Plant Growth Regulators Improve the Production of Volatile Organic Compounds in Two Rose Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Maintenance
2.2. Sample Extraction Using HS-SPME
2.3. Standards and Reagents
2.4. Apparatus and Equipment
2.5. Optimization of Different Sample Times after PGR Application
2.6. Assessment of Peaks and Identification of Volatile Compounds
2.7. Statistical Analyses
3. Results and Discussion
3.1. Comparison of Optimal Sampling Times after PGR Application
3.2. Analysis of VOCs after BA and NAA Application
3.3. Influence of BA and NAA on VOCs Emitted from Flowers of Two Rose Varieties
3.4. Identification of VOCs Emitted from Flowers of Two Rose Varieties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caruso, C.M. Competition for pollination influences selection on floral traits of Ipomopsis aggregata. Evolution 2000, 54, 1546–1557. [Google Scholar] [CrossRef] [PubMed]
- Horn, W.A.H. Micropropagation of rose (Rosa L.). Biotechnol. Agric. For. 1992, 20, 320–340. [Google Scholar]
- Thomas, C. Modern Roses XI: The World Encyclopedia of Roses; American Rose Society: Shreveport, LA, USA, 2000; p. 638. [Google Scholar]
- Kim, C.K.; Oh, J.Y.; Chung, J.D.; Burrell, A.M.; Byrne, D.H. Somatic embryogenesis and plant regeneration from in-vitro-grown leaf explants of rose. HortScience 2004, 39, 1378–1380. [Google Scholar] [CrossRef]
- Ibrahim, M.; Agarwal, M.; Hardy, G.; Abdulhussein, M.; Ren, Y. Optimization of Environmental Factors to Measure Physiological Parameters of Two Rose Varieties. Open J. Appl. Sci. 2017, 7, 585–595. [Google Scholar] [CrossRef]
- Özel, M.Z.; Göğüş, F.; Lewis, A.C. Comparison of direct thermal desorption with water distillation and superheated water extraction for the analysis of volatile components of Rosa damascena Mill. using GCxGC-TOF/MS. Anal. Chim. Acta 2006, 566, 172–177. [Google Scholar] [CrossRef]
- Pellati, F.; Orlandini, G.; Leeuwen, K.A.; Anesin, G.; Bertelli, D.; Paolini, M.; Benvenuti, S.; Camin, F. Gas chromatography combined with mass spectrometry, flame ionization detection and elemental analyzer/isotope ratio mass spectrometry for characterizing and detecting the authenticity of commercial essential oils of Rosa damascena Mill. Rapid Commun. Mass Spectrom. 2013, 27, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, N.; Farooqi, A.; Shabih, F.; Sangwan, R. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 1–21. [Google Scholar] [CrossRef]
- Davies, P.J. Plant Hormones: Physiology, Biochemistry and Molecular Biology; Springer Science & Business Media: Berlin, Germany; Cornell University: Ithaca, NY, USA, 2013; pp. 1–779. [Google Scholar]
- Fu, J.; Sun, X.; Wang, J.; Chu, J.; Yan, C. Progress in quantitative analysis of plant hormones. Chin. Sci. Bull. 2011, 56, 355–366. [Google Scholar] [CrossRef]
- Krug, B.A.; Whipker, B.E.; McCall, I.; Dole, J.M. Narcissus response to plant growth regulators. HortTechnology 2006, 16, 129–132. [Google Scholar] [CrossRef]
- Affonso, V.R.; Bizzo, H.R.; de Lima, S.S.; Esquibel, M.A.; Sato, A. Solid phase microextraction (SPME) analysis of volatile compounds produced by in vitro shoots of Lantana camara L. under the influence of auxins and cytokinins. J. Braz. Chem. Soc. 2007, 18, 1504–1508. [Google Scholar] [CrossRef]
- Zielińska, S.; Piątczak, E.; Kalemba, D.; Matkowski, A. Influence of plant growth regulators on volatiles produced by in vitro grown shoots of Agastache rugosa (Fischer & CA Meyer) O. Kuntze. Plant Cell Tissue Organ Cult. 2011, 107, 161–167. [Google Scholar] [CrossRef]
- Radić, S.; Vujčić, V.; Glogoški, M.; Radić-Stojković, M. Influence of pH and plant growth regulators on secondary metabolite production and antioxidant activity of Stevia rebaudiana (Bert). Period. Biol. 2016, 118, 9–19. [Google Scholar] [CrossRef]
