Plants of Genus Mentha: From Farm to Food Factory
Abstract
:1. Introduction
2. Genus Mentha Plant Cultivation
2.1. Agro-Climatic Requirements
2.2. Soil
2.3. Land Preparation
2.4. Propagation
2.5. Planting
2.6. Fertilization
2.7. Irrigation
2.8. Effect of Cultivation Conditions on Essential Oil Content
2.9. Pests and Diseases
2.10. Harvesting
3. Phytochemical Composition of Essential Oils Obtained from Genus Mentha
3.1. Volatile Compounds
3.2. Non-Volatile Compounds
4. Food Preservative Applications of Genus Mentha Essential Oils
4.1. In vitro Studies on Mentha Genus
4.1.1. Extracts
4.1.2. Essential Oils
5. Shelf-Life Prolongation
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharifi-Rad, J.; Tayeboon, G.S.; Niknam, F.; Sharifi-Rad, M.; Mohajeri, M.; Salehi, B.; Iriti, M.; Sharifi-Rad, M. Veronica persica poir. Extract-antibacterial, antifungal and scolicidal activities, and inhibitory potential on acetylcholinesterase, tyrosinase, lipoxygenase and xanthine oxidase. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 50–56. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Iriti, M.; Setzer, W.N.; Sharifi-Rad, M.; Roointan, A.; Salehi, B. Antiviral activity of Veronica persica Poir. on herpes virus infection. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 11–17. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Ayatollahi, S.A.; Varoni, E.M.; Salehi, B.; Kobarfard, F.; Sharifi-Rad, M.; Iriti, M.; Sharifi-Rad, M. Chemical composition and functional properties of essential oils from Nepeta schiraziana Boiss. Farmacia 2017, 65, 802–812. [Google Scholar]
- Sharifi-Rad, M.; Nazaruk, J.; Polito, L.; Morais-Braga, M.F.B.; Rocha, J.E.; Coutinho, H.D.M.; Salehi, B.; Tabanelli, G.; Montanari, C.; del Mar Contreras, M. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol. Res. 2018, 215, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.P.; Saklani, S.; Salehi, B.; Parcha, V.; Sharifi-Rad, M.; Milella, L.; Iriti, M.; Sharifi-Rad, J.; Srivastava, M. Satyrium nepalense, a high altitude medicinal orchid of indian himalayan region: Chemical profile and biological activities of tuber extracts. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 35–43. [Google Scholar] [CrossRef]
- Salehi, B.; Sharopov, F.; Martorell, M.; Rajkovic, J.; Ademiluyi, A.; Sharifi-Rad, M.; Fokou, P.; Martins, N.; Iriti, M.; Sharifi-Rad, J. Phytochemicals in Helicobacter pylori infections: What are we doing now? Int. J. Mol. Sci. 2018, 19, 2361. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, S.; Kim, K.; Nam, H.; Lee, D. Discovering health benefits of phytochemicals with integrated analysis of the molecular network, chemical properties and ethnopharmacological evidence. Nutrients 2018, 10, 1042. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, C.; Panay, A.; Montoya, G. Pentacyclic triterpenes from Cecropia telenitida can function as inhibitors of 11β-hydroxysteroid dehydrogenase type 1. Molecules 2018, 23, 1444. [Google Scholar] [CrossRef] [PubMed]
- Malterud, K. Ethnopharmacology, chemistry and biological properties of four Malian medicinal plants. Plants 2017, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Fokou, P.V.T.; Sharopov, F.; Martorell, M.; Ademiluyi, A.O.; Rajkovic, J.; Salehi, B.; Martins, N.; Iriti, M.; Sharifi-Rad, J. Antiulcer agents: From plant extracts to phytochemicals in healing promotion. Molecules 2018, 23, 1751. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Salehi, B.; Stojanović-Radić, Z.Z.; Fokou, P.V.T.; Sharifi-Rad, M.; Mahady, G.B.; Sharifi-Rad, M.; Masjedi, M.-R.; Lawal, T.O.; Ayatollahi, S.A. Medicinal plants used in the treatment of tuberculosis-ethnobotanical and ethnopharmacological approaches. Biotechnol. Adv. 2017, in press. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Salehi, B.; Varoni, E.M.; Sharopov, F.; Yousaf, Z.; Ayatollahi, S.A.; Kobarfard, F.; Sharifi-Rad, M.; Afdjei, M.H.; Sharifi-Rad, M.; et al. Plants of the Melaleuca genus as antimicrobial agents: From farm to pharmacy. Phytother. Res. 2017, 31, 1475–1494. [Google Scholar] [CrossRef] [PubMed]
- Sahraie-Rad, M.; Izadyari, A.; Rakizadeh, S.; Sharifi-Rad, J. Preparation of strong antidandruff shampoo using medicinal plant extracts: A clinical trial and chronic dandruff treatment. Jundishapur J. Nat. Pharm. Prod. 2015, 10, e21517. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Roberts, T.H.; Matthews, K.R.; Bezerra, C.F.; Morais-Braga, M.F.B.; Coutinho, H.D.; Sharopov, F.; Salehi, B.; Yousaf, Z.; Sharifi-Rad, M. Ethnobotany of the genus Taraxacum—Phytochemicals and antimicrobial activity. Phytother. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.P.; Sharifi-Rad, M.; Shariati, M.A.; Mabkhot, Y.N.; Al-Showiman, S.S.; Rauf, A.; Salehi, B.; Župunski, M.; Sharifi-Rad, M.; Gusain, P. Bioactive compounds and health benefits of edible Rumex species-a review. Cell. Mol. Biol. 2018, 64, 27–34. [Google Scholar] [CrossRef]
- Mishra, A.P.; Saklani, S.; Sharifi-Rad, M.; Iriti, M.; Salehi, B.; Maurya, V.K.; Rauf, A.; Milella, L.; Rajabi, S.; Baghalpour, N. Antibacterial potential of Saussurea obvallata petroleum ether extract: A spiritually revered medicinal plant. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 65–70. [Google Scholar] [CrossRef]
- Monjazeb, M.L.; Abdolshahi, A.; Hedayati, S.; Sharifi-Rad, M.; Iriti, M.; Salehi, B.; Sharifi-Rad, J. Pullulan gum production from low-quality fig syrup using Aureobasidium pullulans. Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 22–26. [Google Scholar] [CrossRef]
- Salehi, B.; Valussi, M.; Jugran, A.K.; Martorell, M.; Ramírez-Alarcón, K.; Stojanović-Radić, Z.Z.; Antolak, H.; Kręgiel, D.; Mileski, K.S.; Sharifi-Rad, M.; et al. Nepeta species: From farm to food applications and phytotherapy. Trends Food Sci. Technol. 2018, 80, 104–122. [Google Scholar] [CrossRef]
- Lawrence, B.M. Mint: The Genus Mentha; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Mamadalieva, N.Z.; Akramov, D.K.; Ovidi, E.; Tiezzi, A.; Nahar, L.; Azimova, S.S.; Sarker, S.D. Aromatic medicinal plants of the Lamiaceae family from Uzbekistan: Ethnopharmacology, essential oils composition, and biological activities. Medicines 2017, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Brahmi, F.; Khodir, M.; Mohamed, C.; Pierre, D. Chemical composition and biological activities of Mentha species. In Aromatic and Medicinal Plants—Back to Nature; InTech: London, England, 2017; pp. 47–80. [Google Scholar]
- Tucker, A.O. Mentha: Economic uses. In Mint: The Genus Mentha; Lawrence, B.M., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 519–522. [Google Scholar]
- Taneja, S.C.; Chandra, S. Mint. In Handbook of Herbs and Spices; Woodhead Publishing Limited: Sawston, UK, 2012; pp. 366–387. [Google Scholar]
- Prakash, O.; Chandra, M.; Pant, A.K.; Rawat, D.S. Mint (Mentha spicata L.) Oils; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Patra, N.K.; Kumar, B. Spearmint; Woodhead Publishing Limited: Sawston, UK, 2012. [Google Scholar]
- Shaikh, S.; Yaacob, H.B.; Rahim, Z.H.A. Prospective role in treatment of major illnesses and potential benefiits as a safe insecticide and natural food presertive of mint (Mentha spp.): A review. Asian J. Biomed. Pharm. Sci. 2014, 4, 1–12. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Insecticidal properties of Mentha species: A review. Ind. Crops Prod. 2011, 34, 802–817. [Google Scholar] [CrossRef]
- Murad, H.A.; Abdallah, H.M.; Ali, S.S. Mentha longifolia protects against acetic-acid induced colitis in rats. J. Ethnopharmacol. 2016, 190, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi, M. Mentha spicata as natural analgesia for treatment of pain in osteoarthritis patients. Complement. Ther. Clin. Pract. 2017, 26, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Morcia, C.; Tumino, G.; Ghizzoni, R.; Terzi, V. Carvone (Mentha spicata L.) oil. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 309–316. [Google Scholar]
- Abdelli, M.; Moghrani, H.; Aboun, A.; Maachi, R. Algerian Mentha pulegium L. Leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities. Ind. Crops Prod. 2016, 94, 197–205. [Google Scholar] [CrossRef]
