Water Regime and Nitrogen Management to Cope with Wheat Yield Variability under the Mediterranean Conditions of Southern Portugal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Climate, Irrigation, and Phenology
2.2. Grain Yield and Yield Components
3. Materials and Methods
3.1. Site Description
3.2. Study Design
3.2.1. Trials in 2016/2017
3.2.2. Trial in 2017/2018
3.3. Soil Water Content
3.4. Phenology and Yield Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EUROSTAT. Wheat and Spelt by Area, Production and Humidity; Eurostat: Brussels, Belgium, 2019. [Google Scholar]
- Páscoa, P.; Gouveia, C.M.; Russo, A.; Trigo, R.M. Drought Trends in the Iberian Peninsula over the Last 112 Years. Adv. Meteorol. 2017, 2017, 4653126. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.-I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of increasing drought severity caused by temperature rise in southern Europe. Env. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Kovats, R.S.; Valentini, R.; Bouwer, L.M.; Georgopoulou, E.; Jacob, D.; Martin, E.; Rounsevell, M.; Soussana, J.F. Europe. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1267–1326. [Google Scholar]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Skjelvåg, A.O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rötter, R.; Iglesias, A.; Orlandini, S.; et al. Agroclimatic conditions in Europe under climate change. Glob. Chang. Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef] [Green Version]
- Trnka, M.; Hlavinka, P.; Semenov, M.A. Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. J. R. Soc. Interface 2015, 12, 20150721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkinen, H.; Kaseva, J.; Balek, J.; Kersebaum, K.; Nendel, C.; Gobin, A.; Olesen, J.; Bindi, M.; Ferrise, R.; Moriondo, M.; et al. Sensitivity of European wheat to extreme weather. Field Crop. Res. 2018, 222, 209–217. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Maduraimuthu, D. Response of floret fertility and individual grain weight of wheat to high temperature stress: Sensitive stages and thresholds for temperature and duration. Funct. Plant Biol. 2014, 41, 1261–1269. [Google Scholar] [CrossRef]
- Porter, J.R.; Semenov, M.A. Crop responses to climatic variation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 2021–2035. [Google Scholar] [CrossRef]
- Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Luo, Q. Temperature thresholds and crop production: A review. Clim. Chang. 2011, 109, 583–598. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Féhér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, Z.; Stikic, R. Strategies for Improving Water Productivity and Quality of Agricultural Crops in an Era of Climate Change. In Irrigation Systems and Practices in Challenging Environments; Lee, T.S., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0420-9. [Google Scholar] [Green Version]
- Albrizio, R.; Todorovic, M.; Matic, T.; Stellacci, A.M. Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crop. Res. 2010, 115, 179–190. [Google Scholar] [CrossRef]
- Boteta, L. Gestão da rega do trigo. Gd. Cult. 2013, 1, 18–21. [Google Scholar]
- Patanita, M.; Tomaz, A.; Dôres, J. Ainda a rega dos cereais de sementeira outono-invernal. Agrotec 2019, 30, 60–61. [Google Scholar]
- Alghory, A.; Yazar, A. Evaluation of net return and grain quality characteristics of wheat for various irrigation strategies under the Mediterranean climatic conditions. Agric. Water Manag. 2018, 203, 395–404. [Google Scholar] [CrossRef]
- Acevedo, E.; Silva, P.S.; Silva, H. Wheat Growth and Physiology. In Bread Wheat. Improvement and Production; FAO Plant Production and Protection Series; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Pala, M.; Matar, A.; Mazid, A. Assessment of the effects of environmental factors on the response of wheat to fertilizer in on-farm trials in a Mediterranean Type environment. Exp. Agric. 1996, 32, 339–349. [Google Scholar] [CrossRef]
