Biological Activities of Extracts from Aerial Parts of Salvia pachyphylla Epling Ex Munz
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Screening
2.2. Antimicrobial Activity
2.3. Xanthine and Acetylcholinesterase Inhibitory Assay
2.4. Antiproliferative Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation Extracts
4.3. β-Carotene-Linoleic Acid Assay
4.4. DPPH Radical-Scavenging Capacity Assay
4.5. Antimicrobial Assay
4.6. Xanthine Oxidase Inhibition Assay
4.7. Acetylcholinesterase (AChE) Inhibition Assay
4.8. Cell lines and Culture Conditions
4.9. Antiproliferative Assay
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mabberley, D.J. The Plant-Book, a Portable Dictionary of Vascular Plants, 2nd ed.; University of Cambridge: Cambridge, UK, 1997; pp. 385–635. ISBN 0521414210. [Google Scholar]
- Harley, R.M.; Atkins, S.; Budantsev, A.L.; Cantino, P.D.; Conn, B.J.; Grayer, R.; Harley, M.M.; De Kok, R.P.J.; Krestovskaja, T.; Morales, R. Labiatae. In The Families and Genera of Vascular Plants, 1st ed.; Springer: Berlin, Germany, 2004; pp. 167–282. ISBN 3540405933. [Google Scholar]
- Firdous, S.; Dadass, A.K.; Khan, K.M.; Usmani, S.B.; Ahmad, V.U. A new triterpenoid from the leaves of Salvia triloba. Fitoterapia 1999, 70, 326–327. [Google Scholar] [CrossRef]
- Ikram, M.; Haq, I. Screening of medicinal plants for antimicrobial activity. Fitoterapia 1980, 51, 231–235. [Google Scholar]
- González, A.G.; Abad, T.; Jimenez, I.A.; Ravelo, A.G.; Zahira Aguiar, J.G.L.; San Andres, L.; Plasencia, M.; Herrera, J.R.; Moujir, L. A first study of antibacterial activity of diterpenes isolated from some Salvia species (Lamiaceae). Biochem. Syst. Ecol. 1989, 7, 293–296. [Google Scholar] [CrossRef]
- Moujir, L.; Gutierrez-Navarro, A.M.; San Andres, L.; Luis, J.G. Structure-antimicrobial activity relationships of abietane diterpenes from Salvia species. Phytochemistry 1993, 34, 1493–1495. [Google Scholar] [CrossRef]
- Moujir, L.; Gutierrez-Navarro, A.M.; San Andres, L.; Luis, J.G. Bioactive diterpenoids isolated from Salvia mellifera. Phytother. Res. 1996, 10, 172–174. [Google Scholar] [CrossRef]
- Cui, X.Y.; Wang, Y.L.; Kokudo, N.; Fang, D.Z.; Tang, W. Traditional Chinese medicine and related active compounds against hepatitis B virus infection. Biosci. Trends 2010, 4, 39–47. [Google Scholar] [PubMed]
- Alim, A.; Goze, I.; Goze, H.M.; Tepe, B. In vitro antimicrobial and antiviral activities of the essential oil and various extracts of Salvia cedronella Boiss. J. Med. Plants Res. 2009, 3, 413–419. [Google Scholar]
- Hu, S.; Chen, S.M.; Li, X.K.; Qin, R.; Mei, Z.N. Antitumor effects of Chi-Shen extract from Salvia miltiorrhiza and Paeoniae radix on human hepatocellular carcinoma cells. Acta Pharmacol. Sin. 2007, 28, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Dat, N.T.; Jin, X.; Lee, J.H.; Lee, D.; Hong, Y.S.; Lee, K.; Kim, Y.H.; Lee, J.J. Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1. J. Nat. Prod. 2007, 70, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Bastow, K.F.; Sun, C.M.; Lin, Y.L.; Yu, H.J.; Don, M.J.; Wu, T.S.; Nakamura, S.; Lee, K.H. Antitumor agents. 239. Isolation, structure elucidation, total synthesis, and anti-breast cancer activity of neo-tanshinlactone from Salvia miltiorrhiza. J. Med. Chem. 2004, 47, 5816–5819. [Google Scholar] [CrossRef] [PubMed]