- Mahdavikia, F.; Saharkhiz, M.J. Phytotoxic activity of essential oil and water extract of peppermint (Mentha × piperita L. Cv. Mitcham). J. Appl. Res. Med. Aromat. Plants 2015, 2, 146–153. [Google Scholar] [CrossRef]
- Mahdavikia, F.; Saharkhiz, M.J.; Karami, A. Defensive response of radish seedlings to the oxidative stress arising from phenolic compounds in the extract of peppermint (Mentha × piperita L.). Sci. Horticult. 2017, 214, 133–140. [Google Scholar] [CrossRef]
- Hanafy, D.M.; Prenzler, P.D.; Burrows, G.E.; Ryan, D.; Nielsen, S.; El Sawi, S.A.; El Alfy, T.S.; Abdelrahman, E.H.; Obied, H.K. Biophenols of mints: Antioxidant, acetylcholinesterase, butyrylcholinesterase and histone deacetylase inhibition activities targeting alzheimer’s disease treatment. J. Funct. Foods 2017, 33, 345–362. [Google Scholar] [CrossRef]
- Ferhat, M.; Erol, E.; Beladjila, K.A.; Çetintaş, Y.; Duru, M.E.; Öztürk, M.; Kabouche, A.; Kabouche, Z. Antioxidant, anticholinesterase and antibacterial activities of Stachys guyoniana and Mentha aquatica. Pharm. Biol. 2017, 55, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Arantes, S.; Piçarra, A.; Candeias, F.; Caldeira, A.T.; Martins, M.R.; Teixeira, D. Antioxidant activity and cholinesterase inhibition studies of four flavouring herbs from Alentejo. Nat. Prod. Res. 2017, 31, 2183–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orhan, I.; Kartal, M.; Kan, Y.; Sener, B. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase. Z. Naturforsch. C 2008, 63, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Chambers, H.L.; Hummer, K.E. Chromosome counts in the Mentha collection at the usda: Ars national clonal germplasm repository. Taxon 1994, 43, 423–432. [Google Scholar] [CrossRef]
- Duriyaprapan, S.; Britten, E.; Basford, K. The effect of temperature on growth, oil yield and oil quality of japanese mint. Ann. Bot. 1986, 58, 729–736. [Google Scholar] [CrossRef]
- Ringuelet, J.A.; Cerimele, E.L.; Henning, C.P.; Rí, M.S.; Urrutia, M.I. Propagation methods and leaf yield in peppermint (Mentha × piperita L.). J. Herbs Spices Med. Plants 2003, 10, 55–60. [Google Scholar] [CrossRef]
- Shukla, P.; Haseeb, A.; Srivastava, N. The relation between soil ph and the reproduction/damage potential of pratylenchus thornei on growth and oil yield of Mentha spicata. Nematol. Mediterr. 1997, 25, 25–29. [Google Scholar]
- Galambosi, B. Mauste-ja Rohdosyrttien Luonnonmukainen Viljely; Painatuskeskus: Helsinki, Finland, 1995; p. 234. [Google Scholar]
- Putievsky, E. Cultivation and Processing of Medicinal Plants; John Wiley & Sons, Inc.: New York, NY, USA, 1992. [Google Scholar]
- El-Keltawi, N.E.; Croteau, R. Single-node cuttings as a new method of mint propagation. Sci. Horticult. 1986, 29, 101–105. [Google Scholar] [CrossRef]
- Farooqi, A.A. Sreeramu, B. Cultivation of Medicinal and Aromatic Crops; Orient BlackSwan/Universities Press: New Delhi, India, 2004. [Google Scholar]
- Aflatuni, A. The Comparative Study of Mint Species Grown in Northern Finland; Agricultural Research Centre of Finland: Jokioinen, Finland, 1999; Volume 66, pp. 74–81. [Google Scholar]
- Atanasov, Z.; Slavov, S.; Decheva, R.; Koseva, D.; Gargova, N. Application of Single and Compound Mineral Fertilizers to Peppermint [Nitrogen, Phosphate, Potassium]. Available online: http://agris.fao.org/agris-search/search.do?recordID=BG8000075 (accessed on 2 September 2018).
- Clark, R.J.; Menary, R.C. The effect of irrigation and nitrogen on the yield and composition of peppermint oil (Mentha piperita L.). Aust. J. Agric. Res. 1980, 31, 489–498. [Google Scholar] [CrossRef]
- Singh, V.; Chatterjee, B.; Singh, D. Response of mint species to nitrogen fertilization. J. Agric. Sci. 1989, 113, 267–271. [Google Scholar] [CrossRef]
- Helsel, Z.R. Energy and alternatives for fertilizer and pesticide use. Energy Farm Prod. 1992, 6, 177–201. [Google Scholar]
- Okwany, R.O.; Peters, T.R.; Ringer, K.L.; Walsh, D.B.; Rubio, M. Impact of sustained deficit irrigation on spearmint (Mentha spicata L.) biomass production, oil yield, and oil quality. Irrig. Sci. 2012, 30, 213–219. [Google Scholar] [CrossRef]
- Charles, D.J.; Joly, R.J.; Simon, J.E. Effects of osmotic stress on the essential oil content and composition of peppermint. Phytochemistry 1990, 29, 2837–2840. [Google Scholar] [CrossRef]
- Mitchell, A.; Yang, C. Alternating furrow irrigation of peppermint (Mentha piperita). HortScience 1998, 33, 266–269. [Google Scholar]
- Delfine, S.; Loreto, F.; Pinelli, P.; Tognetti, R.; Alvino, A. Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agric. Ecosyst. Environ. 2005, 106, 243–252. [Google Scholar] [CrossRef]
- Okwany, R.O.; Peters, R.; Ringer, K. Effect of sustained deficit irrigation on hay and oil yield of native spearmint (Mentha spicata). In Proceedings of the 5th International Conference on Irrigation and Drainage for Food, Energy and the Environment, Salt Lake City, UT, USA, 3–6 November 2009; pp. 239–252. [Google Scholar]
- Croteau, R. Effect of irrigation method on essential oil yield and rate of oil evaporation in mint grown under controlled conditions [Mentha piperita, Mentha spicata]. HortScience 1977, 12, 563–565. [Google Scholar]
- Riachi, L.G.; de Maria, C.A.B. Peppermint antioxidants revisited. Food Chem. 2015, 176, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P. Recent advances and challenges in trichome research and essential oil biosynthesis in Mentha arvensis L. Ind. Crops Prod. 2016, 82, 141–148. [Google Scholar] [CrossRef]
- Croteau, R.B.; Davis, E.M.; Ringer, K.L.; Wildung, M.R. (−)-menthol biosynthesis and molecular genetics. Naturwissenschaften 2005, 92, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Kalra, A.; Singh, H.; Pandey, R.; Samad, A.; Patra, N.; Kumar, S. Diseases in mint: Causal organisms, distribution, and control measures. J. Herbs Spices Med. Plants 2005, 11, 71–91. [Google Scholar] [CrossRef]
- Ganguly, D.; Pandotra, V. Some of the commonly occurring diseases of important medicinal and aromatic plants in jammu and kashmir. Ind. Phytopathol. 1962, 15, 50–54. [Google Scholar]
- Johnson, D.A.; Santo, G.S. Development of wilt in mint in response to infection by two pathotypes of verticillium dahliae and co-infection by pratylenchus penetrans. Plant Dis. 2001, 85, 1189–1192. [Google Scholar] [CrossRef]
- Singh, A.; Singh, H.B. Control of collar rot in mint (Mentha spp.) caused by sclerotium rolfsii using biological means. Curr. Sci. 2004, 87, 362–366. [Google Scholar]
- Juronis, V.; Snieskiene, V. Diversity of phytophagous and pathogens and their damage to mints (Mentha). Medicina (Kaunas Lithuania) 2004, 40, 779–782. [Google Scholar] [PubMed]
- Zimowska, B. Fungi colonizing and damaging different parts of peppermint (Mentha piperita L.) cultivated in south-eastern poland. Herb. Pol. 2007, 53, 97–105. [Google Scholar]
- Dung, J.K.; Schroeder, B.K.; Johnson, D.A. Evaluation of verticillium wilt resistance in Mentha arvensis and M. Longifolia genotypes. Plant Dis. 2010, 94, 1255–1260. [Google Scholar] [CrossRef]
- Esfahani, M.N.; Monazzah, M. Identification and assessment of fungal diseases of major medicinal plants. J. Ornament. Horticult. Plants 2011, 1, 137–145. [Google Scholar]
- Haseeb, A.; Pandey, R. Observations on meloidogyne spp. Affecting japanese mint: New host records. Nematropica 1989, 19, 93–97. [Google Scholar]
- Faulkner, L. Pathogenicity and population dynamics of paratylenchus hamatus on Mentha spp. Phytopathology 1964, 54, 344–348. [Google Scholar]
- Maia, N.; Malavolta, J.; Carvalho, R.; Fancelli, M.; Carmello, Q. Occurrence of Pseudomonas cichorii in Mentha arvensis. Summa Phytopathol. 1996, 22, 185–188. [Google Scholar]
- Zhou, X.; Yuan, X.; Wang, S. Two new virus diseases found on spearmint. Acta Agric. Shanghai 1990, 6, 45–52. [Google Scholar]
- Samad, A.; Zaim, M.; Ajayakumar, P. An outbreak of mosaic disease on mint (Mentha cardiaca baker) in india. Indian J. Plant Pathol. 1994, 12, 1–4. [Google Scholar]
- Pandey, R.; Haseeb, A.; Hussain, A. Distribution, pathogencity and management of meloidogyne incognita on Mentha arvensis. Afro-Asian J. Nematol. 1992, 2, 27–34. [Google Scholar]