- Tomaz, A.; Patanita, M.; Guerreiro, I.; Boteta, L.; Ferro Palma, J. Efficient use of water and nutrients in irrigated cropping systems in the Alqueva region. Span. J. Soil Sci. 2018, 8, 12–23. [Google Scholar]
- Liu, W.; Wang, J.; Wang, C.; Ma, G.; Wei, Q.; Lu, H.; Xie, Y.; Ma, D.; Kang, G. Root growth, water and nitrogen use efficiencies in winter wheat under different irrigation and nitrogen regimes in North China Plain. Front. Plant Sci. 2018, 9, 1798. [Google Scholar] [CrossRef]
- Plaut, Z.; Butow, B.J.; Blumenthal, C.S.; Wrigley, C.W. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crop. Res. 2004, 86, 185–198. [Google Scholar] [CrossRef]
- Blandino, M.; Marinaccio, F.; Vaccino, P.; Reyneri, A. Nitrogen Fertilization Strategies Suitable to Achieve the Quality Requirements of Wheat for Biscuit Production. Agron. J. 2015, 107, 1584–1594. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Islam, S.; She, M.; Diepeveen, D.; Zhang, Y.; Tang, G.; Zhang, J.; Juhasz, A.; Yang, R.; Ma, W. Wheat grain protein accumulation and polymerization mechanisms driven by nitrogen fertilization. Plant J. 2018, 96, 1160–1177. [Google Scholar] [CrossRef] [PubMed]
- Trenkel, M.E. Improving Fertilizer Use Efficiency. Controlled-Release and Stabilized Fertilizers in Agriculture; IFA: Paris, France, 1997. [Google Scholar]
- Chen, D.; Suter, H.C.; Islam, A.; Edis, R.; Freney, J.; N Walker, C. Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: A review of enhanced efficiency fertilisers. Aust. J. Soil Res. 2008, 46, 289–301. [Google Scholar] [CrossRef]
- Trenkel, M.E. Special Fertilizers. In Ullmann’s Agrochemicals; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2007; Volume 1, pp. 42–70. ISBN 978-3-527-31604-5. [Google Scholar]
- Arrobas, M.; Parada, M.; Magalhães, P.; Rodrigues, M. Nitrogen-use efficiency and economic efficiency of slow-release N fertilisers applied to irrigated turfs in a Mediterranean environment. Nutr. Cycl. Agroecosyst. 2011, 89, 329–339. [Google Scholar] [CrossRef]
- Maharjan, B.; Venterea, R.; Rosen, C. Fertilizer and Irrigation Management Effects on Nitrous Oxide Emissions and Nitrate Leaching. Agron. J. 2014, 106, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Tomaz, A.; Ferro Palma, J.; Guerreiro, I.; Patanita, M.I.; Penacho, J.; Dôres, J.; Costa, M.N.; Rosa, E.; Patanita, M. An Overview on the Use of Enhanced Efficiency Nitrogen Fertilizers in Irrigated Mediterranean Agriculture. BJSTR 2017, 1, 1938–1940. [Google Scholar] [CrossRef]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food Security and Food Production Systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate, Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 485–533. [Google Scholar]
- Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: Irrigation and nitrogen fertilization. Reg. Environ. Chang. 2012, 12, 407–419. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef]
- Paymard, P.; Bannayan, M.; Haghighi, R.S. Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies. Nat. Hazards 2018, 91, 1237–1255. [Google Scholar] [CrossRef]
- Carvalho, M.; Serralheiro, R.; Corte-Real, J.; Valverde, P. Implications of climate variability and future trends on wheat production and crop technology adaptations in southern regions of Portugal. Water Util. J. 2015, 9, 13–18. [Google Scholar]
- Tadayon, M.R.; Ebrahimi, R.; Tadayyon, A. Increased Water Productivity of Wheat under Supplemental Irrigation and Nitrogen Application in a Semi-arid Region. J. Agric. Sci. Technol. 2012, 14, 995–1003. [Google Scholar]
