Next Article in Journal
Temporal Distinction between Male and Female Floral Organ Development in Nicotiana tabacum cv. Xanthi (Solanaceae)
Previous Article in Journal
Fast Track to Discover Novel Promoters in Rice
Previous Article in Special Issue
Callicarpa Species from Central Vietnam: Essential Oil Compositions and Mosquito Larvicidal Activities
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae

1
Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
2
Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
*
Author to whom correspondence should be addressed.
Plants 2020, 9(1), 126; https://doi.org/10.3390/plants9010126
Submission received: 26 December 2019 / Revised: 11 January 2020 / Accepted: 16 January 2020 / Published: 19 January 2020

Abstract

:
In the past, Native Americans of North America had an abundant traditional herbal legacy for treating illnesses, disorders, and wounds. Unfortunately, much of the ethnopharmacological knowledge of North American Indians has been lost due to population destruction and displacement from their native lands by European-based settlers. However, there are some sources of Native American ethnobotany remaining. In this work, we have consulted the ethnobotanical literature for members of the Asteraceae used in Cherokee and other Native American traditional medicines that are native to the southeastern United States. The aerial parts of Eupatorium serotinum, Eurybia macrophylla, Eutrochium purpureum, Polymnia canadensis, Rudbeckia laciniata, Silphium integrifolium, Smallanthus uvedalia, Solidago altissima, and Xanthium strumarium were collected from wild-growing plants in north Alabama. The plants were hydrodistilled to obtain the essential oils and the chemical compositions of the essential oils were determined by gas chromatography–mass spectrometry. The essential oils were tested for in-vitro antifungal activity against Aspergillus niger, Candida albicans, and Cryptococcus neoformans. The essential oil of E. serotinum showed noteworthy activity against C. neoformans with a minimum inhibitory concentration (MIC) value of 78 μg/mL, which can be attributed to the high concentration of cyclocolorenone in the essential oil.

1. Introduction

Many aspects of modern medicine have relied on the traditional knowledge of native cultures, including, for example, traditional Indian medicine (Ayurveda) [1], traditional Chinese medicine (TCM) [2], and traditional Islamic medicine [3]. Unfortunately, many of the traditional uses of medicinal plants are being lost due to several reasons. Recent generations are less interested in traditional knowledge, and habitat destruction and forced migration have reduced access to medicinal plants. The Native Americans of North America also had rich traditions of medicinal plant use. However, much of this knowledge has been lost due to population declines and displacement from native lands. Nevertheless, there are still some existing references to the ethnobotanical uses of medicinal plants by Native Americans [4].
Eupatorium serotinum Michx., “late boneset”, is native to eastern North America and ranges from Texas, Oklahoma, and Kansas, to the Atlantic coast and from the Gulf of Mexico north to Wisconsin and Michigan [5]. The Houma people of Louisiana used a decoction of the flowers to treat typhoid fever [6]. Extracts of the aerial parts of E. serotinum have yielded germacranolide sesquiterpenoids [7,8].
Eurybia macrophylla (L.) Cass. (syn. Aster macrophyllus L.), “bigleaf aster”, is native to southeastern Canada and northeastern United States, as far south as north Alabama and north Georgia [9]. The Iroquois used a decoction of the roots as a blood medicine and to treat venereal disease; the Ojibwa people ate the leaves of E. macrophylla as a medicine and food [6].
Eutrochium purpureum (L.) E.E. Lamont (syn. Eupatorium purpureum L.), “purple Joe-Pye weed”, ranges from central to eastern North America, from the Great Lakes region south to the Gulf of Mexico [10]. The Cherokee used the roots as a treatment for rheumatism, for kidney problems, and for “female problems”; the Chippewa inhaled the vapors from an infusion of the plant for colds; the Navajo used the plant as an antidote for poison; and the Potawatomi people applied a poultice of the leaves on burns [6].
Polymnia canadensis L., “white flower leafcup”, is found in eastern North America from Alabama and Georgia north to Ontario, and from Kansas and Oklahoma east to the Appalachians and New York [11]. The Houma people applied a poultice of the crushed leaves to swellings; the Iroquois used the plant to relieve toothache [6]. Extracts of the aerial parts of P. canadensis have yielded diterpenoid carboxylic acids and germacranolides [12].
Rudbeckia laciniata L., “cutleaf coneflower”, is widespread in the United States and Canada [13]. There are eight varieties of R. laciniata, namely ampla, bipinnata, digitata, gaspereauensis, heterophylla, hortensia, humilis, and laciniata [14]; R. laciniata var. laciniata is the common variety found in eastern North America [15]. The Cherokee ate the cooked greens to “keep well”, while the Chippewa applied a poultice of the flowers to treat burns [6]. Several lignans, flavonoid glycosides, and quinic acid derivatives have been isolated from the aerial parts of R. laciniata, and sesquiterpenoids have been isolated from root extracts [4].
Silphium integrifolium Michx., “whole-leaf rosinweed”, ranges from Wisconsin and Michigan, south through Alabama and Mississippi, and west as far as New Mexico [16]. An infusion of the leaves of S. integrifolium was taken by the Meskwaki people for “bladder troubles” [6]. Flavonoids, oleanolic acid glycosides, and phenolic acids have been identified in the aerial parts of S. integrifolium [17].
Smallanthus uvedalia (L.) Mack. (syn. Polymnia uvedalia (L.) L.), “yellow flower leafcup”, is found in the southeastern United States from Virginia to Florida, west to eastern Texas and Oklahoma [18]. The Cherokee used the bruised roots on burns and cuts; the Iroquois took an infusion of the shoots and roots to treat back pain and vomiting [6]. The plant is the source of several germacranolide sesquiterpenoids and ent-kaurane diterpenoids [4].
Solidago altissima L. (syn. Solidago canadensis L.), “Canada goldenrod”, ranges across most of North America from Canada to northern Mexico [19]. The Okanagan-Colville and the Thompson tribes used an infusion of the roots and shoots of S. altissima to treat fevers [6], and the Cherokee took an infusion of Solidago spp. to treat fevers. The phytochemistry of S. canadensis has been extensively studied and found to contain saponins [20,21], flavonoids [22,23,24], polyacetylenes [25,26], diterpenoids [27], and triterpenoids [28].
Xanthium strumarium L., “rough cocklebur”, ranges throughout North America and is considered a noxious weed in the southeastern United States [29]. The White Mountain Apache tribe took a root decoction to treat fevers; the Mahuma people of Southern California used the plant to treat rheumatism, tuberculosis, and gonorrhea [6]. The aerial parts of X. strumarium contain alkaloids, sesquiterpene lactones (guaianolides, germacranolides, and elemanolides), phenolic compounds, and the toxic carboxylic acid atractyloside, a kaurene glycoside [30].
We have had an interest in the volatile chemistry and biological activity of Native American medicinal plants [31,32,33,34,35,36,37,38,39,40,41,42], including members of the Asteraceae [43,44,45]. As part of our continuing investigations, the purpose of this work was to seek out additional species of Asteraceae important in Native American traditional medicine growing wild in northern Alabama and to obtain the essential oils by hydrodistillation of the aerial parts. As a test for biological activity, the essential oils were then screened for antifungal activity against three potentially pathogenic fungal strains. Aspergillus niger, Candida albicans, and Cryptococcus neoformans are the causative agents of opportunistic Aspergillus lung disease, candidiasis, and cryptococcosis, respectively.