- Shukla, R.; Alam, M.; Kumar, B.; Singh, V. Multiple disease resistance in menthol mint genotypes. Curr. Sci. 2008, 95, 836–838. [Google Scholar]
- Shah, S.; Gupta, L. Response of Mentha species to different harvesting intervals. Prog. Hort. 1989, 21, 148–150. [Google Scholar]
- Clark, R.J.; Menary, R.C. The effect of two harvests per year on the yield and composition of tasmanian peppermint oil (Mentha piperita L.). J. Sci. Food Agric. 1984, 35, 1191–1195. [Google Scholar] [CrossRef]
- Ram, M.; Kumar, S. Optimization of interplant space and harvesting time for high essential oil yield in different varieties of mint Mentha arvensis. J. Med. Aromat. Plant Sci. 1999, 21, 38–45. [Google Scholar]
- Chopra, I.C. Cultivation of Medicinal Plants in Jammu and Kashmir; Indian Council of Agricultural Research: New Delhi, India, 1962. [Google Scholar]
- Das, K. Medicinal Plants—Their Importance in Pharmaceutical Sciences; Kalyani Publishers: New Delhi, India, 2010. [Google Scholar]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and human health: A comprehensive review. Phytother. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Croteau, R. Metabolism of monoterpenes in mint (Mentha) species. Planta Med. 1991, 57, 10–14. [Google Scholar] [CrossRef] [PubMed]
- De Sousa Guedes, J.P.; da Costa Medeiros, J.A.; de Silva, R.S.d.S.; de Sousa, J.M.B.; da Conceição, M.L.; de Souza, E.L. The efficacy of Mentha arvensis L. And M. Piperita L. Essential oils in reducing pathogenic bacteria and maintaining quality characteristics in cashew, guava, mango, and pineapple juices. Int. J. Food Microbiol. 2016, 238, 183–192. [Google Scholar] [CrossRef] [PubMed]
- El-Kashoury, E.-S.A.; El-Askary, H.I.; Kandil, Z.A.; Salem, M.A. Chemical composition of the essential oil and botanical study of the flowers of Mentha suaveolens. Pharm. Biol. 2014, 52, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.; Duarte, A.; Figueiredo, A.C.; Brito, L.; Teixeira, G.; Moldão, M.; Monteiro, A. Chemical composition and antibacterial activity of the essential oils from the medicinal plant Mentha cervina L. Grown in portugal. Med. Chem. Res. 2012, 21, 3485–3490. [Google Scholar] [CrossRef]
- Sharopov, F.S.; Sulaimonova, V.A.; Setzer, W.N. Essential oil composition of Mentha longifolia from wild populations growing in Tajikistan. J. Med. Active Plants 2012, 1, 76–84. [Google Scholar]
- Sartoratto, A.; Machado, A.L.M.; Delarmelina, C.; Figueira, G.M.; Duarte, M.C.T.; Rehder, V.L.G. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280. [Google Scholar] [CrossRef]
- Rossi, P.-G.; Berti, L.; Panighi, J.; Luciani, A.; Maury, J.; Muselli, A.; Serra, D.d.R.; Gonny, M.; Bolla, J.-M. Antibacterial action of essential oils from Corsica. J. Essent. Oil Res. 2007, 19, 176–182. [Google Scholar] [CrossRef]
- Getahun, Z.; Asres, K.; Mazumder, A.; Bucar, F. Essential oil composition, antibacterial and antioxidant activities of Mentha aquatica growing in Ethiopia. Ethiopian Pharm. J. 2008, 26, 9–16. [Google Scholar] [CrossRef]
- Bădulescu, L.; Săvulescu, E.; Delian, E.; Dobrescu, A.; Georgescu, M.; Badea, M.; Ciocârlan, V. The secretory structures and volatile oil composition of Mentha aquatica L. From danube delta. Lucrări Științifice-Universitatea de Științe Agronomice și Medicină Veterinară București. Seria B Horticultură 2010, 54, 625–628. [Google Scholar]
- Sutour, S.; Tomi, F.; Bradesi, P.; Casanova, J. Chemical composition of the essential oil from corsican Mentha aquatica—Combined analysis by GC (RI), GC-MS and 13c nmr spectroscopy. Nat. Prod. Commun. 2011, 6, 1479–1482. [Google Scholar] [PubMed]
- Dhifi, W.; Litaiem, M.; Jelali, N.; Hamdi, N.; Mnif, W. Identification of a new chemotye of the plant Mentha aquatica grown in Tunisia: Chemical composition, antioxidant and biological activities of its essential oil. J. Essent. Oil Bear. Plants 2011, 14, 320–328. [Google Scholar] [CrossRef]
- Başer, K.; Kürkçüoğlu, M.; Demirci, B.; Özek, T.; Tarımcılar, G. Essential oils of Mentha species from marmara region of Turkey. J. Essent. Oil Res. 2012, 24, 265–272. [Google Scholar] [CrossRef]
- Boz, I.; Zamfirache, M.-M.; Burzo, I. Chemical composition of essential oils from Mentha aquatica L. At different moments of the ontogenetic cycle. J. Med. Plants Res. 2013, 7, 470–473. [Google Scholar]
- Do Ngoc Dai, T.D.T.; Emmanuel, E.E.; Oladimeji, O.; Abdulkabir, I.A.O. Study on essential oil of Mentha aquatica L. From Vietnam. Am. J. Essent. Oils Nat. Prod. 2015, 2, 12–16. [Google Scholar]
- de Sousa Barros, A.; de Morais, S.M.; Ferreira, P.A.T.; Vieira, Í.G.P.; Craveiro, A.A.; dos Santos Fontenelle, R.O.; de Menezes, J.E.S.A.; da Silva, F.W.F.; de Sousa, H.A. Chemical composition and functional properties of essential oils from Mentha species. Ind. Crops Prod. 2015, 76, 557–564. [Google Scholar] [CrossRef]
- Souza, M.A.; Araújo, O.J.; Brito, D.M.; Fernandes, M.S.; Castro, R.N.; Souza, S.R. Chemical composition of the essential oil and nitrogen metabolism of menthol mint under different phosphorus levels. Am. J. Plant Sci. 2014, 5, 2312. [Google Scholar] [CrossRef]
- Yu, X.; Liang, C.; Chen, J.; Qi, X.; Liu, Y.; Li, W. The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha canadensis L. Sci. Horticult. 2015, 197, 579–583. [Google Scholar] [CrossRef]
- Ji, H.; Li, Y.C.; Wen, Z.y.; Li, X.H.; Zhang, H.X.; Li, H.T. Gc-ms analysis of nematicidal essential oil of Mentha canadensis aerial parts against heterodera avenae and meloidogyne incognita. J. Essent. Oil Bear. Plants 2016, 19, 2056–2064. [Google Scholar] [CrossRef]
- Dwivedy, A.K.; Prakash, B.; Chanotiya, C.S.; Bisht, D.; Dubey, N.K. Chemically characterized Mentha cardiaca L. Essential oil as plant based preservative based on efficacy against biodeteriorating fungi of dry fruits, aflatoxin secretion, lipid peroxidation and safety profile assessment. Food Chem. Toxicol. 2017, 106, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.; Vicente, A.; Cavaleiro, C.; Salgueiro, L. Composition and antifungal activity of the essential oil of Mentha cervina from Portugal. Nat. Prod. Res. 2007, 21, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.; Monteiro, P.; Póvoa, O.; Teixeira, G.; Moldão, M.; Figueiredo, A.C.; Monteiro, A. Morphology of secretory structures and essential oil composition in Mentha cervina L. from Portugal. Flavour Fragrance J. 2008, 23, 340–347. [Google Scholar] [CrossRef]
- Brophy, J.J.; Goldsack, R.J.; Lawrence, B.M.; Forster, P.I. Essential oil of Mentha diemenica (Lamiaceae). J. Essent. Oil Res. 1996, 8, 179–181. [Google Scholar] [CrossRef]
- Okut, N.; Yagmur, M.; Selcuk, N.; Yildirim, B. Chemical composition of essential oil of Mentha longifolia L. Subsp. Longifolia growing wild. Pak. J. Bot. 2017, 49, 525–529. [Google Scholar]
- Golparvar, A.R.; Hadipanah, A.; Gheisari, M.M.; Salehi, S.; Khaliliazar, R.; Ghasemi, O. Comparative analysis of chemical composition of Mentha longifolia (L.) huds. J. Herb. Drugs (Int. J. Med. Herbs) 2017, 7, 235–241. [Google Scholar]
- Salman, M.; Abdel-Hameed, E.; Bazaid, S.; Dabi, M.M. Chemical composition for hydrodistillation essential oil of Mentha longifolia by gas chromatography-mass spectrometry from north regions in kingdom of Saudi Arabia. Pharm. Chem. 2015, 7, 34–40. [Google Scholar]
- Niksic, H.; Besovic, E.K.; Makarevic, E.; Duric, K. Chemical composition, antimicrobial and antioxidant properties of Mentha longifolia (L.) Huds. Essential oil. J. Health Sci. 2012, 2, 192–200. [Google Scholar] [CrossRef]
- Mkaddem, M.; Bouajila, J.; Ennajar, M.; Lebrihi, A.; Mathieu, F.; Romdhane, M. Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils. J. Food Sci. 2009, 74, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Ouakouak, H.; Chohra, M.; Denane, M. Chemical composition, antioxidant activities of the essential oil of Mentha pulegium L., south east of Algeria. Int. Lett. Nat. Sci. 2015, 39, 49–55. [Google Scholar] [CrossRef]