- Ulubelen, A.; Topcu, G.; Tan, N.; Lin, L.J.; Cordell, G.A. Microstegiol, a rearranged diterpene from Salvia microstegia. Phytochemistry 1992, 31, 2419–2421. [Google Scholar] [CrossRef]
- Kabouche, A.; Kabouche, Z.; Öztürk, M.; Kolak, U.; Topçu, G. Antioxidant abieetane diterpenoids from Salvia barrelieri. Food Chem. 2007, 102, 1281–1287. [Google Scholar] [CrossRef]
- Weng, X.C.; Wang, W. Antioxidant activity of compounds isolated from Salvia plebeia. Food Chem. 2000, 71, 489–493. [Google Scholar] [CrossRef]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Sokmen, A. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem. 2006, 95, 200–204. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Viljoen, A.M.; Steenkamp, P. Antioxidant, antiinflammatory activities and HPLC analysis of South African Salvia species. Food Chem. 2010, 119, 684–688. [Google Scholar] [CrossRef]
- Hitokoto, H.; Morozumi, S.; Wauke, T.; Saiki, S.; Kurata, H. Inhibitory effects of spices on growth and toxin production of toxigenic fungi. Appl. Environ. Microbiol. 1980, 39, 818–822. [Google Scholar] [PubMed]
- Han, Y.M.; Oh, H.; Na, M.; Kim, B.S.; Oh, W.K.; Kim, B.Y.; Jeong, D.G.; Ryu, S.E.; Sok, D.E.; Ahn, J.S. PTP1B inhibitory effect of abietane diterpenes isolated from Salvia miltiorrhiza. Biol. Pharm. Bull. 2005, 28, 1795–1797. [Google Scholar] [CrossRef] [PubMed]
- Sairafianpour, M.; Christensen, J.; Staerk, D.; Budnik, B.A.; Kharazmi, A.; Bagherzadeh, K.; Jaroszewski, J.W. Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1,2-quinones from Perovskia abrotanoides: New source of tanshinones. J. Nat. Prod. 2001, 64, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Maklad, Y.A.; Aboutabl, E.A.; El-Sherei, M.M.; Meselhy, K.M. Bioactivity studies of Salvia transsylvanica (Schur ex Griseb) grown in Egypt. Phytother. Res. 1999, 13, 147–150. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Polyphenolics of Salvia. A review. Phytochemistry 2002, 59, 117–140. [Google Scholar] [CrossRef]
- Tepe, B.; Dönmez, E.; Unlu, M.; Candan, F.; Dimitra, D.; Vardar-Unlu, G. Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chem. 2004, 84, 519–525. [Google Scholar] [CrossRef]
- Kusumi, T.; Ooi, T.; Hayashi, T.; Kakisawa, H. A diterpenoid phenalenone from Salvia miltiorrhiza. Phytochemistry 1985, 24, 2118–2120. [Google Scholar] [CrossRef]
- Habibi, Z.; Eftekhar, F.; Samiee, K.; Rustaiyan, A. Structure and antibacterial activity of a new labdane diterpenoid from Salvia leriaefolia. J. Nat. Prod. 2000, 63, 270–271. [Google Scholar] [CrossRef] [PubMed]
- Nieto, M.; García, E.E.; Giordano, O.S.; Tonn, C.E. Icetexane and abietane diterpenoids from Salvia gilliessi. Phytochemistry 2000, 53, 911–915. [Google Scholar] [CrossRef]
- Rauter, A.P.; Branco, I.; Lopes, R.G.; Justino, J.; Silva, F.V.M.; Noronha, J.P.; Cabrita, E.J.; Brouard, I.; Bermejo, J. A new lupine triterpenetriol and anticholinesterase activity of Salvia sclareoides. Fitoterapia 2007, 78, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R. The Origin and Adaptive Radiation of Salvia pachyphylla (Lamiaceae). Master’s Thesis, Northern Arizona University, Flagstaff, Arizona, 2002. [Google Scholar]