2. Results and Discussion

The essential oils from E. serotinum, E. macrophylla, E. purpureum, P. canadensis, R. laciniata, S. integrifolium, S. uvedalia, S. altissima, and X. strumarium were obtained from the fresh aerial parts of the plants by hydrodistillation, generally in low yield. The essential oils were analyzed by GC and GC–MS (Tables 1, 3–9, and 11).

2.1. Eupatorium serotinum Michx.

The essential oil from the aerial parts of E. serotinum was rich in sesquiterpenoids, with cyclocolorenone (23.38%), germacrene D (6.58%), and palustrol (5.32%), along with an unidentified sesquiterpenoid (5.72%) as the major components (Table 1).
To our knowledge, there have been no previous reports on the essential oil composition of E. serotinum. The phytochemistry of the genus Eupatorium has been reviewed [46] and there have been numerous reports on the essential oil compositions from other species of the genus (Table 2). There is much variability in the essential oil compositions of Eupatorium species, both between species and within species. Nevertheless, sesquiterpenoids often dominate the essential oils of Eupatorium species.

2.2. Eurybia macrophylla (L.) Cass.

Monoterpene hydrocarbons, limonene (28.66%), β-pinene (8.57%), and terpinolene (5.35%), and germacrane sesquiterpenes, germacrene D (19.81%), and germacrene B (7.07%), were the major components in the essential oil of E. macrophylla (Table 3). To our knowledge, there are no reports on essential oil compositions of any Eurybia species.

2.3. Eutrochium purpureum (L.) E.E. Lamont (syn. Eupatorium purpureum L.)

The major components in the essential oil of E. purpureum were the green leaf volatiles (2E)-hexenal (60.59%) and hexanal (6.78%), along with the aromatic compounds eugenol (11.68%) and methyl salicylate (10.31%; Table 4). There have apparently been no previous reports on the essential oil composition of E. purpureum or any other Eutrochium species. There are numerous reports on Eupatorium essential oils, however (see above).

2.4. Polymnia canadensis L.

α-Phellandrene (28.30%), α-pinene (19.71%), and germacrene D (11.42%) were the major components in the essential oil from the aerial parts of P. canadensis (Table 5). The volatile chemical profile of P. canadensis in this current work is in marked contrast to our previous report on this species [45]. Previous samples were rich in the sesquiterpene hydrocarbons germacrene D (63.6% and 44.5%) and β-caryophyllene (15.9% and 14.8%). The differences in compositions are likely due to seasonal variation (the current sample was collected in July, 2018, while the previous samples were collected in September, 2015, and December, 2016, respectively). We cannot rule out, however, chemical profile differences attributable to environmental differences or biotic differences (e.g., genetics, herbivory, or pathogen stress).

2.5. Rudbeckia laciniata L.

Monoterpene hydrocarbons dominated the essential oil of R. laciniata (Table 6). The major components were limonene (58.07%), α-pinene (10.18%), β-pinene (9.21%), and myrcene (5.26%). While R. laciniata essential oil was rich in monoterpene hydrocarbons, the essential oils of R. fulgida and R. hirta were rich in sesquiterpene hydrocarbons [43]. The major components in R. fulgida essential oil were germacrene D (30.1%), δ-cadinene (17.8%), β-caryophyllene (10.0%), and γ-muurolene (8.9%), along with (E)-β-ocimene (6.2%) and (2E)-hexenal (6.0%). Similarly, the major components of R. hirta essential oil were germacrene D (23.6%), δ-cadinene (16.2%), β-caryophyllene (4.7%), γ-muurolene (8.1%), as well as (E)-β-ocimene (15.2%) and (2E)-hexenal (20.2%) [43]. The leaf essential oil of Rudbeckia triloba, collected in Bucharest, Romania, was rich in monoterpene hydrocarbons, α-pinene (46.0%), sabinene (9.6%), and β-phellandrene (24.6%), along with germacrene D (6.1%), but devoid of limonene [73]. Thus, there do not seem to be any consistent chemical markers for the Rudbeckia genus.

2.6. Silphium integrifolium Michx.

The major components in the essential oil from the aerial parts of S. integrifolium were α-pinene (58.59%) and β-pinene (14.69%), followed by myrcene (9.70%; Table 7). Kowalski has extensively examined the essential oils of S. integrifolium as well as S. trifoliatum cultivated in Poland [74,75,76,77,78]. The leaf essential oil of S. integrifolium from Poland had α-pinene (7.3–9.8%), germacrene D (4.0–28.4%), allo-aromadendrene (3.7–8.5%), caryophyllene oxide (6.1–12.4%), and silphiperfol-6-en-5-one (3.7–5.1%) [74,75]; while the floral essential oil was made up of α-pinene (13.4–14.0%), camphene (5.3–5.7%), trans-verbenol (5.2–6.3%), bornyl acetate (6.5–7.0%), and allo-aromadendrene (5.6–6.1%) [74,77]. Thus, there are major qualitative and quantitative differences between the samples from Alabama and from Poland.

2.7. Smallanthus uvedalia (L.) Mack.

Monoterpene hydrocarbons dominated the essential oil of S. uvedalia (Table 8). α-Pinene (62.56%) was the major component, followed by limonene (11.43%) and β-pinene (6.00%). The chemical composition of this monoterpene-rich essential oil is very different from the compositions collected previously by us [45]. The previous samples, collected in February 2016, were dominated by β-caryophyllene (24.5% and 16.5%) and caryophyllene oxide (19.8% and 14.2%). The sample of S. uvedalia in this present work was collected in September 2018. The differences in composition may be due to seasonal variation, genetic differences, or environmental stresses. Nevertheless, α-pinene has dominated the essential oil compositions of other Smallanthus species. For example, α-pinene was the major component in the essential oil of S. maculatus from Costa Rica (32.9% α-pinene), which was also rich in camphene (5.4%), β-pinene (7.1%), β-caryophyllene (10.7%), germacrene D (13.7%), and bicyclogermacrene (6.6%) [79]. Likewise, the essential oil of S. quichensis from Costa Rica was also dominated by α-pinene (35.5–64.5%) with lesser concentrations of α-phellandrene (0.1–9.0%), p-cymene (0.1–11.5%), limonene (2.1–5.8%), β-phellandrene (up to 9.2%), and 1,8-cineole (up to 9.7%) [80]. In contrast, S. sonchifolia essential oil, grown in Sichuan, China, was made up of β-phellandrene (26.3%), β-bourbonene (10.2%), β-caryophyllene (14.0%), and β-cubebene (17.6%) [81].