- Bouyahya, A.; Et-Touys, A.; Bakri, Y.; Talbaui, A.; Fellah, H.; Abrini, J.; Dakka, N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microbial. Pathog. 2017, 111, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Benayad, N.; Ebrahim, W.; Hakiki, A.; Mosaddak, M. Chemical characterization and insecticidal evaluation of the essential oil of Mentha suaveolens L. and Mentha pulegium L. Growing in Morocco. Food Ind. Bacau 2012, 13, 27–32. [Google Scholar]
- Lorenzo, D.; Paz, D.; Dellacassa, E.; Davies, P.; Vila, R.; Cañigueral, S. Essential oils of Mentha pulegium and Mentha rotundifolia from Uruguay. Braz. Arch. Biol. Technol. 2002, 45, 519–524. [Google Scholar] [CrossRef]
- Boukhebti, H.; Chaker, A.N.; Belhadj, H.; Sahli, F.; Ramdhani, M.; Laouer, H.; Harzallah, D. Chemical composition and antibacterial activity of Mentha pulegium L. and Mentha spicata L. Essential oils. Pharm. Lett. 2011, 3, 267–275. [Google Scholar]
- Teixeira, B.; Marques, A.; Ramos, C.; Batista, I.; Serrano, C.; Matos, O.; Neng, N.R.; Nogueira, J.M.; Saraiva, J.A.; Nunes, M.L. European pennyroyal (Mentha pulegium) from portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind. Crops Prod. 2012, 36, 81–87. [Google Scholar] [CrossRef]
- El Asbahani, A.; Jilale, A.; Voisin, S.N.; Aït Addi, E.h.; Casabianca, H.; El Mousadik, A.; Hartmann, D.J.; Renaud, F.N. Chemical composition and antimicrobial activity of nine essential oils obtained by steam distillation of plants from the souss-massa region (Morocco). J. Essent. Oil Res. 2015, 27, 34–44. [Google Scholar] [CrossRef]
- Govindarajan, M.; Sivakumar, R.; Rajeswari, M.; Yogalakshmi, K. Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol. Res. 2012, 110, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.L.; Cardoso, M.d.G.; Figueiredo, A.C.S.; Moraes, J.C.; Assis, F.A.; de Andrade, J.; Nelson, D.L.; de Souza Gomes, M.; de Souza, J.A.; de Albuquerque, L.R.M. Essential oils from Lippia origanoides Kunth. And Mentha spicata L.: Chemical composition, insecticidal and antioxidant activities. Am. J. Plant Sci. 2014, 5, 1181. [Google Scholar] [CrossRef]
- Snoussi, M.; Noumi, E.; Trabelsi, N.; Flamini, G.; Papetti, A.; De Feo, V. Mentha spicata essential oil: Chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules 2015, 20, 14402–14424. [Google Scholar] [CrossRef] [PubMed]
- Diop, S.M.; Guèye, M.T.; Ndiaye, I.; Ndiaye, E.H.B.; Diop, M.B.; Heuskin, S.; Fauconnier, M.-L.; Lognay, G. Chemical characterization of essential oils of mints from Senegal. Nat. Prod. Commun. 2016, 11, 1–2. [Google Scholar]
- Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; Van Griensven, L.J. Chemical composition of essential oilsof Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Koliopoulos, G.; Pitarokili, D.; Kioulos, E.; Michaelakis, A.; Tzakou, O. Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the west nile virus mosquito culex pipiens. Parasitol. Res. 2010, 107, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Kaul, M.; Shahi, A.; Kumar, A.; Ram, G.; Tawa, A. Chemical composition of essential oils in Mentha spicata L. Accession [iiim (j) 26] from north-west himalayan region, India. Ind. Crops Prod. 2009, 29, 654–656. [Google Scholar] [CrossRef]
- Tomei, P.E.; Uncini Manganelli, R.E.; Flamini, G.; Cioni, P.L.; Morelli, I. Composition of the essential oil of Mentha microphylla from the gennargentu mountains (Sardinia, Italy). J. Agric. Food Chem. 2003, 51, 3614–3617. [Google Scholar] [CrossRef] [PubMed]
- El-Kashoury, E.-S.A.; El-Askary, H.I.; Kandil, Z.A.; Salem, M.A.; Sleem, A.A. Chemical composition and biological activities of the essential oil of Mentha suaveolens ehrh. Z. Naturforsch. C 2012, 67, 571–579. [Google Scholar] [CrossRef]
- Oumzil, H.; Ghoulami, S.; Rhajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Benjouad, A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother. Res. 2002, 16, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, R.; Tan, J.; Jiang, Z.-T. Chemical composition of essential oil of grapefruit mint (Mentha suaveolens× piperita) from China. J. Essent. Oil Bearing Plants 2016, 19, 1047–1050. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms. Food Control 2011, 22, 1707–1714. [Google Scholar] [CrossRef]
- Derwich, E.; Benziane, Z.; Taouil, R.; Senhaji, O.; Touzani, M. Aromatic plants of Morocco: GC/MS analysis of the essential oils of leaves of Mentha piperita. Adv. Environ. Biol. 2010, 4, 80–86. [Google Scholar]
- Moghaddam, M.; Pourbaige, M.; Tabar, H.K.; Farhadi, N.; Hosseini, S.M.A. Composition and antifungal activity of peppermint (Mentha piperita) essential oil from iran. J. Essent. Oil Bear. Plants 2013, 16, 506–512. [Google Scholar] [CrossRef]
- Taherpour, A.A.; Khaef, S.; Yari, A.; Nikeafshar, S.; Fathi, M.; Ghambari, S. Chemical composition analysis of the essential oil of Mentha piperita L. From kermanshah, Iran by hydrodistillation and HS/SPME methods. J. Anal. Sci. Technol. 2017, 8, 11. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, H.; Wang, J.; Zhou, L.; Yang, P. Chemical composition and anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita grown in China. PLoS ONE 2014, 9, e114767. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-L.; Wu, C.-T.; Lin, T.-F.; Lin, W.-C.; Huang, Y.-C.; Yang, C.-H. Chemical composition and biological properties of essential oils of two mint species. Trop. J. Pharm. Res. 2013, 12, 577–582. [Google Scholar] [CrossRef]
- Reddy, D.N.; Al-Rajab, A.J.; Sharma, M.; Moses, M.M.; Reddy, G.R.; Albratty, M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha × piperita L. (peppermint) essential oils. J. King Saud Univ.—Sci. 2017. [Google Scholar] [CrossRef]
- Satmi, F.R.S.; Hossain, M.A. In vitro antimicrobial potential of crude extracts and chemical compositions of essential oils of leaves of Mentha piperita L. native to the sultanate of Oman. Pac. Sci. Rev. A Nat. Sci. Eng. 2016, 18, 103–106. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A.H. Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J. Sci. Food Agric. 2010, 90, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, J.U.; Nandi, N.C.; Uddin, M.; Rahman, M. Chemical constituents of essential oils from two types of spearmint (Mentha spicata L. and M. cardiaca L.) introduced in Bangladesh. Bangladesh J. Sci. Ind. Res. 2007, 42, 79–82. [Google Scholar] [CrossRef]
- Rezaei, M.B.; Jaymand, K.; Jamzad, Z. Chemical constituents of Mentha longifolia (L.) Hudson var. Chlorodictya rech. F. From three different localities. Pajouhesh-Va-Sazandegi 2000, 13, 60–63. [Google Scholar]
- Mimica-Dukić, N.; Božin, B.; Soković, M.; Mihajlović, B.; Matavulj, M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med. 2003, 69, 413–419. [Google Scholar] [PubMed]
- Viljoen, A.M.; Petkar, S.; Van Vuuren, S.F.; Figueiredo, A.C.; Pedro, L.G.; Barroso, J.G. The chemo-geographical variation in essential oil composition and the antimicrobial properties of “wild mint”—Mentha longifolia subsp. Polyadena (Lamiaceae) in southern Africa. J. Essent. Oil Res. 2006, 18, 60–65. [Google Scholar]
- Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. Longifolia. Food Chem. 2007, 103, 1449–1456. [Google Scholar] [CrossRef]
- Hafedh, H.; Fethi, B.A.; Mejdi, S.; Emira, N.; Amina, B. Effect of Mentha longifolia L. ssp longifolia essential oil on the morphology of four pathogenic bacteria visualized by atomic force microscopy. Afr. J. Microbiol. Res. 2010, 4, 1122–1127. [Google Scholar]
- Džamić, A.M.; Soković, M.D.; Ristić, M.S.; Novaković, M.; Grujić-Jovanović, S.; Tešević, V.; Marin, P.D. Antifungal and antioxidant activity of Mentha longifolia (L.) Hudson (Lamiaceae) essential oil. Botanica Serbica 2010, 34, 57–61. [Google Scholar]
- Božović, M.; Pirolli, A.; Ragno, R. Mentha suaveolens Ehrh.(Lamiaceae) essential oil and its main constituent piperitenone oxide: Biological activities and chemistry. Molecules 2015, 20, 8605–8633. [Google Scholar] [CrossRef] [PubMed]