- Zhang, X.; Qin, W.; Chen, S.; Shao, L.; Sun, H. Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain. Agric. Water Manag. 2017, 179, 47–54. [Google Scholar] [CrossRef]
- Tomaz, A.; Patanita, M.; Guerreiro, I.; Boteta, L.; Palma, J.F. Water use and productivity of maize-based cropping systems in the Alqueva region (Portugal). Cereal Res. Commun. 2017, 45, 711–721. [Google Scholar] [CrossRef]
- Nasseri, A.; Ali Fallahi, H.; Siadat, A.; Eslami-Gumush Tappeh, K. Protein and N-use efficiency of rainfed wheat responses to supplemental irrigation and nitrogen fertilization. Arch. Agron. Soil Sci. 2009, 55, 315–325. [Google Scholar] [CrossRef]
- Fallahi, H.; Nasseri, A.; Siadat, A. Wheat Yield Components are Positively Influenced by Nitrogen Application under Moisture Deficit Environments. Int. J. Agric. Biol. 2008, 10, 1560–8530. [Google Scholar]
- Ul-Allah, S.; Iqbal, M.; Maqsood, S.; Naeem, M.; Ijaz, M.; Ashfaq, W.; Hussain, M. Improving the performance of bread wheat genotypes by managing irrigation and nitrogen under semi-arid conditions. Arch. Agron. Soil Sci. 2018, 64, 1678–1689. [Google Scholar] [CrossRef]
- Garofalo, P.; Ventrella, D.; Kersebaum, K.C.; Gobin, A.; Trnka, M.; Giglio, L.; Dubrovský, M.; Castellini, M. Water footprint of winter wheat under climate change: Trends and uncertainties associated to the ensemble of crop models. Sci. Total Environ. 2019, 658, 1186–1208. [Google Scholar] [CrossRef]
- Ruiz-Ramos, M.; Mínguez, M. Evaluating uncertainty in climate change impacts on crop productivity in the Iberian Peninsula. Clim. Res. 2010, 44, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Rumbaur, C.; Takáč, J.; et al. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Eur. J. Agron. 2011, 35, 103–114. [Google Scholar] [CrossRef] [Green Version]
- IPMA (Instituto Português do Mar e da Atmosfera). Boletim Climatológico Anual de Portugal Continental 2017; Instituto Português do Mar e da Atmosfera, IP: Lisboa, Portugal, 2017. [Google Scholar]
- Palmer, W.C. Meteorological Drought; Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Costa, N.; Bagulho, A.; Patanita, M. Qualidade dos Trigos. Parte III/III: Fatores que afetam a qualidade do trigo. Gd. Culturas 2017, 9, 11–15. [Google Scholar]
- Oliveira, P.; Patanita, M.; Dôres, J.; Boteta, L.; Palma, J.F.; Patanita, M.I.; Guerreiro, I.; Penacho, J.; Costa, M.N.; Rosa, E.; et al. Combined effects of irrigation management and nitrogen fertilization on soft wheat productive responses under Mediterranean conditions. E3S Web Conf. 2019, 86, 19. [Google Scholar] [CrossRef] [Green Version]
- ANPOC (Associação Nacional de Produtores de Oleaginosas, Proteaginosas e Cereais); LVR (Lista de Variedades Recomendadas). Lista de Variedades Recomendadas de Trigo Mole; Apoio à decisão das sementeiras 2017/18; Assoociação Nacional de Produtores de Oleaginosas, Proteaginosas e Cereais: Évora, Portugal, 2017. [Google Scholar]
- IPMA (Instituto Português do Mar e da Atmosfera). Normais Climatológicas; Instituto Português do Mar e da Atmosfera, IP: Lisboa, Portugal, 2019. [Google Scholar]
- IUSS. Working Group WRB World Reference Base for Soil Resources 2014, Update 2015; FAO: Rome, Italy, 2014. [Google Scholar]
- SROA—Serviço de Reconhecimento e Ordenamento Agrário. Carta de Solos de Portugal; Ministério da Economia, Secretaria de Estado da Agricultura: Lisboa, Portugal, 1961. [Google Scholar]
- Virmani, S.M.; Sahrawat, K.L.; Burford, J.R. Physical and Chemical Properties of Vertisols and their Management. In Proceedings of the Twelfth International Congress of Soil Science, New Delhi, India, 8–16 February 1982; p. 14. [Google Scholar]
- COTR (Centro Operativo e de Tecnologia do Regadio). SAGRA—Sistema Agrometeorológico para a Gestão da Rega no Alentejo. 2018. Available online: http://www.cotr.pt/servicos/sagranet.php (accessed on 19 October 2019).