2.8. Solidago altissima L. (syn. Solidago canadensis L.)

The major components in the essential oil from the aerial parts of S. altissima (syn. S. canadensis) from Alabama were α-pinene (13.91%), sabinene (14.25%), myrcene (20.29%), bornyl acetate (14.44%), and germacrene D (10.67%; Table 9). Previous examinations of S. canadensis essential oils have shown germacrene D to be one of the most abundant components (Table 10). However, Weyerstahl and co-workers [82] found curlone (23.5%) to be a major component of S. canadensis from Poland, Schmidt and co-workers [83] found cyclocolorenone (38%) to be a major component in S. canadensis from northern Germany, and Kasali and co-workers [84] found 6-epi-β-cubebene to be a major component (20.5%) in S. canadensis essential oil from Poland. Interestingly, none of these compounds was detected in the sample of S. altissima essential oil from Alabama.

2.9. Xanthium strumarium L.

The major volatile components from the aerial parts of X. strumarium were limonene (48.23%), myrcene (14.31%), germacrene D (13.92%), (2E)-hexenal (5.79%), and sabinene (4.89%; Table 11). The compositions of Xanthium strumarium essential oils from the Middle East have been reported, including Iran [93,94] and Pakistan [95]. The leaf essential oil from Khoramabad, Iran, was composed largely of limonene (24.7%), borneol (10.6%), bornyl acetate (5.9%), and β-cubebene (6.3%) [93]. The leaf essential oil from Zabol, Iran, was qualitatively similar, limonene (20.3%), borneol (11.6%), bornyl acetate (4.5%), and β-cubebene (3.8%), but also contained a large concentration of cis-β-guaiene (34.2%), which was not observed in any other X. strumarium essential oils [94]. The leaf essential oil of X. strumarium from Lahore, Pakistan, contained limonene (5.7%), β-caryophyllene (17.5%), spathulenol (6.1%), and α-cadinol (6.7%) as major components [95]. The differences in chemical compositions may be related to different genetic factors as well as geographical location; Tropicos® currently lists 13 subordinate taxa for X. strumarium [14].

2.10. Antifungal Screening

Depending on material available, the essential oils were screened for antifungal activity against the opportunistic fungal pathogens Aspergillus niger, Candida albicans, and Cryptococcus neoformans using the microbroth dilution technique (Table 12). The essential oil of E. serotinum showed promising antifungal activity against C. neoformans with a minimum inhibitory concentration (MIC) value of 78 μg/mL. The high concentration of cyclocolorenone in E. serotinum is likely responsible for the observed antifungal activity of this essential oil. Cyclocolorenone had been previously reported to show antifungal activity against Curvularia lunata, Chaetomium cochliodes, and Chaetomium spinusum [96]. Germacrene D may also contribute to the antifungal activity of E. serotinum essential oil as well as essential oils of E. macrophylla, P. canadensis, and R. laciniata. Germacrene D has shown antifungal activity against Aspergillus niger with MIC of 39 μg/mL [97].
The modest antifungal activity of E. purpureum is somewhat surprising. The major components were hexanal, (2E)-hexenal, methyl salicylate, and eugenol. Hexanal [98] and (2E)-hexenal [99,100] are both known to be antifungal to plant pathogenic fungi. Methyl salicylate is only weakly antifungal against A. niger, C. albicans, or C. neoformans, but eugenol is somewhat active (see Table 13). Monoterpene hydrocarbons such as α-pinene, β-pinene, limonene, or myrcene show only weak antifungal activity (Table 13) and are not expected to contribute to the antifungal activities of the essential oils unless there are synergistic effects of these components (see, for example [101,102]). The mechanisms of antifungal activity of essential oils are poorly understood. However, it has been suggested that essential oils and their components, being lipophilic, can disrupt the membranes of fungi causing membrane permeability [103].

3. Materials and Methods

3.1. Plant Material

Aerial parts of each plant were collected from various sites in north Alabama (Table 14). Plants were identified by S.K. Lawson and voucher specimens were deposited in the University of Alabama in Huntsville herbarium (HALA). The fresh plant material (aerial parts) were chopped and hydrodistilled using a Likens–Nickerson apparatus with continuous extraction with CH2Cl2 for three hours. The solvent was evaporated to give pale yellow essential oils (Table 14).

3.2. Gas Chromatography–Mass Spectrometry

The Asteraceae essential oils were analyzed by GC–MS using a Shimadzu GC–MS-QP2010 Ultra fitted with a Phenomenex ZB-5ms column as previously described [104]. Identification of the essential oil components was determined by comparison of their retention indices, determined with respect to a homologous series of n-alkanes and their mass spectral fragmentation patters with those from available databases (Adams [105], NIST17 [106], and FFNSC 3 [107]) or in our in-house library [108].

3.3. Gas Chromatography–Flame Ionization Detection

Quantification of the essential oils was determined by GC–FID using a Shimadzu GC 2010 instrument fitted with a ZB-5 column [104], using the same parameters that were used for the GC–MS. The concentrations (average of three measurements ± standard deviations) are based on peak integration without standardization.

3.4. Antifungal Screening

The essential oils were screened for antifungal activity against Aspergillus niger (ATCC 16888), Candida albicans (ATCC 18804), and Cryptococcus neoformans (ATCC 24607) using the microbroth dilution method as previously described [109]. Amphotericin B was used as the positive control and RPMI medium was used as the negative control. The antifungal assays were carried out in triplicate.

4. Conclusions

There is much intraspecific variation in essential oil compositions of these members of the Asteraceae. Much of the variation can be attributed to geographical location or seasonal variation. Eupatorium serotinum essential oil showed notable antifungal activity against Cryptococcus neoformans. However, the yield of this essential oil (0.013%) is too low to be considered as pharmacologically useful. If suitable sources of the major component cyclocolorenone can be identified, then this compound may serve as important antifungal template for further elaboration.