- Mimica-Dukic, N.; Bozin, B. Mentha L. Species (Lamiaceae) as promising sources of bioactive secondary metabolites. Curr. Pharm. Des. 2008, 14, 3141–3150. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.S.C.; Konczak, I.; Zhao, J. Identification and quantification of phenolics in australian native mint (Mentha australis r. Br.). Food Chem. 2016, 192, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Li, N.; Guo, Y.; Liu, X.; Yan, L.; Li, Y.; Yang, S.; Hu, J.; Zhu, J.; Yang, D. Microbiological food safety surveillance in China. Int. J. Environ. Res. Public Health 2015, 12, 10662–10670. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Who’s First Ever Global Estimates of Foodborne Diseases Find Children under 5 Account for Almost Third of Deaths; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Hussain, M.A. Food Contamination: Major Challenges of the Future; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2016. [Google Scholar]
- Abdolshahi, A.; Naybandi-Atashi, S.; Heydari-Majd, M.; Salehi, B.; Kobarfard, F.; Ayatollahi, S.A.; Ata, A.; Tabanelli, G.; Sharifi-Rad, M.; Montanari, C. Antibacterial activity of some Lamiaceae species against Staphylococcus aureus in yoghurt-based drink (Doogh). Cell. Mol. Biol. (Noisy-le-Grand France) 2018, 64, 71–77. [Google Scholar] [CrossRef]
- Sancho-Madriz, M.F. Preservation of food. In Encyclopedia of Food Sciences and Nutrition (Second Edition), Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 4766–4772. [Google Scholar]
- Sharifi-Rad, M.; Ozcelik, B.; Altın, G.; Daşkaya-Dikmen, C.; Martorell, M.; Ramírez-Alarcón, K.; Alarcón-Zapata, P.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Alves Borges Leal, A.L. Salvia spp. plants-from farm to food applications and Phytopharmacotherapy. Trends Food Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Raeisi, S.; Sharifi-Rad, M.; Quek, S.Y.; Shabanpour, B.; Sharifi-Rad, J. Evaluation of antioxidant and antimicrobial effects of shallot (Allium ascalonicum L.) fruit and ajwain (Trachyspermum ammi (L.) sprague) seed extracts in semi-fried coated rainbow trout (Oncorhynchus mykiss) fillets for shelf-life extension. LWT—Food Sci. Technol. 2016, 65, 112–121. [Google Scholar] [CrossRef]
- Raeisi, S.; Ojagh, S.M.; Sharifi-Rad, M.; Sharifi-Rad, J.; Quek, S.Y. Evaluation of Allium paradoxum (M.B.) G. Don. and Eryngium caucasicum trauve. Extracts on the shelf-life and quality of silver carp (Hypophthalmichthys molitrix) fillets during refrigerated storage. J. Food Saf. 2017, 37, e12321. [Google Scholar] [CrossRef]
- Benabdallah, A.; Rahmoune, C.; Boumendjel, M.; Aissi, O.; Messaoud, C. Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from northeast of Algeria. Asian Pac. J. Trop. Biomed. 2016, 6, 760–766. [Google Scholar] [CrossRef]
- Ilboudo, O.; Bonzi, S.; Tapsoba, I.; Somda, I.; Bonzi-Coulibaly, Y.L. In vitro antifungal activity of flavonoid diglycosides of Mentha piperita and their oxime derivatives against two cereals fungi. C. R. Chim. 2016, 19, 857–862. [Google Scholar] [CrossRef]
- Sujana, P.; Sridhar, T.M.; Josthna, P.; Naidu, C.V. Antibacterial activity and phytochemical analysis of Mentha piperita L. (peppermint)—An important multipurpose medicinal plant. Am. J. Plant Sci. 2013, 4, 77. [Google Scholar] [CrossRef]
- Bayoub, K.; Baibai, T.; Mountassif, D.; Retmane, A.; Soukri, A. Antibacterial activities of the crude ethanol extracts of medicinal plants against listeria monocytogenes and some other pathogenic strains. Afr. J. Biotechnol. 2010, 9, 4251–4258. [Google Scholar]
- Bupesh, G.; Amutha, C.; Nandagopal, S.; Ganeshkumar, A.; Sureshkumar, P.; Murali, K. Antibacterial activity of Mentha piperita L. (peppermint) from leaf extracts-a medicinal plant. Acta Agric. Slovenica 2007, 89, 73. [Google Scholar] [CrossRef]
- Dhiman, R.; Aggarwal, N.; Aneja, K.R.; Kaur, M. In vitro antimicrobial activity of spices and medicinal herbs against selected microbes associated with juices. Int. J. Microbiol. 2016, 2016, 9015802. [Google Scholar] [CrossRef] [PubMed]
- Sandasi, M.; Leonard, C.; Van Vuuren, S.; Viljoen, A. Peppermint (Mentha piperita) inhibits microbial biofilms in vitro. S. Afr. J. Bot. 2011, 77, 80–85. [Google Scholar] [CrossRef]
- Antolak, H.; Czyżowska, A.; Kręgiel, D. Anti-adhesion activity of mint (mentha piperita L.) leaves extract against beverage spoilage bacteria Asaia spp. Biotechnol. Food Sci. 2016, 80, 119–127. [Google Scholar]
- Panda, P.; Aiko, V.; Mehta, A. Effect of aqueous extracts of Mentha arvensis (mint) and piper betle (betel) on growth and citrinin production from toxigenic Penicillium citrinum. J. Food Sci. Technol. 2015, 52, 3466–3474. [Google Scholar] [CrossRef] [PubMed]
- Tassou, C.; Koutsoumanis, K.; Nychas, G.-J. Inhibition of salmonella enteritidis and Staphylococcus aureus in nutrient broth by mint essential oil. Food Res. Int. 2000, 33, 273–280. [Google Scholar] [CrossRef]
- Singh, R.; Shushni, M.A.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arabian J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef]
- Saeed, S.; Tariq, P. Antibacterial activities of Mentha piperita, Pisum sativum and Momordica charantia. Pak. J. Bot. 2005, 37, 997. [Google Scholar]
- Rodriguez-Fragoso, L.; Reyes-Esparza, J.; Burchiel, S.W.; Herrera-Ruiz, D.; Torres, E. Risks and benefits of commonly used herbal medicines in Mexico. Toxicol. Appl. Pharmacol. 2008, 227, 125–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.R.; Patil, R.S.; Godghate, A. Mentha piperita Linn: Phytochemical, antibacterial and dipterian adulticidal approach. Int. J. Pharm. Pharm. Sci. 2016, 8, 352–355. [Google Scholar]
- İşcan, G.; Kirimer, N.; Kürkcüoǧlu, M.n.; Başer, H.C.; DEMIrci, F. Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food Chem. 2002, 50, 3943–3946. [Google Scholar] [CrossRef] [PubMed]
- Chauret, C. Survival and control of escherichia coli o157: H7 in foods, beverages, soil and water. Virulence 2011, 2, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, Y. Chemical composition and in vitro antibacterial activity of Mentha spicata essential oil against common food-borne pathogenic bacteria. J. Pathog. 2015, 2015, 916305. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarlu, J.; Sadaghiani, S.K.; Mohammadi, S. Comparative evaluation of antioxidant and anti food-borne bacterial activities of essential oils from some spices commonly consumed in Iran. Food Sci. Biotechnol. 2013, 22, 1487–1493. [Google Scholar] [CrossRef]
- Riahi, L.; Elferchichi, M.; Ghazghazi, H.; Jebali, J.; Ziadi, S.; Aouadhi, C.; Chograni, H.; Zaouali, Y.; Zoghlami, N.; Mliki, A. Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. In Tunisia. Ind. Crops Prod. 2013, 49, 883–889. [Google Scholar] [CrossRef]
- Do Nascimento, E.M.; Rodrigues, F.; Campos, A.; Da Costa, J.G. Phytochemical prospection, toxicity and antimicrobial activity of Mentha arvensis (Labiatae) from northeast of Brazil. J. Young Pharm. 2009, 1, 210–212. [Google Scholar]
- Al-Bayati, F.A. Isolation and identification of antimicrobial compound from Mentha longifolia L. Leaves grown wild in Iraq. Ann. Clin. Microbiol. Antimicrob. 2009, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Chraibi, M.; Fikri-Benbrahim, K.; Ou-yahyia, D.; Balouiri, M.; Farah, A. Radical scavenging and disinfectant effect of essential oil from Moroccan Mentha pulegium. Int. J. Pharm. Pharm. Res. 2016, 8, 116–119. [Google Scholar] [CrossRef]
- Aires, A.; Marrinhas, E.; Carvalho, R.; Dias, C.; Saavedra, M.J. Phytochemical composition and antibacterial activity of hydroalcoholic extracts of pterospartum tridentatum and Mentha pulegium against Staphylococcus aureus isolates. BioMed Res. Int. 2016, 2016, 5201879. [Google Scholar] [CrossRef] [PubMed]
- Waller, S.B.; Cleff, M.B.; Serra, E.F.; Silva, A.L.; Gomes, A.R.; Mello, J.R.B.; Faria, R.O.; Meireles, M.C.A. Plants from lamiaceae family as source of antifungal molecules in humane and veterinary medicine. Microb. Pathog. 2017, 104, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. Essential oil. J. Ethnopharmacol. 2008, 119, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Ait-Ouazzou, A.; Lorán, S.; Arakrak, A.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, juniperus phoenicea, and cyperus longus essential oils from Morocco. Food Res. Int. 2012, 45, 313–319. [Google Scholar] [CrossRef]
