T. Antioxidant activity and hepatoprotective potential of Phyllanthus niruri. Food Chem. 2006, 95, 180–185. [Google Scholar] [CrossRef]
- Kim, S.; Kubec, R.; Musah, R.A. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L. J. Ethnopharmacol. 2006, 104, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Hoyos, M.; Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Cueva, C.; Hevia, D.; Quesada, S.; Gabriela Azofeifa, G.; Moreno-Arribas, M.V.; Monagas, M.; Bartolomé, B. Proanthocyanidin Characterization and Bioactivity of Extracts from Different Parts of Uncaria tomentosa L. (Cat’s Claw). Antioxidants 2017, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Zamora, W.; Quesada, S.; Azofeifa, G.; Alvarado, D.; Monagas, M. Fractioning of Proanthocyanidins of Uncaria tomentosa. Composition and Structure-Bioactivity Relationship. Antioxidants 2017, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Demirezer, L.O.; Karahan, N.; Ucakturk, E.; Kuruuzum-Uz, A.; Guvenalp, Z.; Kazaz, C. HPLC Fingerprinting of sennosides in laxative drugs with isolation of standard substances from some Senna Leaves. Rec. Nat. Prod. 2011, 5, 261–270. [Google Scholar]
- Araújo-Luz, D.; Miranda-Pinheiro, A.; Lopes-Silva, M.; Chagas-Monteiro, M.; Prediger, R.D.; Ferraz-Maia, C.S.; Andrade-Fontes, E. Ethnobotany, phytochemistry and neuropharmacological effects of Petiveria alliacea L. (Phytolaccaceae): A review. J. Ethnopharmacol. 2016, 185, 182–201. [Google Scholar] [CrossRef]
- Bagalkotkar, G.; Sagineedu, S.R.; Saad, M.S.; Stanslas, J. Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: A review. J. Pharm. Pharmacol. 2006, 58, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, E.; Noor, A.; Sakeena, M.; Abdullah, G.; Abdulkarim, M.; Sattar, M. Identification of phenolic compounds and assessment of in vitro antioxidants activity of 30% ethanolic extracts derived from two Phyllanthus species indigenous to Malaysia. J. Pharm. Pharmacol. 2011, 5, 1967–1978. [Google Scholar] [CrossRef]
- Mediani, A.; Abas, F.; Khatib, A.; Tan, C.P.; Ismail, I.S.; Shaari, K.; Ismail, A.; Lajis, N.H. Relationship between metabolites composition and biological activities of Phyllanthus niruri extracts prepared by different drying methods and solvents extraction. Plant Foods Hum. Nut. 2015, 70, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Raffoul, J.J. Potential anticancer properties of grape antioxidants. J. Oncol. 2012, 2012, 803294. [Google Scholar] [CrossRef] [PubMed]
- Considine, M.J.; Foyer, C.H. Redox Regulation of Plant Development. Antioxidants & Redox signaling. Antioxid. Redox Signal. 2014, 21, 1305–1326. [Google Scholar] [CrossRef] [PubMed]
- Barrajon-Catalan, E.; Herranz-López, M.; Joven, J.; Segura-Carretero, A.; Alonso-Villaverde, C.; Menéndez, J.A.; Micol, V. Oxidative Stress and Inflammation in Non-Communicable Diseases—Molecular Mechanisms and Perspectives in Therapeutics, 1st ed.; Camps, J., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 141–159. ISBN 978-3-319-55857-8. [Google Scholar]
- Monagas, M.; Urpi-Sarda, M.; Sanchez-Patán, F.; Llorach, R.; Garrido, I.; Gómez-Cordoves, C.; Andres-Lacueva, C.; Bartolome, B. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 2010, 1, 233–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaa, C.; Valdivia, M.; Marcelo, A. The anti-inflammatory and antioxidant effect of hydroalcoholic extract of Petiveria alliacea. Rev. Peru. Biol. 2012, 19, 329–334. [Google Scholar]
- Lizcano, L.J.; Bakkali, F.; Ruiz-Larrea, B.; Ruiz-Sanz, J.I. Antioxidant activity and polyphenol content of aqueous extracts from Colombia Amazonian plants with medicinal use. Food Chem. 2010, 119, 1566–1570. [Google Scholar] [CrossRef]