Author Contributions

Conceptualization, S.K.L. and W.N.S.; methodology, W.N.S., R.L.M., and P.S.; software, P.S.; validation, W.N.S.; formal analysis, W.N.S.; investigation, S.K.L., L.G.S., C.N.P., and P.S.; resources, R.L.M., P.S., and W.N.S.; data curation, W.N.S.; writing—original draft preparation, W.N.S.; writing—review and editing, S.K.L., L.G.S., C.N.P., R.L.M., P.S., and W.N.S.; supervision, W.N.S. and R.L.M.; project administration, W.N.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Acknowledgments

P.S. and W.N.S. participated in the project as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. NCCIH Ayurvedic Medicine: In Depth. Available online: https://nccih.nih.gov/health/ayurveda/introduction.htm (accessed on 17 July 2019).
  2. Shang, A.; Huwiler, K.; Nartey, L.; Jüni, P.; Egger, M. Placebo-controlled trials of Chinese herbal medicine and conventional medicine—Comparative study. Int. J. Epidemiol. 2007, 36, 1086–1092. [Google Scholar] [CrossRef] [Green Version]
  3. Avicenna. Canon of Medicine; Kazi Publications: Chicago, IL, USA, 2015; ISBN 978-1567442243. [Google Scholar]
  4. Setzer, W.N. The phytochemistry of Cherokee aromatic medicinal plants. Medicines 2018, 5, 121. [Google Scholar] [CrossRef] [Green Version]
  5. Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/MapGallery/County/Conoclinium coelestinum.png (accessed on 7 August 2019).
  6. Moerman, D.E. Native American Ethnobotany; Timber Press, Inc.: Portland, OR, USA, 1998. [Google Scholar]
  7. Herz, W.; de Groote, R.; Murari, R.; Kumar, N.; Blount, J.F. Sesquiterpene lactones of Eupatorium serotinum. J. Org. Chem. 1979, 44, 2784–2788. [Google Scholar] [CrossRef]
  8. Bohlmann, F.; Zdero, C.; King, R.M.; Robinson, H. Further germacranolides from Eupatorium serotinum. Planta Med. 1985, 51, 76–77. [Google Scholar] [CrossRef]
  9. Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Eurybia (accessed on 17 July 2019).
  10. Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Eutrochium (accessed on 17 July 2019).
  11. Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Polymnia (accessed on 17 July 2019).
  12. Bohlmann, F.; Zdero, C.; King, R.M.; Robinson, H. Ein neues germacran-8.12-olid und neue diterpene aus Polymnia canadensis. Phytochemistry 1980, 19, 115–118. [Google Scholar] [CrossRef]
  13. Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Rudbeckia (accessed on 17 July 2019).
  14. Missouri Botanical Garden Tropicos.org. Available online: www.tropicos.org (accessed on 21 December 2019).
  15. Weakley, A.S. Flora of the Southern and Mid-Atlantic States. Available online: http://www.herbarium.unc.edu/flora.htm (accessed on 17 July 2019).
  16. Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Silphium (accessed on 17 July 2019).
  17. Kowalski, R. Secondary metabolites in Silphium integrifolium in the first 2 years of cultivation. N. Z. J. Crop Hortic. Sci. 2004, 32, 397–406. [Google Scholar] [CrossRef]
  18. Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Smallanthus (accessed on 17 July 2019).
  19. Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Solidago (accessed on 17 July 2019).
  20. Reznicek, G.; Jurenitsch, J.; Plasun, M.; Korhammer, S.; Haslinger, E.; Hiller, K.; Kubelka, W. Four major saponins from Solidago canadensis. Phytochemistry 1991, 30, 1629–1633. [Google Scholar] [CrossRef]
  21. Reznicek, G.; Jurenitsch, J.; Freiler, M.; Korhammer, S.; Haslinger, E.; Hiller, K.; Kubelka, W. Isolation and structure elucidation of further new saponins from Solidago canadensis. Planta Med. 1992, 58, 94–98. [Google Scholar] [CrossRef]
  22. Apáti, P.; Szentmihályi, K.; Balázs, A.; Baumann, D.; Hamburger, M.; Kristó, T.S.; Szőke, É.; Kéry, Á. HPLC Analysis of the flavonoids in pharmaceutical preparations from Canadian goldenrod (Solidago canadensis). Chromatographia 2002, 56, S65–S68. [Google Scholar] [CrossRef]
  23. Wu, B.; Takahashi, T.; Kashiwagi, T.; Tebayashi, S.; Kim, C.-S. New flavonoid glycosides from the leaves of Solidago altissima. Chem. Pharm. Bull. 2007, 55, 815–816. [Google Scholar] [CrossRef] [Green Version]
  24. Radusiene, J.; Marska, M.; Ivanauskas, L.; Jakstas, V.; Karpaviciene, B. Assessment of phenolic compound accumulation in two widespread goldenrods. Ind. Crops Prod. 2015, 63, 158–166. [Google Scholar] [CrossRef]
  25. Ichihara, K.I.; Kawar, T.; Kaji, M.; Noda, M. A new polyacetylene from Solidago altissima L. Agric. Biol. Chem. 1976, 40, 353–358. [Google Scholar] [CrossRef]
  26. Ichihara, K.I.; Kawai, T.; Noda, M. Polyacetylenes of Solidago altissima L. Agric. Biol. Chem. 1978, 42, 427–431. [Google Scholar] [CrossRef]
  27. Tori, M.; Katto, A.; Sono, M. Nine new clerodane diterpenoids from rhizomes of Solidago altissima. Phytochemistry 1999, 52, 487–493. [Google Scholar] [CrossRef]
  28. Chaturvedula, V.S.P.; Zhou, B.N.; Gao, Z.; Thomas, S.J.; Hecht, S.M.; Kingston, D.G.I. New lupane triterpenoids from Solidago canadensis that inhibit the lyase activity of DNA polymerase β. Bioorg. Med. Chem. 2004, 12, 6271–6275. [Google Scholar] [CrossRef]
  29. Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Xanthium (accessed on 17 July 2019).
  30. Kamboj, A.; Saluja, A.K. Phytopharmacological review of Xanthium strumarium L. (Cocklebur). Int. J. Green Pharm. 2010, 4, 129–139. [Google Scholar] [CrossRef]
  31. Satyal, P.; Craft, J.D.; Dosoky, N.S.; Setzer, W.N. The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale). Foods 2017, 6, 63. [Google Scholar] [CrossRef] [Green Version]