- Dhifi, W.; Jelali, N.; Mnif, W.; Litaiem, M.; Hamdi, N. Chemical composition of the essential oil of Mentha spicata L. From tunisia and its biological activities. J. Food Biochem. 2013, 37, 362–368. [Google Scholar] [CrossRef]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; van Griensven, L.J. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [PubMed]
- Ben Arfa, A.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 2006, 43, 149–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.; Cardoso, T.; Ferreira, F.; Fernandes-Ferreira, M.; Piper, P.; Sousa, M.J. Mentha piperita essential oil induces apoptosis in yeast associated with both cytosolic and mitochondrial ros-mediated damage. FEMS Yeast Res. 2014, 14, 1006–1014. [Google Scholar] [PubMed]
- Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and antimicrobial activities of lippia multiflora moldenke, Mentha × piperita L. and ocimum basilicum L. Essential oils and their major monoterpene alcohols alone and in combination. Molecules 2010, 15, 7825–7839. [Google Scholar] [CrossRef] [PubMed]
- Fatoki, O.A.; Onifade, D.A. Use of plant antimicrobials for food preservation. World Acad. Sci. Eng. Technol. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2013, 7, 1110–1113. [Google Scholar]
- Saharkhiz, M.J.; Motamedi, M.; Zomorodian, K.; Pakshir, K.; Miri, R.; Hemyari, K. Chemical composition, antifungal and antibiofilm activities of the essential oil of Mentha piperita L. ISRN Pharm. 2012, 2012, 718645. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Sonker, N.; Singh, P. Efficacy of some essential oils against Aspergillus flavus with special reference to Lippia alba oil an inhibitor of fungal proliferation and aflatoxin b1 production in green gram seeds during storage. J. Food Sci. 2016, 81, M928–M934. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Dubey, N.K.; Tiwari, O.P.; Tripathi, Y.B.; Sinha, K.K. Evaluation of some essential oils as botanical fungitoxicants for the protection of stored food commodities from fungal infestation. J. Sci. Food Agric. 2007, 87, 1737–1742. [Google Scholar] [CrossRef]
- Pandey, A.K.; Tripathi, N. Post-harvest fungal and insect deterioration of Pigeon pea seeds and their management by plant volatiles. J. Ind. Bot. Soc. 2011, 90, 326–331. [Google Scholar]
- Beyki, M.; Zhaveh, S.; Khalili, S.T.; Rahmani-Cherati, T.; Abollahi, A.; Bayat, M.; Tabatabaei, M.; Mohsenifar, A. Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crops Prod. 2014, 54, 310–319. [Google Scholar] [CrossRef]
- Weiss, J.; Loeffler, M.; Terjung, N. The antimicrobial paradox: Why preservatives lose activity in foods. Curr. Opin. Food Sci. 2015, 4, 69–75. [Google Scholar] [CrossRef]
- Cava, R.; Nowak, E.; Taboada, A.; Marin-Iniesta, F. Antimicrobial activity of clove and cinnamon essential oils against listeria monocytogenes in pasteurized milk. J. Food Prot. 2007, 70, 2757–2763. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Negi, P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [PubMed]
- Klūga, A.; Terentjeva, M.; Kántor, A.; Kluz, M.; Puchalski, C.; Kačániová, M. Antibacterial activity of Melissa officinalis L., Mentha piperita L., Origanum vulgare L. And Malva mauritiana against bacterial microflora isolated from fish. Adv. Res. Life Sci. 2017, 1, 75–80. [Google Scholar] [CrossRef]
- Choi, O.; Cho, S.K.; Kim, J.; Park, C.G.; Kim, J. Antibacterial properties and major bioactive components of Mentha piperita essential oils against bacterial fruit blotch of watermelon. Arch. Phytopathol. Plant Prot. 2016, 49, 325–334. [Google Scholar] [CrossRef]
- Fazlara, A.; Najafzadeh, H.; Lak, E. The potential application of plant essential oils as natural preservatives against Escherichia coli O157: H7. Pak. J. Biol. Sci. 2008, 11, 2054–2061. [Google Scholar] [CrossRef] [PubMed]
- Viji, P.; Binsi, P.K.; Visnuvinayagam, S.; Bindu, J.; Ravishankar, C.N.; Gopal, T.K.S. Efficacy of mint (Mentha arvensis) leaf and citrus (Citrus aurantium) peel extracts as natural preservatives for shelf life extension of chill stored indian mackerel. J. Food Sci. Technol. 2015, 52, 6278–6289. [Google Scholar] [CrossRef] [PubMed]
- Karim, G.; Meshgi, M.A.; Ababil, R.K.; Bokaie, S. Antimicrobial effect of Mentha spicata and Mentha pulegium essential oils in two storage temperatures on the survival of Debaryomyces hansenii in Iranian doogh. Appl. Food Biotechnol. 2016, 3, 99–104. [Google Scholar]
- Bajaj, S.; Urooj, A.; Prabhasankar, P. Antioxidative properties of mint (Mentha spicata L.) and its application in biscuits. Curr. Res. Nutr. Food Sci. J. 2016, 4, 209–216. [Google Scholar] [CrossRef]
- Raeisi, S.; Quek, S.Y.; Ojagh, S.M.; Alishahi, A.R. Effects of cumin (Cuminum cyminum L.) seed and wild mint (Mentha longifolia L.) leaf extracts on the shelf life and quality of rainbow trout (Oncorhynchus mykiss) fillets stored at 4 C ± 1. J. Food Saf. 2016, 36, 271–281. [Google Scholar] [CrossRef]
- Sadeghi, E.; Mohammadi, A.; Jamilpanah, M.; Bashiri, M.; Bohlouli, S. Antimicrobial effects of Mentha pulegium essential oil on listeria monocytogenes in iranian white cheese. J. Food Qual. Hazards Control 2016, 3, 20–24. [Google Scholar]
- Evrendilek, G.A.; Balasubramaniam, V. Inactivation of listeria monocytogenes and Listeria innocua in yogurt drink applying combination of high pressure processing and mint essential oils. Food Control 2011, 22, 1435–1441. [Google Scholar] [CrossRef]
- Nguyen, P.; Mittal, G. Inactivation of naturally occurring microorganisms in tomato juice using pulsed electric field (pef) with and without antimicrobials. Chem. Eng. Process. Process Intensif. 2007, 46, 360–365. [Google Scholar] [CrossRef]
- Karagözlü, N.; Ergönül, B.; Özcan, D. Determination of antimicrobial effect of mint and basil essential oils on survival of E. coli O157: H7 and S. Typhimurium in fresh-cut lettuce and purslane. Food Control 2011, 22, 1851–1855. [Google Scholar] [CrossRef]
- Najeeb, A.; Mandal, P.; Pal, U. Efficacy of leaves (drumstick, mint and curry leaves) powder as natural preservatives in restructured chicken block. J. Food Sci. Technol. 2015, 52, 3129–3133. [Google Scholar] [CrossRef] [PubMed]
- Tassou, C.; Drosinos, E.; Nychas, G. Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4 and 10 C. J. Appl. Microbiol. 1995, 78, 593–600. [Google Scholar]
- Ahmad, A.; Khan, A.; Samber, N.; Manzoor, N. Antimicrobial activity of Mentha piperita essential oil in combination with silver ions. Synergy 2014, 1, 92–98. [Google Scholar] [CrossRef]
- Smaoui, S.; Hsouna, A.B.; Lahmar, A.; Ennouri, K.; Mtibaa-Chakchouk, A.; Sellem, I.; Najah, S.; Bouaziz, M.; Mellouli, L. Bio-preservative effect of the essential oil of the endemic Mentha piperita used alone and in combination with BacTN635 in stored minced beef meat. Meat Sci. 2016, 117, 196–204. [Google Scholar] [CrossRef] [PubMed]
Plant | Extraction | Compounds | References | |||||
---|---|---|---|---|---|---|---|---|
Part | Material | Origin | Method | Identification | Yield | Number | Most Abundant | |
Mentha aquatica L. | ||||||||
ns | Fresh | Romania | HD | GC-MS | ns | 41 | menthofuran (58.59%), limonene (9.91%) trans-β-ocimene (5.59%) ledol (3.29%) β-caryophyllene (3.55%) | [94] |
AP | Dried | Vietnam | SD | GC and GC–MS | 0.42% (TH) 0.34% (NA) | 28 | Thanh Hóa province: -epi-bicyclosesquiphellandrene (58.9%) -limonene (21.1%) Nghệ an province: -epi-bicyclosesquiphellandrene (52.4%) -limonene (31.4%) | [95] |
AP | ns | Brazil | HD | GC–MS | 0.26% | 19 | d-carvone (58.79%) limonene (28.29%). | [96] |
Mentha arvensis L. | ||||||||
L | Fresh | Brazil | DHM | GC-MS | ns | 7 | Young leaves: -menthol (81.46%) -pulegone (7.25%) -p-cymene (3.27%) Mature leaves: -menthol (86.87%) -p-cymene (4.38%) -pulegone (3.47%) | [97] |
ns | ns | Brazil | SD | GC–MS | ns | 26 | menthol (56.85%) isomenthone (21.13%) menthyl acetate (4.62%) limonene (4.07%) isopulegol (3.71%) | [83] |
AP | - | Brazil | HD | GC–MS | 0.10% | 21 | linalyl acetate (39.72%) linalool (34.57) 1.8-cineole (10.04%) | [96] |
Mentha canadensis L. | ||||||||
AP | Fresh | China | HD | GC GC–MS | 0.02–0.18% | 16 | menthol (80.47%) menthone (7.25%) isomenthone (2.31%) isopulegol (2.17%) pulegone (2.05) | [98] |