- Saffari, V.R.; Khalighi, A.D.; Lesani, H.N.; Babalar, M.H.; Obermaier, J.F. Effects of different plant growth regulators and time of pruning on yield components of Rosa damascena Mill. Int. J. Agric. Biol. 2004, 6, 1040–1042. [Google Scholar]
- Bota, C.; Deliu, C. Effect of plant growth regulators on the production of flavonoids by cell suspension cultures of Digitalis lanata. Farmacia 2015, 63, 716–719. [Google Scholar]
- Coste, A.; Vlase, L.; Halmagyi, A.; Deliu, C.; Coldea, G. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tissue Organ Cult. 2011, 106, 279–288. [Google Scholar] [CrossRef]
- Povh, J.A.; Ono, E.O. Rendimento de óleo essencial de Salvia officinalis L. sob ação de reguladores vegetais. Acta Sci. Biol. Sci. 2006, 189–193. [Google Scholar] [CrossRef]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Lavid, N.; Wang, J.; Shalit, M.; Guterman, I.; Bar, E.; Beuerle, T.; Menda, N.; Shafir, S.; Zamir, D.; Adam, Z.; et al. O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiol. 2002, 129, 1899–1907. [Google Scholar] [CrossRef]
- Zhu, F.; Xu, J.; Ke, Y.; Huang, S.; Zeng, F.; Luan, T.; Ouyang, G. Applications of in vivo and in vitro solid-phase microextraction techniques in plant analysis: A review. Anal. Chim. Acta 2013, 794, 1–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Pawliszyn, J. Headspace solid-phase microextraction. Anal. Chem. 1993, 65, 1843–1852. [Google Scholar] [CrossRef]
- Bicchi, C.; Drigo, S.; Rubiolo, P. Influence of fibre coating in headspace solid-phase microextraction–gas chromatographic analysis of aromatic and medicinal plants. J. Chromatogr. A 2000, 892, 469–485. [Google Scholar] [CrossRef]
- Ibrahim, M.; Agarwal, M.; Hardy, G.; Ren, Y. Optimized method to analyze rose plant volatile organic compounds by HS-SPME-GC-FID/MSD. J. Biosci. Med. 2017, 5, 13–31. [Google Scholar] [CrossRef]
- Ibrahim, M.; Xin, D.; Manjree, A.; Giles, H.; Muslim, A.; Yonglin, R. Influence of benzyladenine on metabolic changes in different rose tissues. Plants 2018, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Baghele, R.; Dhaduk, B.; Chawla, S.; Radhika, J. Effect of foliar spray of growth regulators and cow urine on flowering, quality and yield of rose (Rosa hybrida) cv poison under naturally ventilated polyhouse. Int. J. Trop. Agric. 2016, 34, 1555–1558. [Google Scholar]
- Salehi Sardoei, A.; Sarhadi, H.; Rohany Yazdi, M.; Arbabi, M.; Jahantigh, M. Effect of gibberellic acid and benzylaadenine growth regulators on offsets production of Aloe Barbadensis at greenhouse conditions. Int. J. Adv. Biol. Biom. Res. 2013, 1, 1457–1465. [Google Scholar]
- Zhu, J.Y.; Chai, X.S. Some recent developments in headspace gas chromatography. Curr. Anal. Chem. 2005, 1, 79–83. [Google Scholar] [CrossRef]
- Deng, C.; Xu, X.; Yao, N.; Li, N.; Zhang, X. Rapid determination of essential oil compounds in Artemisia Selengensis Turcz by gas chromatography-mass spectrometry with microwave distillation and simultaneous solid-phase microextraction. Anal. Chim. Acta 2006, 556, 289–294. [Google Scholar] [CrossRef]
- Chen, H.C.; Chi, H.S.; Lin, L.Y. Headspace solid-phase microextraction analysis of volatile components in Narcissus tazetta var. chinensis Roem. Molecules 2013, 18, 13723–13734. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, T.; Fan, Q.; Qi, X.; Zhang, F.; Fang, W.; Jiang, J.; Chen, F.; Chen, S. Identification of floral scent in chrysanthemum cultivars and wild relatives by gas chromatography-mass spectrometry. Molecules 2015, 20, 5346–5359. [Google Scholar] [CrossRef]
- Abad Farooqi, A.; Sharma, S.; Naqvi, A.; Khan, A. The effect of kinetin on flower and oil production in Rosa damascena. J. Essent. Oil Res. 1993, 5, 305–309. [Google Scholar] [CrossRef]
- Passinho-Soares, H.C.; David, J.P.; de Santana, J.R.; David, J.M.; Rodrigues, F.D.M.; Mesquita, P.R.; de Oliveira, F.S.; Bellintani, M.C. Influence of growth regulators on distribution of trichomes and the production of volatiles in micropropagated plants of Plectranthus ornatus. Rev. Bras. Farmacogn. 2017, 27, 679–690. [Google Scholar] [CrossRef]