  32. Davé, P.C.; Vogler, B.; Setzer, W.N. Chemical compositions of the leaf essential oils of Aralia spinosa from three habitats in Northern Alabama. Am. J. Plant Sci. 2011, 2, 507–510. [Google Scholar] [CrossRef] [Green Version]
  33. Eiter, L.C.; Fadamiro, H.; Setzer, W.N. Seasonal variation in the leaf essential oil composition of Zanthoxylum clava-herculis growing in Huntsville, Alabama. Nat. Prod. Commun. 2010, 5, 457–460. [Google Scholar] [CrossRef] [Green Version]
  34. Steinberg, K.M.; Satyal, P.; Setzer, W.N. Bark essential oils of Zanthoxylum clava-herculis and Ptelea trifoliata: Enantiomeric distribution of monoterpenoids. Nat. Prod. Commun. 2017, 12, 961–963. [Google Scholar] [CrossRef] [Green Version]
  35. Woods, K.E.; Chhetri, B.K.; Jones, C.D.; Goel, N.; Setzer, W.N. Bioactivities and compositions of Betula nigra essential oils. J. Med. Act. Plants 2013, 2, 1–9. [Google Scholar]
  36. Stewart, C.D.; Jones, C.D.; Setzer, W.N. Essential oil compositions of Juniperus virginiana and Pinus virginiana, two important trees in Cherokee traditional medicine. Am. J. Essent. Oils Nat. Prod. 2014, 2, 17–24. [Google Scholar]
  37. Setzer, W.N. Chemical composition of the leaf essential oil of Lindera benzoin growing in North Alabama. Am. J. Essent. Oils Nat. Prod. 2016, 4, 1–3. [Google Scholar]
  38. Mekala, A.B.; Satyal, P.; Setzer, W.N. Phytochemicals from the bark of Rhamnus caroliniana. Nat. Prod. Commun. 2017, 12, 403–406. [Google Scholar] [CrossRef] [Green Version]
  39. Kaler, K.M.; Setzer, W.N. Seasonal variation in the leaf essential oil composition of Sassafras albidum. Nat. Prod. Commun. 2008, 3, 829–832. [Google Scholar] [CrossRef] [Green Version]
  40. Kennedy, J.E.; Davé, P.C.; Harbin, L.N.; Setzer, W.N. Allelopathic potential of Sassafras albidum and Pinus taeda essential oils. Allelopath. J. 2011, 27, 111–122. [Google Scholar]
  41. Craft, J.D.; Setzer, W.N. Leaf essential oil composition of Tsuga canadensis growing wild in North Alabama and Northwest Georgia. Am. J. Essent. Oils Nat. Prod. 2017, 5, 26–29. [Google Scholar]
  42. Lopez, E.M.; Craft, J.D.; Setzer, W.N. Volatile composition of Vicia caroliniana growing in Huntsville, Alabama. Am. J. Essent. Oils Nat. Prod. 2017, 5, 8–10. [Google Scholar]
  43. Stewart, C.D.; Jones, C.D.; Setzer, W.N. Leaf essential oil compositions of Rudbeckia fulgida Aiton, Rudbeckia hirta L., and Symphyotrichum novae-angliae (L.) G.L. Nesom (Asteraceae). Am. J. Essent. Oils Nat. Prod. 2014, 2, 36–38. [Google Scholar]
  44. Lawson, S.K.; Sharp, L.G.; Powers, C.N.; McFeeters, R.L.; Satyal, P.; Setzer, W.N. Essential oil compositions and antifungal activity of sunflower (Helianthus) species growing in north Alabama. Appl. Sci. 2019, 9, 3179. [Google Scholar] [CrossRef] [Green Version]
  45. Craft, J.D.; Lawson, S.K.; Setzer, W.N. Leaf essential oil compositions of bear’s foot, Smallanthus uvedalia and Polymnia canadensis. Am. J. Essent. Oils Nat. Prod. 2019, 7, 31–35. [Google Scholar]
  46. Liu, P.-Y.; Liu, D.; Li, W.-H.; Zhao, T.; Sauriol, F.; Gu, Y.-C.; Shi, Q.-W.; Zhang, M.-L. Chemical constituents of plants from the genus Eupatorium (1904–2014). Chem. Biodivers. 2015, 12, 1481–1515. [Google Scholar] [CrossRef] [PubMed]
  47. Padalia, R.C.; Bisht, D.S.; Joshi, S.C.; Mathela, C.S. Chemical composition of the essential oil from Eupatorium adenophorum Spreng. J. Essent. Oil Res. 2009, 21, 522–524. [Google Scholar] [CrossRef]
  48. Kurade, N.P.; Jaitak, V.; Kaul, V.K.; Sharma, O.P. Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum. Pharm. Biol. 2010, 48, 539–544. [Google Scholar] [CrossRef] [Green Version]
  49. Pandey, A.K.; Mohan, M.; Singh, P.; Palni, U.T.; Tripathi, N.N. Chemical composition, antibacterial and antioxidant activity of essential oil of Eupatorium adenophorum Spreng. from Eastern Uttar Pradesh, India. Food Biosci. 2014, 7, 80–87. [Google Scholar] [CrossRef]
  50. Ahluwalia, V.; Sisodia, R.; Walia, S.; Sati, O.P.; Kumar, J.; Kundu, A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J. Pest Sci. 2014, 87, 341–349. [Google Scholar] [CrossRef]
  51. Maia, J.G.S.; Zoghbi, M.D.G.B.; Andrade, E.H.A.; Da Silva, M.H.L.; Luz, A.I.R.; Da Silva, J.D. Essential oils composition of Eupatorium species growing wild in the Amazon. Biochem. Syst. Ecol. 2002, 30, 1071–1077. [Google Scholar] [CrossRef]
  52. Zygadlo, J.A.; Maestri, D.M.; Guzmán, C.A. Comparative study of the essential oils from three species of Eupatorium. Flavour Fragr. J. 1996, 11, 153–155. [Google Scholar] [CrossRef]
  53. Zygadlo, J.A.; Lamarque, A.L.; Grosso, N.R.; Ariza Espinar, L. Analysis of the essential oil of the leaves of Eupatorium arnottianum Griseb. J. Essent. Oil Res. 1995, 7, 677–678. [Google Scholar] [CrossRef]
  54. García, C.C.; Acosta, E.G.; Carro, A.C.; Belmonte, M.C.F.; Bomben, R.; Duschatzky, C.B.; Perotti, M.; Schuff, C.; Damonte, E.B. Virucidal activity and chemical composition of essential oils from aromatic plants of central west Argentina. Nat. Prod. Commun. 2010, 5, 1307–1310. [Google Scholar] [CrossRef]
  55. Lancelle, H.G.; Giordano, O.S.; Sosa, M.E.; Tonn, C.E. Chemical composition of four essential oils from Eupatorium spp. Biological activities toward Tribolium castaneum (Coleoptera: Tenebrionidae). Rev. Soc. Entomol. Argent. 2009, 68, 329–338. [Google Scholar]
  56. Albuquerque, M.R.J.R.; Souza, E.B.D.; Mesquita, E.F.; Nunes, E.P.; Cunha, A.N.; Silveira, E.R. Volatile constituents from leaves of Vernonia chalybaea Mart. and Eupatorium ballotaefolium H.B.K. J. Essent. Oil Res. 2001, 13, 376–377. [Google Scholar] [CrossRef]