- Amin, Z.A.; Abdulla, M.A.; Ali, H.M.; Alshawsh, M.A.; Qadir, S.W. Assessment of In vitro antioxidant, antibacterial and immune activation potentials of aqueous and ethanol extracts of Phyllanthus niruri. J. Sci. Food Agric. 2012, 92, 1874–1877. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Lee, W.; Cho, S.; Choi, S. Proliferative effects of Flavan3-ols and Propelargonidins from Rhizomes of Drynaria fortune on MCF-7 and Osteoblastic Cells. Arch. Pharm. Res. 2003, 26, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Montagut, G.; Baiges, I.; Valls, J.; Terra, X.; Bas, J.; Vitrac, X.; Richard, T.; Mérillon, J.; Arola, L.; Blay, M.; et al. A trimer plus a dimer-gallate reproduce the bioactivity described for an extract of grape see procyanidins. Food Chem. 2009, 116, 265–270. [Google Scholar] [CrossRef]
- Ramos, A.; Visozo, A.; Piloto, J.; García, A.; Rodríguez, C.A.; Rivero, R. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. J. Etnopharmacol. 2003, 87, 241–246. [Google Scholar] [CrossRef]
- Silva, G.A.; Monteiro, J.A.; Ferreira, E.B.; Fernandes, M.I.B.; Pessoa, C.; Sampaio, C.G.; Silva, M.G.V. Total phenolic content, antioxidant and anticancer activities of four species of Senna Mill. From northeast Brazil. Int. J. Pharm. Pharm. Sci. 2014, 6, 199–202. [Google Scholar]
- Schmidt, C.; Fronza, M.; Goettert, M.; Geller, F.; Luik, S.; Flores, E.M.M.; Bittencourt, C.F.; Zanetti, G.D.; Heinzmann, B.M.; Laufer, S.; Merfort, I. Biological studies on Brazilian plants used in wound healing. J. Etnopharmacol. 2009, 122, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Urueña, C.; Cifuentes, C.; Castañeda, D.; Arango, A.; Kaur, P.; Asea, A.; Fiorentino, S. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumor cells. BMC Complement. Altern. Med. 2008, 8, 60. [Google Scholar] [CrossRef]
- Hernandez, J.F.; Urueña, C.P.; Cifuentes, M.C.; Sandoval, T.A.; Fiorentino, S. A Petiveria alliacea standardized fraction induces breast adenocarcinoma cell death modulating glycolytic metabolism. J. Ethnopharmacol. 2014, 153, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Ruffa, M.J.; Ferrar, G.; Wagner, M.L.; Calcagno, M.L.; Campos, R.H.; Cavallaro, L. Cytotoxic effect of argentine medicinal plant extracts on human hepatocellular carcinoma cell line. J. Etnopharmacol. 2002, 79, 335–339. [Google Scholar] [CrossRef]
- Camacho, M.D.; Phillipson, J.D.; Croft, S.L.; Solis, P.N.; Marshall, S.J.; Ghazanfar, S.A. Screening of plants extracts for antiprotozoal and cytotoxic activities. J. Ethnopharmacol. 2003, 89, 185–191. [Google Scholar] [CrossRef]
- Jiménez-Estrada, M.; Velásquez-Contreras, C.; Garibay-Escobar, A.; Sierras-Canchola, D.; Lapisco-Vásquez, R.; Ortiz-Sandoval, C.; Burgos-Hernández, A.; Robles-Zepeda, R. In vitro antioxidant and antiproliferative activities of plants of the ethnopharmacopeia from northwest of Mexico. BMC Complement. Altern. Med. 2013, 13, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Q.; Jaganath, I.B.; Sekaran, S.D. Phyllanthus spp. induces selective growth inhibition of PC-3 and MeWo human cancer cells through modulation of cell cycle and induction of apoptosis. PLoS ONE 2010, 5, e12644. [Google Scholar] [CrossRef]
- Jose, J.; Sudhakaran, S.; Sumesh-Kumar, T.M.; Jayadevi-Variyar, E.; Jayaraman, S. A comparative evaluation of anticancer activities of flavonoids isolated from Mimosa pudica, Aloe vera and Phyllanthus niruri against human breast carcinoma cell line (MCF-7) using MTT assay. Int. J. Pharm. Pharm. Sci. 2014, 6, 319–322. [Google Scholar] [CrossRef]