AP | ns | China | HD | GC and GC–MS | 1.42% | 36 | menthol (28.8%) α-pinene (16.4%) menthone (12.7%) α-terpineol (6.3%) limonene (5.5%) | [99] |
AP | ns | Brazil | HD | GC–MS | 0.54% | 24 | menthol (46.98%) isomenthone (29.07%) | [96] |
Mentha cardiaca J. Gerard ex Baker | ||||||||
AP | ns | India | HD | GC–MS | 12 mL/kg | 60 | carvone (59.6%) limonene (23.3%) β-myrcene (2.5%) 1,8-cineole (2.1%) cis-dihydrocarvone (1.5%) β-Bourbonene (1.5%) | [100] |
Mentha cervina L. | ||||||||
AP | Dried | Portugal | HD | GC GC–MS | ns | 28 | August (flowering phase): -pulegone (75.1%), isomenthone (8.7%) -limonene (4.3%) Vegetative phases: -October: pulegone 79.6%, isomenthone 9.6%, limonene (3.2%) -December: pulegone 58.3%, isomenthone 33.3%, limonene 1.2% -February: pulegone 12.9%, isomenthone 77.0%, menthon 4.4% | [101] |
AP | ns | Portugal | HD | GC GC–MS | ns | 33 | pulegone (52–75%) isomenthone (8–24%) limonene (4–6%) menthone (1–2%) | [102] |
AP | ns | Portugal | HD | GC GC–MS | 2.4–4.0% | 25 | cultivated populations: pulegone (62–78%) isomenthone (3.1–15%) limonene (3.4–7.4%) wild populations. pulegone (73–80%) isomenthone (6.1–18.2%) limonene (4.5–5.2%) | [85] |
Mentha diemenica Spreng. | ||||||||
L | ns | Canada Australia | SD | GC GC–MS | 1.0% | 35 | Australia: -menthone (32.4%) -pulegone (24.9%) -neomenthyl acetate (18.3%) -neomenthol (9.0%) -menthyl acetate (5.7%) -menthol (1.8%) -isomenthone (1.0%) Canada: -pulegone (43.6%) -menthone (32.2%) -isomenthone (3.2%) -menthyl acetate (2.7%) -neomenthol (2.5%) -menthol (2.7%) | [103] |
Mentha longifolia L. | ||||||||
L | Air-dried | Turkey | HD | GC-MS | ns | 40 | menhone (19.31%) pulegone (12.42%) piperitone (11.05%) dihydrocarvon (8.32%) limonene (6.1%) 3-terpinolenone (5.66%) 1,8-cineole (4.37%) germacrene D (3.38%) caryopyllene (3.19%) | [104] |
L | Dried | Iran | HD | GC-MS | 1.34% | 24 | Leaf oil: -1,8-cineole (37.16%) -piperitenone oxide (18.97%) -sabinene (13.94%) -α-pinene (8.92%) -pulegone (6.14%). | [105] |
S | Dried | Iran | HD | GC-MS | 0.76% | 27 | Stem oil: -1,8-cineole (36.81%) -pulegone (18.61%) -piperitenone oxide (12.21%) -sabinene (7.05%). | |
F | Dried | Iran | HD | GC-MS | 0.97% | 25 | Flower oil: -piperitenone oxide (37.67%) -1,8-cineole (23.02%) -sabinene (13.56%) -α-pinene (10.45%) | |
L | Fresh | Saudi Arabia | HD | GC-MS | 0.5–0.9%. | 49 | pulegone (11.92–62.54%) menthone (7.84–34.13%) eucalyptol (5.96–20.07%) | [106] |
AP | Dried | Bosnia and Herzegovina | HD | GC-MS | 1.9% | 36 | piperitone oxide (63.58%) 1.8-cineole (12.03%) caryophyllene oxide (4.33%) trans-caryophyllene (2.98%) cis-caryophyllene (0.82%) | [107] |
AP | Dried | Tajikistan | HD | GC-MS | 0.5–0.9%. | 82 | cis-piperitone epoxide (7.8–77.6%) piperitenone oxide (1.5–49.1%) carvone (0.0–21.5%) menthone (0.0–16.6%) thymol (1.5–4.2%) pulegone (0.3–5.4%) β-thujone (0.2–3.2%) (E)-caryophyllene (0.9–2.5%) myrcene (0.3–2.5%) carvacrol (0.0–2.7%) borneol (0.9–1.8%) p-cymene (0.2–1.9%) | [86] |
L | Fresh | Tunisia | HD | GC-MS | 1.3% | 35 | pulegone (54.41%) isomenthone (12.02%) 1,8-cineole (7.41%) borneol (6.85%) piperitenone oxide (3.19%) | [108] |
AP | ns | Brazil | HD | GC–MS | 0.05% | 11 | piperitenone oxide (60.79%) l-limonene (13.81%) carvone (5.21%) myrcene (2.51%) β-pinene (1.92) | [96] |
Mentha pulegium L. | ||||||||
AP | Dried | Algeria | HD | GC GC-MS | 2.34% | 37 | pulegone (46.31%) piperitenone (23.3%) menthone (6.2%) limonene (4.7%) | [109] |
AP | Dried | Morocco | HD | GC-MS | 5.4% | 21 | pulegone (40.98%) menthone (21.164%) humulene (5.4%) eucalyptol (5.2%) | [110] |
AP | Dried | Morocco | HD | GC GC-MS | ns | 10 | pulegone (73.33%) menthone (8.63%) α-pinene (1.70%) | [111] |
AP | Dried | Uruguay | HD | GC GC-MS | 1.93% | 22 | pulegone (73.4%) isomenthone (12.9%) menthone (3.6%) | [112] |
AP | Dried | Algeria | HD | GC GC-MS | 1.0% | 43 | pulegone (38.81%) menthone (19.24%) piperitenone (16.52%) piperitone (6.34%) isomenthone (6.09%) limonene (4.29%) octanol (1.85%) | [113] |
AP | Dried | Morocco | HD | GC-MS | 5.4% | 21 | pulegone (40.98%) menthone (21.164%) | [110] |
AP | Dried | Portugal | HD | GC-MS | 0.90% | 53 | menthone (35.9%) pulegone (23.2%) neo-menthol (9.2%) | [114] |
L | Dried | Algeria | SD | GC-MS | 1.45% | 39 | pulegone (70.66%) neo-menthol (11.21%) menthone (2.63%) cis-isopulegone (2.33%) piperitenone 1.58% | [32] |
AP | Dried | Morocco | SD | GC GC-MS | 2.0% | 29 | pulegone (73.0%) isomentone (13.4%) menthone (2.6%) limonene (1.4%) | [115] |
Mentha spicata L. | ||||||||
L | Fresh | India | HD | GC GC-MS | 6.5 mL/kg | 18 | carvone (48.60%) cis-carveol (21.30%) limonene (11.30%) | [116] |
L | ns | Brazil | HD | GC-MS | 25 | piperitone (81.18%) piperitenone (14.57%) limonene (1.47%) | [117] | |
AP | Dried | Tunisia | HD | GC/MS | 34 | carvone (40.8%) limonene (20.8%), 1,8-cineole (17.0%) β-pinene (2.2%) cis-dihydrocarvone (1.9%) dihydrocarveol (1.7%). | [118] | |
L | Fresh | Tunisia | HD | GC-MS | 0.8% | 49 | carvone (50.47%) 1,8-cineole (9.14%) limonene (4.87%) camphor (3.68%) β-caryophyllene (3.0%) | [108] |
AP | Dried | Algeria | HD | GC GC-MS | 0.87% | 57 | carvone (59.40%) limonene (6.12%) 1,8-cineole (3.80%) germacrene D (4.66%) β-caryophyllene (2.96%) β-bourbonene (2.79%) α-terpineol (1.98%) terpinene-4-ol (1.12%) | [113] |
AP | Fresh | Senegal | HD | GC GC-MS | 0.10% | 30 | carvone (67.8%) limonene (18.1%) cis-dihydrocarvone (1.9%) trans-carveol (2.9%) (E)-β-caryophyllene (1.1%) germacrene D (1.1%) | [119] |
AP | Dried | Senegal | HD | GC GC-MS | 0.19% | 34 | carvone (74.7%) limonene (12.5%) cis-dihydrocarvone (2.0%) trans-carveol (2.2%) (E)-β-caryophyllene (1.1%) germacrene D (1.0%) | [119] |
AP | Dried | Serbia | HD | GC-MS | ns | 27 | carvone (49.5%) menthone (21.9%) limonene (5.8%) 1,8-cineole (3.0%) | [120] |
AP | Fresh | Brazil | SD | GC | 0.32% | 3 | piperitone oxide (94.8%) γ-muurolene (1.06%) β-farnesene (0.76%) | [87] |
AP | Dried | Greece | HD | GC GC-MS | 0.2% | 39 | piperitenone oxide (35.7%) 1,8-cineole (14.5%) trans-calamene (6.4%) spathulenol (5.2%) | [121] |
AP | Fresh | India | HD | GC/FID GC-MS | 0.56% | 20 | carvone (49.62 to 76.65%) limonene (9.57 to 22.31%) 1,8-cineole (1.32 to 2.62%) trans-carveol (0.3 to 1.52%) | [122] |
AP | Dried | Morocco | SD | GC GC-MS | 0.70% | 43 | carvone (42.3%) limonene (11.0%) menthone (7.2%) | [115] |
Mentha spicata subsp. condensata (Briq.) Greuter & Burdet | ||||||||
AP | Fresh | Italy | HD | GC GC-MS | 0.21% | 29 | pulegone (34.1%) piperitenone oxide (32.9%) piperitenone (11.3%) (Z)-ocimene (3.9%) limonene (3.9%) linalool (2.7%) | [123] |
Mentha suaveolens Ehrh. | ||||||||
AP | Dried | Morocco | HD | GC GC-MS | ns | 15 | piperitenone (33.03%) pulegone (17.61%) piperitone (9.18%) | [111] |
F | Fresh | Egypt | HD | GC GC-MS | 1.7% | 29 | carvone (50.59%) limonene (31.25%) trans-β-caryophyllene (2.56%) | [84] |
AP | Fresh | Egypt | HD | GC-MS | 0.47–0.60% | 46 | Spring, summer and autumn samples: -carvone (31–56%) -limonene (22.59–29.18%) Winter samples: -limonene (26%) -carvone (25%) | [124] |
AP | Morocco | SD | IR, NMR and MS | 0.012% | 31 | pulegone (0.1–50%) piperitenone oxide (0.9–56%) piperitone oxide (0.3–26%) | [125] | |
L | Dried | China | HD | GC-MS | 1.08% | 28 | linalool (41.50%) linalyl anthranilate (33.75%) α-terpineol (6.29%) geranyl acetate (3.67%) nerol acetate (2.09%) trans-geraniol (2.07%) | [126] |
AP | Dried | Tunisia | HD | GC-EIMS | 1.1% | 34 | carvone (40.8%) limonene (20.8%) 1,8-cineole (17.0%) | [118] |
Mentha × rotundifolia (L.) Huds. | ||||||||
AP | Dried | Uruguay | HD | GC GC-MS | 1.02% | 23 | piperitenone oxide (80.8%) (Z)-sabinene hydrate (2.0%) 4-terpineol (1.5%) | [112] |
Mentha × piperita L. | ||||||||
AP | Fresh | Senegal | HD | GC GC-MS | menthofuran (30.7%) pulegone (17.6%) 1.8-cineole (3.7%) menthol (15.9%) menthone (13.0%) | [119] | ||
AP | Dried | Senegal | HD | GC GC-MS | menthofuran (28.1%) pulegone (13.8%) 1.8-cineole (3.4%) menthol (15.9%) menthone (14.2%) | [119] | ||
AP | Dried | Serbia | HD | GC-MS | ns | 26 | menthol (37.4%) menthyl acetate (17.4%) menthone (12.7%) | [120] |