  57. Albuquerque, M.R.; Silveira, E.R.; De AUchôa, D.E.; Lemos, T.L.; Souza, E.B.; Santiago, G.M.; Pessoa, O.D. Chemical composition and larvicidal activity of the essential oils from Eupatorium betonicaeforme (D.C.) Baker (Asteraceae). J. Agric. Food Chem. 2004, 52, 6708–6711. [Google Scholar] [CrossRef] [PubMed]
  58. Lorenzo, D.; Paz, D.; Davies, P.; Villamil, J.; Vila, R.; Cañigueral, S.; Dellacassa, E. Application of multidimensional gas chromatography to the enantioselective characterisation of the essential oil of Eupatorium buniifolium Hooker et Arnott. Phytochem. Anal. 2005, 16, 39–44. [Google Scholar] [CrossRef] [PubMed]
  59. Umpiérrez, M.L.; Santos, E.; Mendoza, Y.; Altesor, P.; Rossini, C. Essential oil from Eupatorium buniifolium leaves as potential varroacide. Parasitol. Res. 2013, 112, 3389–3400. [Google Scholar] [CrossRef]
  60. Senatore, F.; De Fusco, R.; Napolitano, F. Eupatorium cannabinum L. ssp. cannabinum (Asteraceae) essential oil: Chemical composition and antibacterial activity. J. Essent. Oil Res. 2001, 13, 463–466. [Google Scholar] [CrossRef]
  61. Flamini, G.; Cioni, P.L.; Morelli, I. Analysis of the essential oil of the leaves and flowers/fruits of Eupatorium cannabinum L. from south Tuscany (central Italy). J. Essent. Oil Res. 2003, 15, 127–129. [Google Scholar] [CrossRef]
  62. Paolini, J.; Costa, J.; Bernardini, A.-F. Analysis of the essential oil from aerial parts of Eupatorium cannabinum subsp. corsicum (L.) by gas chromatography with electron impact and chemical ionization mass spectrometry. J. Chromatogr. A 2005, 1076, 170–178. [Google Scholar] [CrossRef]
  63. Morteza-Semnani, K.; Akbarzadeh, M.; Moshiri, K. The essential oil composition of Eupatorium cannabinum L. from Iran. Flavour Fragr. J. 2006, 21, 521–523. [Google Scholar] [CrossRef]
  64. Judzentiene, A. Chemical composition of leaf and inflorescence essential oils of Eupatorium cannabinum L. from eastern Lithuania. J. Essent. Oil Res. 2007, 19, 403–406. [Google Scholar] [CrossRef]
  65. Pino, J.A.; Rosado, A.; Fuentes, V. Essential oil of Eupatorium capillifolum (Lam.) Small from Cuba. J. Essent. Oil Res. 1998, 10, 79–80. [Google Scholar] [CrossRef]
  66. Tabanca, N.; Bernier, U.R.; Tsikolia, M.; Becnel, J.J.; Sampson, B.; Werle, C.; Demirci, B.; Baser, K.H.C.; Blythe, E.K.; Pounders, C.; et al. Eupatorium capillifolium essential oil: Chemical composition, antifungal activity, and insecticidal activity. Nat. Prod. Commun. 2010, 5, 1409–1415. [Google Scholar] [CrossRef]
  67. Pimienta-Ramírez, L.; García-Rodríguez, Y.M.; Ríos-Ramírez, E.M.; Lindig-Cisneros, R.; Espinosa-García, F.J. Chemical composition and evaluation of the essential oil from Eupatorium glabratum as biopesticide against Sitophilus zeamais and several stored maize fungi. J. Essent. Oil Res. 2016, 28, 113–120. [Google Scholar] [CrossRef]
  68. Schossler, P.; Schneider, G.L.; Wunsch, D.; Soares, G.L.G.; Zini, C.A. Volatile compounds of Baccharis punctulata, Baccharis dracunculifolia and Eupatorium laevigatum obtained using solid phase microextraction and hydrodistillation. J. Braz. Chem. Soc. 2009, 20, 277–287. [Google Scholar] [CrossRef]
  69. Pisutthanan, N.; Liawruangrath, B.; Liawruangrath, S.; Baramee, A.; Apisariyakul, A.; Korth, J.; Bremner, J.B. Constituents of the essential oil from aerial parts of Chromolaena odorata from Thailand. Nat. Prod. Res. 2006, 20, 636–640. [Google Scholar] [CrossRef] [PubMed]
  70. Owolabi, M.S.; Ogundajo, A.; Yusuf, K.O.; Lajide, L.; Villanueva, H.E.; Tuten, J.A.; Setzer, W.N. Chemical composition and bioactivity of the essential oil of Chromolaena odorata from Nigeria. Rec. Nat. Prod. 2010, 4, 72–78. [Google Scholar]
  71. Joshi, R.K. Chemical composition of the essential oils of aerial parts and flowers of Chromolaena odorata (L.) R. M. King & H. Rob. from Western Ghats region of north west Karnataka, India. J. Essent. Oil-Bear. Plants 2013, 16, 71–75. [Google Scholar]
  72. Gupta, D.; Charles, R.; Garg, S.N. Chemical examination of the essential oil from the leaves of Eupatorium triplinerve Vahl. J. Essent. oil Res. 2004, 16, 473–475. [Google Scholar] [CrossRef]
  73. Moldovan, Z.; Buleandrǎ, M.; Oprea, E.; Mînea, Z. Studies on chemical composition and antioxidant activity of Rudbeckia triloba. J. Anal. Methods Chem. 2017, 2017, 3407312. [Google Scholar] [CrossRef] [Green Version]
  74. Kowalski, R.; Wierciński, J.; Mardarowicz, M. Essential oil in leaves and inflorescences of Silphium integrifolium Michx. J. Essent. Oil Res. 2005, 17, 220–222. [Google Scholar] [CrossRef]
  75. Kowalski, R. The chemical composition of essential oils and lipophilic extracts of Silphium integrifolium Michx. and S. trifoliatum L. leaves. Flavour Fragr. J. 2008, 23, 164–171. [Google Scholar] [CrossRef]
  76. Kowalski, R. Antimicrobial activity of essential oils and extracts of rosinweed (Silphium trifoliatum and Silphium integrifolium) plants used by the American Indians. Flavour Fragr. J. 2008, 23, 426–433. [Google Scholar] [CrossRef]
  77. Kowalski, R. Chemical composition of essential oils and lipophilic extracts of Silphium integrifolium and S. trifoliatum inflorescences. Chem. Nat. Compd. 2008, 44, 241–244. [Google Scholar] [CrossRef]
  78. Kowalski, R. The chemical composition of essential oils and lipophilic extracts of Silphium integrifolium Michx. and Silphium trifoliatum L. rhizomes. J. Essent. Oil Res. 2008, 20, 255–259. [Google Scholar] [CrossRef]
  79. Cicció, J.F. Composition of the essential oil from leaves of Smallanthus maculatus (Cav.) H. Rob. (Asteraceae). J. Essent. Oil Res. 2004, 16, 353–355. [Google Scholar] [CrossRef]