- COTR (Centro Operativo e de Tecnologia do Regadio). MOGRA—Modelo de Gestão da Rega para o Alentejo. 2018. Available online: http://www.cotr.pt/servicos/mogra.php (accessed on 19 October 2019).
- Allen, R.G. , Pereira L.S., Raes D., Smith M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Ministério da Agricultura, do Mar, do Ambiente e do Ordenamento do Território. Ordinance 259/2012 that Establishes the Action Program for Areas Vulnerable to Nitrates from Agricultural Sources, Diary of the Portuguese Republic, 1st serie, N.º 166. 28 August 2012.
- Ministério do Ambiente. Decree-Law 235/97 Implementing Council Directive 91/676/EEC of Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources, Diary of the Portuguese Republic, 1st serie-A, N.º 203. 3 September 1997.
- EEC. The Nitrates Directive—Council Directive Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources; EEC (European Economic Community): Brussels, Belgium, 1991. [Google Scholar]
- Dias, P. Monitorização de Água no Solo: Sonda Profile Probe PR1; COTR (Centro Operativo e de Tecnologia do Regadio): Beja, Portugal, 2003. [Google Scholar]
- Sentek. Calibration Manual for Sentek Soil Moisture Sensors; Revision 2.0; Sentek Pty Ltd.: Stepney, Australia, 2011. [Google Scholar]
Wheat Phenological Stages | 2016/2017 | 2017/2018 | ||
---|---|---|---|---|
R1 and R2 | R0 | R1 | R2 | |
Sowing | 24/01 | 22/12 | 22/12 | 22/12 |
Emergence | 05/02 | 03/01 | 03/01 | 03/01 |
Tillering | 01/03 | 15/02 | 15/02 | 15/02 |
Stem elongation | 25/03 | 07/03 | 10/03 | 07/03 |
Booting | 14/04 | 09/04 | 09/04 | 09/04 |
Heading | 24/04 | 24/04 | 22/04 | 24/04 |
Harvest | 23/06 | 25/07 | 25/07 | 18/07 |
Crop cycle (d) | 153 | 216 | 214 | 209 |
a-Trial 1 (2016/2017) | b-Trial 2 (2016/2017) | ||||||
---|---|---|---|---|---|---|---|
Source of Variation | Number of Spikes per m−2 | 1000-Grains Weight (g) | Yield (kg ha−1) | Source of Variation | Number of Spikes per m−2 | 1000-Grains Weight (g) | Yield (kg ha−1) |
Water regime | * | N.s. | N.s. | Water regime | N.s. | * | * |
R1 | 396 a | 42.52 | 4594 | R1 | 393 | 41.56 a | 5614 a |
R2 | 354 b | 40.03 | 3942 | R2 | 371 | 39.00 b | 3488 b |
N splitting/timing | N.s. | N.s. | * | N splitting/timing | N.s. | N.s. | N.s. |
E1 | 335 | 41.04 | 4170 ab | C1 | 400 | 40.05 | 4694 |
E2 | 397 | 42.44 | 3929 b | C2 | 390 | 40.79 | 4688 |
E3 | 373 | 40.67 | 4126 ab | C3 | 386 | 40.99 | 4686 |
E4 | 373 | 42.14 | 4458 ab | C4 | 381 | 38.71 | 4535 |
E5 | 400 | 41.66 | 4564 a | C5 | 354 | 40.86 | 4154 |
E6 | 371 | 39.71 | 4361 ab | - | _ | _ | _ |
Interaction | N.s. | N.s. | N.s. | Interaction | N.s. | N.s. | N.s. |
General average | 375 | 41.28 | 4268 | General average | 382 | 40.28 | 4551 |
Source of Variation | Number of Spikes per m−2 | Number of Grains per m−2 | 1000-grain Weight (g) | Yield (kg ha−1) |
---|---|---|---|---|
Water regime R0 R1 R2 | N.s. 511 467 463 | * 16182 a 15814 ab 14583 b | * 43.82 c 47.57 a 46.14 b | N.s. 7083 7286 6932 |