- Ma, D.M.; Wang, Z.; Wang, L.; Alejos-Gonzales, F.; Sun, M.A.; Xie, D.Y. A genome-wide scenario of terpene pathways in self-pollinated Artemisia annua. Mol. Plant 2015, 8, 1580–1598. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Kong, K.W.; Ismail, A. Phytochemicals and medicinal properties of indigenous tropical fruits with potential for commercial development. Evid. Based Complement. Altern. Med. 2016, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Folashade, K.O.; Omoregie, E.H. Essential oil of Lippia multiflora Moldenke: A review. J. Appl. Pharm. Sci. 2012, 2, 15–23. [Google Scholar]
- Hartsel, J.A.; Eades, J.; Hickory, B.; Makriyannis, A. Cannabis sativa and Hemp. Nutraceuticals 2016, 53, 735–754. [Google Scholar] [CrossRef]
- Davies, P.J. The plant hormones: Their nature, occurrence, and functions. In Plant Hormones; Springer: Dordrecht, The Netherlands, 2010; pp. 1–15. [Google Scholar]
RT. | Compounds | RI | Mean of Peaks at BA (mg/L) | Mean of Peaks at NAA (mg/L) | ||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 0 | 100 | 200 | |||
8.82 | Propyl glycolate | 928 | 1.33 | 1.23 | 2.64 * | 0.32 | 0.30 | 0.58 |
10.55 | α-Pinene | 939 | 3.56 | 4.02 | 6.40 * | 4.61 | 5.60 | 5.43 |
13.52 | D-Limonene | 1018 | 0.11 | 0.84 | 1.09 * | 2.52 | 2.03 | 2.38 |
25.24 | Caryophyllene | 1396 | 21.56 | 27.90 | 24.88 | 25.38 | 31.83 | 51.21 * |
25.42 | Isocaryophyllene | 1424 | 27.46 | 28.72 | 22.86 | 17.03 | 34.62 | 37.11 * |
26.59 | γ-Muurolene † | 1494 | 9.24 | 12.06 | 29.91 * | 26.66 | 23.97 | 27.09 |
RT. | Compounds | RI | Mean of Peaks at BA (mg/L) | Mean of Peaks at NAA (mg/L) | ||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 0 | 100 | 200 | |||
10.11 | Prenyl acetate † | 932 | 2.28 | 2.09 | 2.69 | 1.98 | 12.95 | 17.01 * |
12.77 | Myrcene | 979 | 12.25 | 16.60 | 13.20 | 14.12 | 17.48 | 30.44 * |
19.19 | Cuminal | 1214 | 1.24 | 1.88 | 4.38 * | 1.52 | 1.84 | 1.04 |
21.29 | Geranial | 1249 | 37.57 | 51.06 | 70.71 * | ND | ND | ND |
22.03 | Methyl geranate | 1299 | 2.26 | 3.25 | 5.21 * | 4.46 | 2.23 | 6.86 |
24.19 | Geranyl acetate | 1360 | 2.58 | 10.84 | 11.09 * | 9.01 | 12.42 | 15.01 |
25.44 | Caryophyllene | 1428 | 2.26 | 3.25 | 5.21 | 4.04 | 6.18 | 7.39 * |
25.61 | α,β-Dihydro-β-ionone | 1437 | 45.47 | 49.27 | 47.49 | 42.86 | 69.98 | 71.17 * |
25.62 | Dihydro-β-ionone | 1439 | 44.82 | 56.10 | 76.17 * | 25.22 | 24.75 | 38.47 |
25.88 | cis-Muurola-4(14),5-diene † | 1455 | 7.61 | 10.83 | 33.45 * | 5.07 | 10.43 | 13.17 |
30.90 | trans-3-Octadecene | 1695 | 1.07 | 1.26 | 2.20 * | 4.28 | 6.99 | 7.04 |
34.27 | Z-5-Nonadecene | 1818 | 0.87 | 1.03 | 1.16 * | 13.07 | 13.17 | 19.09 |
35.15 | 9-Nonadecene | 1880 | 16.39 | 15.82 | 15.93 | 13.57 | 39.87 | 43.62 * |
35.23 | γ-Cadinene † | 1905 | 0.13 | 0.16 | 4.13 * | 1.27 | 0.79 | 2.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, M.; Agarwal, M.; Yang, J.O.; Abdulhussein, M.; Du, X.; Hardy, G.; Ren, Y. Plant Growth Regulators Improve the Production of Volatile Organic Compounds in Two Rose Varieties. Plants 2019, 8, 35. https://doi.org/10.3390/plants8020035
Ibrahim M, Agarwal M, Yang JO, Abdulhussein M, Du X, Hardy G, Ren Y. Plant Growth Regulators Improve the Production of Volatile Organic Compounds in Two Rose Varieties. Plants. 2019; 8(2):35. https://doi.org/10.3390/plants8020035
Chicago/Turabian StyleIbrahim, Mohammed, Manjree Agarwal, Jeong Oh Yang, Muslim Abdulhussein, Xin Du, Giles Hardy, and Yonglin Ren. 2019. "Plant Growth Regulators Improve the Production of Volatile Organic Compounds in Two Rose Varieties" Plants 8, no. 2: 35. https://doi.org/10.3390/plants8020035
APA StyleIbrahim, M., Agarwal, M., Yang, J. O., Abdulhussein, M., Du, X., Hardy, G., & Ren, Y. (2019). Plant Growth Regulators Improve the Production of Volatile Organic Compounds in Two Rose Varieties. Plants, 8(2), 35. https://doi.org/10.3390/plants8020035