- Alonso-Castro, A.J.; Villarreal, M.L.; Salazar-Olivo, L.A.; Gomez-Sanchez, M.; Dominguez, F.; Garcia-Carranca, A. Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies. J. Ethnopharmacol. 2011, 133, 945–972. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, I.C.; Andrés, L.S.; León, L.G.; Machín, R.P.; Padrón, J.M.; Luis, J.G.; Delgadillo, J. Abietane diterpenoids from Salvia pachyphylla and S. clevelandii with cytotoxic activity against human cancer cell lines. J. Nat. Prod. 2006, 69, 1803–1805. [Google Scholar] [CrossRef] [PubMed]
- Kviecinski, M.R.; Felipe, K.B.; Schoenfelder, T.; de Lemos Wiese, L.P.; Rossi, M.H.; Gonçalez, E.; Felicio, J.D.; Filho, D.W.; Pedrosa, R.C. Study of the antitumor potential of Bidens pilosa (Asteraceae) used in Brazilian folk medicine. J. Ethnopharmacol. 2008, 117, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Rates, S.K.M. Plants as source of drugs. Toxicon 2001, 39, 603–613. [Google Scholar] [CrossRef]
- Harvey, A.L.; Waterman, P. The continuing contribution of biodiversity to drug discovery. Curr. Opin. Drug Discov. Dev. 1998, 1, 71–76. [Google Scholar]
- Ighodaro, O.M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother. 2018, 108, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Klaunig, J.E.; Wang, Z. Oxidative stress in carcinogenesis. Curr. Opin. Toxicol. 2018, 7, 116–121. [Google Scholar] [CrossRef]
- Taleb, A.; Ahmad, K.A.; Ihsan, A.U.; Qu, J.; Lin, N.; Hezam, K.; Koju, N.; Hui, L.; Qilong, D. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother. 2018, 102, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Tramutola, A.; Lanzillotta, C.; Perluigi, M.; Butterfield, D.A. Oxidative stress, protein modification and Alzheimer disease. Brain Res. Bull. 2017, 133, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Joon, K.M.; Takayuki, S. Antioxidant Assays for Plant and Food Components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef]
- Reşat, A.; Mustafa, Ö.; Kubilay, G.; Esra, Ç. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Floegel, A.; Dae-Ok, K.; San-Jin, C.; Sung, I.K.; Ock, K.C. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Cuvelier, M.E.; Berset, C.; Richard, H. Antioxidant Constituents in Sage (Salvia officinalis). J. Agric. Food. Chem. 1994, 42, 665–669. [Google Scholar] [CrossRef]
- Cuvelier, M.E.; Berset, C.; Richard, H. Use of a new test for determining comparative antioxidative activity of BHA, BHT, alpha- and gamma-tocopherols and extracts from rosemary and sage. Sci. Aliments 1990, 10, 797–806. [Google Scholar]
- Nakatani, N.; Inatani, R. Structure of rosmanol, a new antioxidant from rosemary. Agric. Biol. Chem. 1981, 45, 2385–2386. [Google Scholar] [CrossRef]
- Nakatani, N.; Inatani, R. A new diterpene lactone, rosmadial, from rosemary. Agric. Biol. Chem. 1983, 47, 353–358. [Google Scholar] [CrossRef]
- Miura, K.; Kikuzaki, H.; Nakatani, N. Antioxidant Activity of Chemical Components from Sage (Salvia officinalis L.) and Thyme (Thymus vulgaris L.) Measured by the Oil Stability Index Method. J. Agric. Food Chem. 2002, 50, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, N.; Tachibana, Y.; Kikuzaki, H. Establishment of a model substrate oil for antioxidant activity Assessment by Oil Stability Index Method. J. Am. Oil Chem. Soc. 2001, 78, 19–23. [Google Scholar] [CrossRef]