N splitting/timing N1 N2 N3 N4 N5 N6 N7 N8 | N.s. 460 490 510 476 461 477 496 475 | * 16158 a 16145 a 15991 ab 15236 ab 15091 b 15138 ab 15219 ab 15242 ab | * 45,72 ab 45,51 ab 45,42 ab 46,69 a 45,13 b 46,33 ab 45,27 ab 46,66 a | * 7378 a 7337 a 7244 ab 7091 abc 6793 c 6999 abc 6873 bc 7089 abc |
Interaction | N.s. | N.s. | N.s. | N.s. |
General average | 310 | 15527 | 45.84 | 7100 |
Treatment (N Type/Splitting/Timing) | Type of Fertilizer at Sowing (Name and NPK rating) | % N total | ||||
---|---|---|---|---|---|---|
Sowing | Tillering | Stem Extension | Booting | Heading | ||
E1 | Stabilized, with nitrification inhibitor (Entec 20-10-10) | 100 | ||||
E2 | 50 | 50 | ||||
E3 | 50 | 25 | 25 | |||
E4 | 75 | 25 | ||||
E5 | 75 | 25 | ||||
E6 | Controlled release, with polymer coating (Nergetic 20-8-6) | 100 | ||||
Top dressing N fertilizer | - | - | - | Ammonium nitrate (Nitrolusal 27%) |
Treatment (N Splitting/Timing) | Type of Fertilizer at Sowing (Name and NPK rating) | % N total | ||||
---|---|---|---|---|---|---|
Sowing | Tillering | Stem Extension | Booting | Heading | ||
C1 | Conventional (Foskamonio 12–24–12) | 33 | 33 | 33 | ||
C2 | 25 | 25 | 25 | 25 | ||
C3 | 25 | 25 | 25 | 25 | ||
C4 | 50 | 25 | 25 | |||
C5 | 50 | 25 | 25 | |||
Top dressing N fertilizer | - | - | Urea (Ureia 46%) | Ammonium nitrate (Nitrolusal 27%) |
Treatment (N Type/Splitting/Timing) | Type of Fertilizer at Sowing (Name and NPK rating) | % of N Total Applied at Phenological Stages | |||
---|---|---|---|---|---|
Sowing | Tillering | Stem Extension | Booting | ||
N1 | Conventional (Foskamonio 12–24–12) | 25 | 50 | 25 | |
N2 | 25 | 25 | 25 | 25 | |
N3 | Stabilized, with nitrification inhibitor (Entec 20–10–10) | 100 | |||
N4 | 50 | 50 | |||
N5 | Controlled release, with polymer coating (Nergetic 20–8–6) | 100 | |||
N6 | 50 | 50 | |||
N7 | Stabilized, with urease inhibitor (Renovation Fuerza Plus 20–5–5) | 100 | |||
N8 | 50 | 50 | |||
Top dressing N fertilizer | - | - | Urea (Ureia 46%) | Ammonium nitrate (Nitrolusal 27%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patanita, M.; Tomaz, A.; Ramos, T.; Oliveira, P.; Boteta, L.; Dôres, J. Water Regime and Nitrogen Management to Cope with Wheat Yield Variability under the Mediterranean Conditions of Southern Portugal. Plants 2019, 8, 429. https://doi.org/10.3390/plants8100429
Patanita M, Tomaz A, Ramos T, Oliveira P, Boteta L, Dôres J. Water Regime and Nitrogen Management to Cope with Wheat Yield Variability under the Mediterranean Conditions of Southern Portugal. Plants. 2019; 8(10):429. https://doi.org/10.3390/plants8100429
Chicago/Turabian StylePatanita, Manuel, Alexandra Tomaz, Tiago Ramos, Patrícia Oliveira, Luís Boteta, and José Dôres. 2019. "Water Regime and Nitrogen Management to Cope with Wheat Yield Variability under the Mediterranean Conditions of Southern Portugal" Plants 8, no. 10: 429. https://doi.org/10.3390/plants8100429
APA StylePatanita, M., Tomaz, A., Ramos, T., Oliveira, P., Boteta, L., & Dôres, J. (2019). Water Regime and Nitrogen Management to Cope with Wheat Yield Variability under the Mediterranean Conditions of Southern Portugal. Plants, 8(10), 429. https://doi.org/10.3390/plants8100429