ns | ns | India | HD | Oil: GC and GC-MS Oil vapours: SPME GC-MS | Oil: 47 Vapour: 18 | Oil: -menthol (19.1%) -isomenthone (14.8%) -limonene (10.6%) -isomenthanol (8.8%) -menthyl acetate (6.6%) -β-pinene (5.6%) Oil vapour: -α-pinene (17.3%) -limonene (18.4%) -β-pinene (13.9%) -isomenthone (9%) -menthyl acetate (6.6%) -β-phellandrene (5.8%) | [127] | |
L | Dried | Morocco | HD | GC GC-MS | 1.02% | 29 | menthone (29.01%) menthol (5.58%) menthyl acetate (3.34%) menthofuran (3.01%) 1,8-cineole (2.40%) | [128] |
L | Dried | Iran | HD | GC GC-MS | 1.38% | 35 | menthone (30.63%) menthol (25.16%) menthofuran (6.47%) β-phellandrene (5.59%) isomenthone (4.74%) menthol acetate (4.61%) pulegone (4.39%) β-caryophyllene (3.05%) neomenthol (2.83%) 1,8-cineole (2.15%) | [129] |
AP | Dried | Iran | HD HS/SPME | GC GC-MS | 0.42% | HD: 39 HS/SPME: 41 | HD oil: -menthol (45.34%) -menthone (16.04%) -menthofuran (8.91%) HS/SPME oil: -menthol (29.38%) -menthone (16.88%) -cis-carane (14.39%) -menthofuran (11.38%) -1,8-cineole (9.45%) | [130] |
L | ns | China | HD | GC-MS | ns | 51 | menthol (30.69%) menthone (14.51%) menthyl acetate (12.86%) neomenthol (9.26%) pulegone (4.36%) cineole (2.91%) caryophyllene (2.52%) | [131] |
AP | Fresh | Taiwan | HD | GC-MS | 0.3% | 10 | menthol (30.35%) menthone (21.12%) trans-carane (10.99%) isomenthol (6.26%) | [132] |
AP | Dried | Saudi Arabia | HD | GC-MS | ns | 19 | menthol (36.02%) menthone (24.56%) menthyl acetate (8.95%) menthofuran (6.88%) | [133] |
ns | ns | Brazil | SD | GC-MS | ns | 36 | menthol (59.73%) isomenthone (18.45%) methyl acetate (6.02%) neomenthol (2.43%) isopulegol (2.15%) | [83] |
L | Dried | Oman | HD | GC–MS | ns | 14 | carvone (34.94%) pulegone (14.89%) methyl petroselinate (15.51%) d-limonene (11.20%) p-cineole (5.70%) | [134] |
AP | Dried | Morocco | SD | GC GC-MS | 1.40% | 37 | linalool (41.4%) linalyl acetate (39.5%) | [115] |
AP | Dried | Brazil | HD | GC-MS | 0.10% | 18 | d-carvone (49.27%) limonene (37.18%) | [96] |
AP | Fresh | Senegal | HD | GC | 0.28% | 29 | linalool (45.8%) linalyl acetate (42.7%) 1.8-cineole (2.0%) | [119] |
AP | Dried | Senegal | HD | GC-MS | 0.21% | 34 | linalool (42.0%) linalyl acetate (38.5%) 1.8-cineole (3.1%) | [119] |
Chemical Constituents | Individual Compounds |
---|---|
Anthocyanidins | Cyanidin, delphinidin, luteolinidin, pelargonidin, petunidin |
Coumarins | Esculetin and scopoletin |
Flavanols | Catechin, epicatechin |
Flavanones | Eriocitrin, eriodictyol, hesperidin, naringenin, narirutin |
Flavones | Apigenin, diosmetin, diosmin, luteolin, luteolin-O-glucuronide, gardenin B, luteolin-O-glucoside, pebrellin, salvigenin, thymusin, thymonin |
Flavonols and dihydroflavonols | Quercetin, kaempferol, rutin |
Phenolic acids | Cinnamic acid, its analogs (hydroxybenzoic, p-coumaric, ferulic, caffeic, sinapic, rosmarinic, salvianolic, isosalvianolic, didehydrosalvianolic and lithospermic acids, nepetoidin A/B) and glycosides (caffeic acid glucuronide, chlorogenic, caftaric), gallic, syringic and vanillic acids |
Phenylethanoids | Tyrosol |
Stilbenoids | Resveratrol |
Terpenes | Oleanolic acid |
Plant Species | Bacterial Strain | References |
---|---|---|
Mentha × piperita L. | Gram negative: Proteobacteria Escherichia coli Klebsiella pneumoniae Proteus mirabilis, P. vulgaris Pseudomonas aeruginosa Salmonella enteritidis, S. paratyphi A and B, S. pullorum, S. typhi, S. typhimurium Shigella dysenteriae Yersinia enterocolitica Gram positive: Firmicutes Bacillus cereus, B. subtilis Listeria monocytogenes Staphylococcus aureus Streptococcus pyogenes | [156,158,163,164,165,166,167,168,169] |
Mentha suaveolens L. | Gram negative: Proteobacteria Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa Proteus mirabilis Gram positive: Firmicutes Bacillus anthracis Staphylococcus aureus | [125] |
Mentha spicata L. | Gram negative: Proteobacteria Escherichia coli Klebsiella pneumoniae Proteus mirabilis Pseudomonas aeruginosa Salmonella typhimurium Vibrio spp. Gram positive: Firmicutes Bacillus cereus, B. subtilis Listeria monocytogenes Staphylococcus aureus | [118,170,171] |
Mentha × rotundifolia (L.) Huds. | Gram negative: Proteobacteria Escherichia coli Salmonella typhimurium Gram positive: Firmicutes Bacillus cereus Staphylococcus aureus | [172] |
Mentha arvensis L. | Gram negative: Proteobacteria Escherichia coli Klebsiella pneumoniae Pseudomonas aeruginosa Shigella flexneri Gram positive: Firmicutes Staphylococcus aureus | [173] |
Mentha longifolia L. | Gram negative: Proteobacteria Escherichia coli Pseudomonas aeruginosa Salmonella typhimurium Gram positive: Firmicutes Bacillus cereus Listeria monocytogenes Staphylococcus aureus Streptococcus pyogenes | [171,174] |
Mentha pulegium L. | Gram negative: Proteobacteria Escherichia coli Pseudomonas aeruginosa Salmonella typhimurium Gram positive: Firmicutes Bacillus cereus Staphylococcus aureus | [175,176] |
Plant Species | Yeast/Fungi Strain | References |
---|---|---|
Mentha arvensis L. | Penicillium citrinum | [162] |
Mentha longifolia L. | Candida albicans | [174] |
Mentha × piperita L. | Candida albicans | [172] |
Aspergillus flavus Aspergillus parasiticus Fusarium solani Sclerotium rolfsii Candida albicans | [168] | |
Mentha × rotundifolia (L.) Huds. | Candida albicans | [172] |
Mentha suaveolens L. | Candida albicans | [125] |
Mentha × piperita essential oils in chitosan–cinnamic acid nanogel | Aspergillus flavus | [192] |
Plant Species | Spoiling Microorganisms | Food Matrix | Reference |
---|---|---|---|
Mentha × piperita L. | Bacteria Gram negative: Proteobacteria Acinetobacter pittii Acinetobacter baumannii Buttiauxella agrestis Delftia acidovorans Enterobacter cloacae Escherichia coli Lelliottia amnigena Pantoea agglomerans Pseudomonas alcaligenes Pseudomonas oryzihabitans Providencia rettgeri Rahnella aquatilis Serratia liquefaciens Gram positive: Firmicutes Staphylococcus caprae Staphylococcus epidermidis | Fish | [198] |
Mentha × piperita L. | Bacteria Gram negative: Proteobacteria Acidovorax citrulli (bacterial fruit blotch) | Watermelon | [199] |
Mentha × piperita L. | Bacteria Gram negative: Proteobacteria Escherichia coli | Commercial chicken soup | [200] |
Mentha arvensis L. with citrus peel extract | Aerobic plate count | Mackerel | [201] |
Mentha spicata L. Mentha pulegium L. | Fungi Debaryomyces hansenii | Doogh | [202] |
Mentha spicata L. | Antioxidant properties | Biscuits | [203] |
Mentha longifolia L. | viable aerobic bacteria, psychrotrophic bacteria | Rainbow trout (fish) | [204] |
Mentha pulegium L. | Bacteria Gram positive: Firmicutes Listeria monocytogenes | White cheese | [205] |
Mint essential oil combined with HPP process | Bacteria Gram positive: Firmicutes Listeria monocytogenes Listeria innocua | Yogurt drink (ayran) | [206] |
Mint extract | Total count | Tomato juice | [207] |
Bacteria Gram negative: Proteobacteria Escherichia coli Staphylococcus typhimurium | Fresh-cut lettuce and purslane | [208] | |
Mint powder | Standard plate count Yeast/mould count | Chicken slices | [209] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharopov, F.; Antolak, H.; Kręgiel, D.; Sen, S.; Sharifi-Rad, M.; Acharya, K.; Sharifi-Rad, R.; et al. Plants of Genus Mentha: From Farm to Food Factory. Plants 2018, 7, 70. https://doi.org/10.3390/plants7030070
Salehi B, Stojanović-Radić Z, Matejić J, Sharopov F, Antolak H, Kręgiel D, Sen S, Sharifi-Rad M, Acharya K, Sharifi-Rad R, et al. Plants of Genus Mentha: From Farm to Food Factory. Plants. 2018; 7(3):70. https://doi.org/10.3390/plants7030070
Chicago/Turabian StyleSalehi, Bahare, Zorica Stojanović-Radić, Jelena Matejić, Farukh Sharopov, Hubert Antolak, Dorota Kręgiel, Surjit Sen, Mehdi Sharifi-Rad, Krishnendu Acharya, Razieh Sharifi-Rad, and et al. 2018. "Plants of Genus Mentha: From Farm to Food Factory" Plants 7, no. 3: 70. https://doi.org/10.3390/plants7030070
APA StyleSalehi, B., Stojanović-Radić, Z., Matejić, J., Sharopov, F., Antolak, H., Kręgiel, D., Sen, S., Sharifi-Rad, M., Acharya, K., Sharifi-Rad, R., Martorell, M., Sureda, A., Martins, N., & Sharifi-Rad, J. (2018). Plants of Genus Mentha: From Farm to Food Factory. Plants, 7(3), 70. https://doi.org/10.3390/plants7030070