- Şenol, F.S.; Orhan, I.; Celep, F.; Kahraman, A.; Doğan, M.; Yilmaz, G.; Şener, B. Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food Chem. 2010, 120, 34–43. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Conforti, F.; Menichini, F.; Bonesi, M.; Nadjafi, F.; Frega, N.G.; Menichini, F. Salvia leriifolia Benth (Lamiaceae) extract demonstrates in vitro antioxidant properties and cholinesterase inhibitory activity. Nutr. Res. 2010, 30, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-García, E.; Castillo-Hernández, S.L.; García-Palencia, P. Actividad Antimicrobiana. In Investigación en Plantas de Importancia Médica, 1st ed.; Rivas-Morales, C., Oranday-Cardenas, M.A., Verde-Star, M.J., Eds.; Publisher: Barcelona, España, 2016; Volume 1, pp. 77–100. ISBN 978-84-944673-7-0. [Google Scholar]
- Vlietinck, A.J.; Van, H.L.; Totte, J.; Lasure, A.; Vanden, B.D.; Rwangabo, P.C.; Mvukiyumwami, J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J. Ethnopharmacol. 1995, 46, 31–47. [Google Scholar] [CrossRef]
- Abu-Darwish, M.S.; Al-Ramamneh, E.A.D.M.; Kyslychenko, V.S.; Karpiuk, U.V. The antimicrobial activity of essential oils and extracts of some medicinal plants grown in Ash-shoubak region—South of Jordan. Pak. J. Pharm. Sci. 2012, 25, 239–246. [Google Scholar] [PubMed]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- González, C.M.A. Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684–704. [Google Scholar] [CrossRef] [PubMed]
- Oluwatuyi, M.; Kaatz, G.W.; Gibbons, S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 2004, 65, 3249–5324. [Google Scholar] [CrossRef] [PubMed]
- Hudaib, M.M.; Tawaha, K.A.; Mohammad, M.K.; Assaf, A.M.; Issa, A.Y.; Alali, F.Q.; Aburjai, T.A.; Bustanji, Y.K. Xanthine oxidase inhibitory activity of the methanolic extracts of selected Jordanian medicinal plants. Pharmacogn. Mag. 2011, 7, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Sahgal, G.; Ramanathan, S.; Sasidharan, S.; Mordi, M.N.; Ismail, S.; Mansor, S.M. In vitro antioxidant and xanthine oxidase inhibitory activities of methanolic Swietenia mahagoni seed extracts. Molecules 2009, 14, 4476–4485. [Google Scholar] [CrossRef] [PubMed]
- Čolović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Hasnat, M.A.; Pervin, M.; Lim, B.O. Acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice. Molecules 2013, 18, 6663–6678. [Google Scholar] [CrossRef] [PubMed]
- Miranda, P.O.; Padrón, J.M.; Padrón, J.I.; Villar, J.; Martín, V.S. Prins-type synthesis and SAR study of cytotoxic alkyl chloro dihydropyrans. Chem. Med. Chem. 2006, 1, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Alanís-Garza, B.A.; González-González, G.M.; Salazar-Aranda, R.; Waksman de Torres, N.; Rivas-Galindo, V.M. Screening of antifungal activity of plants from the northeast of Mexico. J. Ethnopharmacol. 2007, 114, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Aranda, R.; Pozos, M.E.; Cordero, P.; Perez, J.; Salinas, M.C.; Waksman, N. Determination of the antioxidant activity of plants from northeast Mexico. Pharm. Biol. 2008, 46, 166–170. [Google Scholar] [CrossRef]
- Shintani, H. Determination of Xanthine Oxidase. Pharm. Anal. Acta 2013, S7, 4. [Google Scholar] [CrossRef]
- Havlik, J.; de la Huebra, R.G.; Hejtmankova, K.; Fernandez, J.; Simonova, J.; Melich, M.; Rada, V. Xanthine oxidase inhibitory properties of Czech medicinal plants. J. Ethnopharmacol. 2010, 132, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Adewusi, E.A.; Moodley, N.; Steenkamp, V. Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. S. Afr. J. Bot. 2011, 77, 638–644. [Google Scholar] [CrossRef]