- Poompachee, K.; Chudapongse, N. Comparison of the antioxidant and cytotoxic activities of Phyllanthus virgatus and Phyllanthus amarus extracts. Med. Princ. Pract. 2012, 21, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Mahavorasirikul, W.; Wiratchanee, M.; Vithoon, V.; Wanna, C.; Arunporn, I.; Kesara, N. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro. BMC Complement. Altern. Med. 2010, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, S.; Wahab, N.A.; Abidin, N.Z.; Manickam, S.; Zakaria, Z. Growth Inhibition of Human Gynecologic and Colon Cancer Cells by Phyllanthus watsonii through Apoptosis Induction. PLoS ONE 2012, 7, e34793. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Krohn, R.L.; Liu, W.; Joshi, S.S.; Kuszynski, C.A.; McGinn, T.R.; Bagchi, M.; Preuss, H.G.; Stohs, S.J.; Bagchi, D. The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Mol. Cell. Biochem. 1999, 196, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.; Briscoe, T.; Hou, M.; Goodman, C.; Kata, S.; Ross, H.; McDougall, G.; Stewart, D.; Riches, A. Strawberry polyphenols are equally cytotoxic to tumourigenic and normal human breast and prostate cell lines. Int. J. Oncol. 2009, 34, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Stoner, G.; Wang, L.; Casto, B. Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis 2008, 29, 1665–1674. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, X.F.; Zheng, P.S. Grape seed proanthocyanidins (GSPs) inhibit the growth of cervical cancer by inducing apoptosis mediated by the mitochondrial pathway. PLoS ONE 2014, 9, e107045. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.; Lee, R.; Heber, D. Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice. Clin. Chim. Acta 2004, 348, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Zhang, S.; Xie, Y.; Zhang, Z.; Zhao, W. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncol. Lett. 2016, 11, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Navarro Hoyos, M.; Sánchez-Patán, F.; Murillo Masis, R.; Martín-Álvarez, P.J.; Zamora Ramirez, W.; Monagas, M.J.; Bartolomé, B. Phenolic Assesment of Uncaria tomentosa L. (Cat’s Claw): Leaves, Stem, Bark and Wood Extracts. Molecules 2015, 20, 22703–22717. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Ribéreau-Gayon, P.; Stonestreet, E. Dósage des tannins du vin rouges et determination du leur structure. Chem. Anal. 1966, 48, 188–196. [Google Scholar]
- Sánchez-Patan, F.; Monagas, M.; Moreno-Arribas, M.V.; Bartolome, B. Determination of microbial phenolic acids in human faeces by UPLC-ESI-TQ MS. J. Agric. Food Chem. 2011, 59, 2241–2247. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Patan, F.; Cueva, C.; Monagas, M.; Walton, G.E.; Gibson, G.R.; Martin-Alvarez, P.J.; Moreno-Arribas, M.V.; Bartolome, B. Gut microbial catabolism of grape seed flavan-3-ols by human faecal microbiota. Targetted analysis of precursor compounds, intermediate metabolites and end-products. Food Chem. 2012, 131, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Davalos, A.; Gomez-Cordoves, C.; Bartolome, B. Extending applicability of the oxygen radical absorbance capacity (ORAC-Fluorescein) assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef] [PubMed]
Sample | Extraction Yield (%) 1 | Total Phenolic Content (TPC) (mg/g) 2,5 | Total Proanthocyanidin Contents (PRO) (mg/g) 3,5 |
---|---|---|---|
P. alliacea | 5.03 | 13.45 a ± 0.46 | nd 4 |
P. niruri | 5.58 | 328.80 b ± 13.41 | 322.93 a ± 11.12 |