  80. Chaverri, C.; Cicció, J.F. Composition of the essential oil from leaves of Smallanthus quichensis (Asteraceae) from Costa Rica. Bol. Latinoam. Caribe Plantas Med. Aromat. 2015, 14, 355–363. [Google Scholar]
  81. Li, J.; Liu, J.; Lan, H.; Zheng, M.; Rong, T. GC-MS analysis of the chemical constituents of the essential oil from the leaves of yacon (Smallanthus sonchifolia). Front. Agric. China 2009, 3, 40–42. [Google Scholar] [CrossRef]
  82. Weyerstahl, P.; Marschall, H.; Christiansen, C.; Kalemba, D.; Góra, J. Constituents of the essential oil of Solidago canadensis (“goldenrod”) from Poland—A correction. Planta Med. 1993, 59, 281–282. [Google Scholar] [CrossRef]
  83. Schmidt, C.O.; Bouwmeester, H.J.; Bülow, N.; König, W.A. Isolation, characterization, and mechanistic studies of (-)-α-gurjunene synthase from Solidago canadensis. Arch. Biochem. Biophys. 1999, 364, 167–177. [Google Scholar] [CrossRef]
  84. Kasali, A.A.; Ekundayo, O.; Paul, C.; König, W.A. epi-Cubebanes from Solidago canadensis. Phytochemistry 2002, 59, 805–810. [Google Scholar] [CrossRef]
  85. Vogler, B.; Setzer, W.N. Characterization of Natural Products. In Natural Products from Plants; Cseke, L.J., Kirakosyan, A., Kaufman, P.B., Warber, S.L., Duke, J.A., Brielmann, H., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 319–387. ISBN 978-0-8493-2976-0. [Google Scholar]
  86. Chanotiya, C.S.; Yadav, A. Natural variability in enantiomeric composition of bioactive chiral terpenoids in the essential oil of Solidago canadensis L. from Uttarakhand, India. Nat. Prod. Commun. 2008, 3, 263–266. [Google Scholar] [CrossRef] [Green Version]
  87. Mishra, D.; Joshi, S.; Sah, S.P.; Bischt, G. Chemical composition, analgesic and antimicrobial activity of Solidago canadensis essential oil from India. J. Pharm. Res. 2011, 44, 63–66. [Google Scholar]
  88. Grul’ova, D.; Baranova, B.; Ivanova, V.; de Martino, L.; Mancini, E.; de Feo, V. Composition and bio activity of essential oils of Solidago spp. and their impact on radish and garden cress. Allelopath. J. 2016, 39, 129–142. [Google Scholar]
  89. Shelepova, O.; Vinogradova, Y.; Zaitchik, B.; Ruzhitsky, A.; Grygorieva, O.; Brindza, J. Constituents of the essential oil in Solidago canadensis L. from Eurasia. Slovak J. Food Sci. 2018, 12, 20–25. [Google Scholar] [CrossRef] [Green Version]
  90. Elshafie, H.S.; Grul’ová, D.; Baranová, B.; Caputo, L.; De Martino, L.; Sedlák, V.; Camele, I.; De Feo, V. Antimicrobial activity and chemical composition of essential oil extracted from Solidago canadensis L. growing wild in Slovakia. Molecules 2019, 24, 1206. [Google Scholar] [CrossRef] [Green Version]
  91. Benelli, G.; Pavela, R.; Cianfaglione, K.; Nagy, D.U.; Canale, A.; Maggi, F. Evaluation of two invasive plant invaders in Europe (Solidago canadensis and Solidago gigantea) as possible sources of botanical insecticides. J. Pest Sci. 2019, 92, 805–821. [Google Scholar] [CrossRef]
  92. El-Sherei, M.; Khaleel, A.; Motaal, A.A.; Abd-Elbaki, P. Effect of seasonal variation on the composition of the essential oil of Solidago canadensis cultivated in Egypt. J. Essent. Oil-Bear. Plants 2014, 17, 891–898. [Google Scholar] [CrossRef]
  93. Esmaeili, A.; Rustaiyan, A.; Akbari, M.T.; Moazami, N.; Masoudi, S.; Amiri, H. Composition of the essential oils of Xanthium strumarium L. and Cetaurea solstitialis L. from Iran. J. Essent. Oil Res. 2006, 18, 427–429. [Google Scholar] [CrossRef]
  94. Sharifi-Rad, J.; Hoseini-Alfatemi, S.M.; Sharifi-Rad, M.; Sharifi-Rad, M.; Iriti, M.; Sharifi-Rad, M.; Sharifi-Rad, R.; Raeisi, S. Phytochemical compositions and biological activities of essential oil from Xanthium strumarium L. Molecules 2015, 20, 7034–7047. [Google Scholar] [CrossRef] [Green Version]
  95. Parveen, Z.; Mazhar, S.; Siddique, S.; Manzoor, A.; Ali, Z. Chemical composition and antifungal activity of essential oil from Xanthium strumarium L. leaves. Indian J. Pharm. Sci. 2017, 79, 316–321. [Google Scholar] [CrossRef]
  96. Jacyno, J.M.; Montemurro, N.; Bates, A.D.; Cutler, H.G. Phytotoxic and antimicrobial properties of cyclocolorenone from Magnolia grandiflora L. J. Agric. Food Chem. 1991, 39, 1166–1168. [Google Scholar] [CrossRef]
  97. Schmidt, J.M.; Noletto, J.A.; Vogler, B.; Setzer, W.N. Abaco bush medicine: Chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J. Herbs Spices Med. Plants 2006, 12, 43–65. [Google Scholar] [CrossRef]
  98. Gardini, F.; Lanciotti, R.; Caccioni, D.R.L.; Guerzoni, M.E. Antifungal activity of hexanal as dependent on its vapor pressure. J. Agric. Food Chem. 1997, 45, 4297–4302. [Google Scholar] [CrossRef]
  99. Gardini, F.; Lanciotti, R.; Guerzoni, M.E. Effect of trans-2-hexenal on the growth of Aspergillus flavus in relation to its concentration, temperature and water activity. Lett. Appl. Microbiol. 2001, 33, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  100. Neri, F.; Mari, M.; Menniti, A.M.; Brigati, S. Activity of trans-2-hexenal against Penicillium expansum in “Conference” pears. J. Appl. Microbiol. 2006, 100, 1186–1193. [Google Scholar] [CrossRef]
  101. Van Vuuren, S.F.; Viljoen, A.M. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour Fragr. J. 2007, 22, 540–544. [Google Scholar] [CrossRef]
  102. Ma, B.; Ban, X.; Huang, B.; He, J.; Tian, J.; Zeng, H.; Chen, Y.; Wang, Y. Interference and mechanism of dill seed essential oil and contribution of carvone and limonene in preventing Sclerotinia rot of rapeseed. PLoS ONE 2015, 10, e0131733. [Google Scholar] [CrossRef] [Green Version]