- Mathew, M.; Subramanian, S. In Vitro Screening for Anti-Cholinesterase and Antioxidant Activity of Methanolic Extracts of Ayurvedic Medicinal Plants Used for Cognitive Disorders. PLoS ONE 2014, 9, e86804. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Karaosmanoglu, O.; Sivas, H. Anticancer Activities of African Medicinal Spices and Vegetables In Medicinal Spices and Vegetables from Africa, 1st ed.; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 1, pp. 271–297. ISBN 9780128092866. [Google Scholar]
Antimicrobial Activity (Minimum Inhibitory Concentrations (MIC), μg/mL) | ||||||
---|---|---|---|---|---|---|
Extracts or Controls | S. aureus | ORSAa | E. faecalis | E. coli | K. pneumoniae | A. baumannii |
n-Hexane | 62.5 | 125 | 250 | 250 | >1000 | >1000 |
Dichloromethane | 62.5 | 125 | 250 | 250 | >1000 | >1000 |
Ethyl acetate | 1000 | 250 | >1000 | 250 | >1000 | >1000 |
Methanol | 1000 | >1000 | >1000 | >1000 | >1000 | >1000 |
Water | 1000 | >1000 | >1000 | >1000 | >1000 | >1000 |
Oxacillin * | 0.48 | 125 | 31.2 | 0.487 | >1000 | >1000 |
Cephalothin * | 0.48 | 62.5 | 31.2 | 1 | >1000 | 62.5 |
Vancomycin * | 0.48 | 1.95 | 1.95 | >250 | >1000 | 250 |
IC50 (μg/mL) | ||
---|---|---|
Extracts or Controls | AChE | XO |
n-hexane | >400 | 254.5 ± 31.7 |
Dichloromethane | 191.7 ± 13.1 | 86 ± 6.0 |
Ethylacetate | 314.3 ± 43.2 | 11.7 ± 2.4 |
Methanol | >400 | 19.5 ± 0.47 |
Water | >400 | 61.8 ± 0.9 |
Galantamine * | 0.278 ± 0.01 | ND |
Allopurinol * | ND | 0.842 ± 0.078 |
GI50 (µg/mL) | ||||||
---|---|---|---|---|---|---|
Extracts or Controls | A2780 | HBL-100 | HeLa | SW1573 | T-47D | WiDr |
n-hexane | 6.0 | 5.9 | 6.1 | 6.6 | 11 | 8.6 |
Dichloromethane | 5.4 | 6.7 | 8.3 | 7.7 | 9.9 | 9.9 |
Ethylacetate | 6.5 | 18 | 40 | 15 | 38 | 53 |
Methanol | 34 | 64 | 71 | 70 | >100 | >100 |
Water | 52 | 55 | 77 | 74 | >100 | >100 |
Cisplatin * | ND | 1.9 | 2.0 | 3.0 | 15 | 26 |
Etoposide * | ND | 2.3 | 3.0 | 15 | 22 | 23 |
Camptothecin * | ND | ND | 0.6 | 0.25 | 2.0 | 1.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almada-Taylor, G.; Díaz-Rubio, L.; Salazar-Aranda, R.; Waksman de Torres, N.; Uranga-Solis, C.; Delgadillo-Rodríguez, J.; Ramos, M.A.; Padrón, J.M.; Hernández-Martínez, R.; Córdova-Guerrero, I. Biological Activities of Extracts from Aerial Parts of Salvia pachyphylla Epling Ex Munz. Plants 2018, 7, 105. https://doi.org/10.3390/plants7040105
Almada-Taylor G, Díaz-Rubio L, Salazar-Aranda R, Waksman de Torres N, Uranga-Solis C, Delgadillo-Rodríguez J, Ramos MA, Padrón JM, Hernández-Martínez R, Córdova-Guerrero I. Biological Activities of Extracts from Aerial Parts of Salvia pachyphylla Epling Ex Munz. Plants. 2018; 7(4):105. https://doi.org/10.3390/plants7040105
Chicago/Turabian StyleAlmada-Taylor, Gabriela, Laura Díaz-Rubio, Ricardo Salazar-Aranda, Noemí Waksman de Torres, Carla Uranga-Solis, José Delgadillo-Rodríguez, Marco A. Ramos, José M. Padrón, Rufina Hernández-Martínez, and Iván Córdova-Guerrero. 2018. "Biological Activities of Extracts from Aerial Parts of Salvia pachyphylla Epling Ex Munz" Plants 7, no. 4: 105. https://doi.org/10.3390/plants7040105
APA StyleAlmada-Taylor, G., Díaz-Rubio, L., Salazar-Aranda, R., Waksman de Torres, N., Uranga-Solis, C., Delgadillo-Rodríguez, J., Ramos, M. A., Padrón, J. M., Hernández-Martínez, R., & Córdova-Guerrero, I. (2018). Biological Activities of Extracts from Aerial Parts of Salvia pachyphylla Epling Ex Munz. Plants, 7(4), 105. https://doi.org/10.3390/plants7040105