S. reticulata | 6.53 | 79.30 c ± 4.09 | 22.35 b ± 1.64 |
Compounds | P. alliaceae | P. niruri | S. reticulata |
---|---|---|---|
Concentration (µg/g Extract) | |||
Hydroxybenzoic acids | |||
Benzoic acid | 158.4 ± 7.5 | nd | nd |
Salicylic acid | 175.9 ± 2.4 | 61.2 ± 1.3 | 16.7 ± 0.1 |
4-Hydroxybenzoic acid | 28.1 ± 0.2 | 14.3 ± 0.1 | 80.9 ± 1.2 |
Protocatechuic acid | 6.3 ± 0.2 | 192.4 ± 0.9 | 36.3 ± 0.3 |
Gallic acid | 2.4 ± 0.0 | 763.3 ± 8.1 | 7.5 ± 0.3 |
Vanillic acid | 12.1 ± 0.1 | 10.7 ± 0.2 | 49.6 ± 1.7 |
Syringic acid | 9.2 ± 0.4 | nd | 25.0 ± 0.8 |
∑ Hydroxybenzoic acids | 392.4 | 1041.9 | 216.0 |
Hydroxycinnamic acids | |||
p-Coumaric acid | 31.6 ± 0.4 | 13.5 ± 0.8 | 39.0 ± 0.9 |
Caffeic acid | 1.6 ± 0.0 | 25.0 ± 0.8 | 52.8 ± 0.6 |
Ferulic acid | 47.5 ± 1.1 | 34.7 ± 1.1 | 372.5 ± 9.5 |
∑ Hydroxycinnamic acids | 80.7 | 73.2 | 464.3 |
Flavan-3-ols: monomers | |||
(+)-Catechin | nd | 186.6 ± 6.4 | 3.7 ± 0.1 |
(−)-Epicatechin | nd | 331.7 ± 8.3 | 14.0 ± 0.1 |
∑ Monomers | nd | 518.3 | 17.7 |
Flavan-3-ols: procyanidin dimers | |||
Procyanidin B1 | nd | 44.2 ± 1.5 | nd |
Procyanidin B2 | nd | 73.0 ± 3.2 | nd |
Procyanidin B3 | nd | 45.8 ± 1.6 | nd |
Procyanidin B4 | nd | 74.0 ± 1.5 | nd |
Procyanidin B5 | nd | 13.2 ± 0.3 | nd |
∑ Procyanidin dimers | nd | 250.2 | nd |
Flavan-3-ols: propelargonidin dimers | |||
Propelargonidin dimer (5.03 min) | nd | nd | 4.9 ± 0.1 |
Propelargonidin dimer (5.63 min) | nd | nd | 5.9 ± 0.2 |
∑ Properlargonidin dimers | nd | nd | 10.8 |
Flavan-3-ols: procyanidin trimers | |||
Trimer T2 | nd | 26.0 ± 0.6 | nd |
∑ Procyanidin trimers | nd | 26.0 | nd |
Sample | Total Phenolics UPLC 1 (µg/g Extract) | DPPH 2 IC50 (μg/mL) | ORAC 2 (mmol TE/mg Extract) |
---|---|---|---|
P. alliacea | 473.0 | >1000 a | 1.32 a ± 0.11 |
P. niruri | 1909.6 | 6.40 b ± 0.10 | 6.50 b ± 0.15 |
S. reticulata | 708.8 | 72.90 c ± 1.10 | 2.68 c ± 0.28 |
Sample | IC50 (µg/mL) | ||
---|---|---|---|
AGS 1 | SW620 1 | Vero 1 | |
P. alliacea 2 | 106.5 a,* ± 7.9 (SI = 1.4) | 108.4 a,* ± 4.7 (SI = 1.4) | 151.5 a,+ ± 3.3 |
P. niruri 2 | 145.2 b,* ± 8.2 (SI = 2.2) | 113.2 a,+ ± 4.3 (SI = 2.8) | 311.9 b,◊ ± 24 |
S. reticulata 2 | 208.4 c,* ± 8.9 (SI = 2.4) | 202.5 b,* ± 9.1 (SI = 2.5) | >500 c,+ |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, M.; Moreira, I.; Arnaez, E.; Quesada, S.; Azofeifa, G.; Alvarado, D.; Monagas, M.J. Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities of Three Plants Commonly Used in Traditional Medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd. Plants 2017, 6, 50. https://doi.org/10.3390/plants6040050
Navarro M, Moreira I, Arnaez E, Quesada S, Azofeifa G, Alvarado D, Monagas MJ. Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities of Three Plants Commonly Used in Traditional Medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd. Plants. 2017; 6(4):50. https://doi.org/10.3390/plants6040050
Chicago/Turabian StyleNavarro, Mirtha, Ileana Moreira, Elizabeth Arnaez, Silvia Quesada, Gabriela Azofeifa, Diego Alvarado, and Maria J. Monagas. 2017. "Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities of Three Plants Commonly Used in Traditional Medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd." Plants 6, no. 4: 50. https://doi.org/10.3390/plants6040050
APA StyleNavarro, M., Moreira, I., Arnaez, E., Quesada, S., Azofeifa, G., Alvarado, D., & Monagas, M. J. (2017). Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities of Three Plants Commonly Used in Traditional Medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd. Plants, 6(4), 50. https://doi.org/10.3390/plants6040050