  103. Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal activity of Citrus essential oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [Google Scholar] [CrossRef]
  104. DeCarlo, A.; Johnson, S.; Okeke-Agulu, K.I.; Dosoky, N.S.; Wax, S.J.; Owolabi, M.S.; Setzer, W.N. Compositional analysis of the essential oil of Boswellia dalzielii frankincense from West Africa reveals two major chemotypes. Phytochemistry 2019, 164, 24–32. [Google Scholar] [CrossRef]
  105. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
  106. NIST17. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
  107. Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
  108. Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Thesis, University of Alabama in Huntsville, Huntsville, AL, USA, 2015. [Google Scholar]
  109. Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules 2018, 23, 1549. [Google Scholar] [CrossRef] [Green Version]
Table 1. Chemical composition of the essential oil of Eupatorium serotinum Michx.
Table 1. Chemical composition of the essential oil of Eupatorium serotinum Michx.
RI aRI bCompound% ± SDRI aRI bCompound% ± SD
802801Hexanal0.16 ± 0.0215311533trans-Cadina-1,4-diene0.20 ± 0.07
8107962-Hexanol0.92 ± 0.011540---Unidentified e1.28 ± 0.05
850846(2E)-Hexenal0.86 ± 0.1115421539α-Copaen-11-ol7.89 ± 0.13
932932α-Pinene0.17 ± 0.011548---Unidentified f1.76 ± 0.04
949946Camphene1.78 ± 0.021550---Unidentified g0.75 ± 0.03
977974β-Pinene0.18 ± 0.0215581559Germacrene B0.44 ± 0.03
9991001δ-2-Carene0.15 ± 0.011562---Eudesmenol h0.32 ± 0.09
10291024Limonene0.26 ± 0.0115691567Palustrol5.32 ± 0.12
12831287Bornyl acetate4.72 ± 0.0715751574Germacra-1(10),5-dien-4β-ol0.91 ± 1.10
1326---Unidentified c0.93 ± 0.0315811577Spathulenol1.58 ± 0.83
13461345α-Cubebene0.59 ± 0.0115881590Globulol0.58 ± 0.03
13751374α-Copaene0.11 ± 0.0515931592Viridiflorol1.12 ± 0.09
13831387β-Bourbonene0.06 ± 0.011596---Unidentified i1.20 ± 0.02
13971387β-Cubebene3.65 ± 0.0916031602Ledol2.80 ± 0.03
14061409α-Gurjunene0.74 ± 0.0216201611Germacra-1(10),5-dien-4α-ol1.44 ± 0.13
14171419β-Ylangene0.09 ± 0.0316221624Selina-6-en-4β-ol0.31 ± 0.03
14181417β-Caryophyllene0.96 ± 0.01162716271-epi-Cubenol0.61 ± 0.10
14281434γ-Elemene0.28 ± 0.0516381639cis-Guaia-3,9-dien-11-ol0.12 ± 0.01
14481448cis-Muurola-3,5-diene0.07 ± 0.0316421638τ-Cadinol0.80 ± 0.03
14551452α-Humulene0.41 ± 0.0416421640τ-Muurolol0.62 ± 0.08
14711475trans-Cadina-1(6),4-diene0.25 ± 0.0316461644α-Muurolol (=δ-Cadinol)0.69 ± 0.07
14801484Germacrene D6.58 ± 0.0916481646Agarospirol II1.10 ± 0.04
14861488δ-Selinene0.27 ± 0.0216541652α-Cadinol2.31 ± 0.04
14881489β-Selinene0.17 ± 0.011668---Unidentifiedj5.72 ± 0.14
14911493trans-Muurola-4(14),5-diene0.69 ± 0.0317511759Cyclocolorenone23.38 ± 0.43
14941493epi-Cubebol1.81 ± 0.03 Green leaf volatiles1.94
14971500α-Muurolene0.34 ± 0.02 Monoterpene hydrocarbons2.53
1502---Unidentified d1.30 ± 0.02 Oxygenated monoterpenoids4.72
15121513γ-Cadinene0.21 ± 0.00 Sesquiterpene hydrocarbons19.14
15141514Cubebol4.18 ± 0.11 Oxygenated sesquiterpenoids57.90
15171522δ-Cadinene3.02 ± 0.25 Total Identified86.23
a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c MS(EI) (mass spectrum (electron impact)): 162(84%), 147(96%), 133(20%), 120(32%), 119(41%), 108(35%), 105(100%), 91(63%), 79(29%), 77(22%), 55(11%), 53(12%), 41(14%). d MS(EI): 202(7%), 187(9%), 162(68%), 159(31%), 147(50%), 145(32%), 132(49%), 119(66%), 105(89%), 91(48%), 81(18%), 79(20%), 77(16%), 59(100%), 43(20%), 41(20%). e MS(EI): 202(4%), 187(13%), 162(56%), 159(59%), 147(39%), 145(40%), 132(73%), 131(39%), 119(73%), 106(48%), 105(88%), 91(47%), 81(16%), 79(25%), 77(19%), 59(100%), 55(18%), 43(19%), 41(20%). f MS(EI): 220(24%), 205(17%), 163(19%), 120(35%), 110(100%), 105(20%), 95(35%), 69(44%), 55(20%), 41(24%). g MS(EI): 220(47%), 163(25%), 161(32%), 121(100%), 108(42%), 93(42%), 81(59%), 69(17%), 55(15%), 41(18%). h Correct isomer not identified. i MS(EI): 220(49%), 205(7%), 163(33%), 161(28%), 121(100%), 108(40%), 93(35%), 81(80%), 69(20%), 55(17%), 41(19%). j MS(EI): 202(46%), 187(67%), 174(40%), 162(60%), 159(100%), 147(89%), 134(30%), 131(23%), 119(62%), 105(71%), 91(50%), 59(61%), 43(20%), 41(22%).
Table 2. Major components and biological activities of Eupatorium essential oils.
Table 2. Major components and biological activities of Eupatorium essential oils.
Eupatorium spp. Essential OilLocationMajor ComponentsBiological ActivityRef.
E. adenophorum (aerial parts)Nainital, Indiacamphene (8.9%), p-cymene (16.6%), bornyl acetate (15.6%), amorph-4-en-7-ol (9.6%), α-cadinol (6.2%), amorpha-4,7(11)-dien-8-one (7.8%)none reported[47]
E. adenophorum (leaves)Palampur, Indiabornyl acetate (9.0%), germacrene D (5.7%), β-bisabolene (6.2%), 1-naphthalenol (17.5%), α-bisabolol (9.5%)Antibacterial (Rhodococcus rhodochrous, MBC 12.5 μL/mL)[48]
E. adenophorum (twigs)Uttar Pradesh, Indiacamphene (12.1%), α-phellandrene (8.6%), α-terpinene (6.5%), p-cymene (11.6%), bornyl acetate (10.6%), acoradiene (10.1%), α-bisabolol (5.3%)Antibacterial (Erwinia herbicola, MIC 0.25 μL/mL; Pseudomonas putida, MIC 2.0 μL/mL)[49]
E. adenophorum (inflorescence)Palampur, Indiabornyl acetate (6.3%), β-caryophyllene (5.4%), γ-muurolene (11.7%), γ-curcumene (5.7%), γ-cadinene (18.4%), 3-acetoxyamorpha-4,7(11)-dien-8-one (7.4%)Antifungal (Macrophomina phaseolina, EC50 0.076 μL/mL; Rhizoctonia solani, EC50 0.094 μL/mL; Fusarium oxysporum, EC50 0.120 μL/mL)[50]
E. amygdalinum (aerial parts)Amapá, Brazilβ-cubebene (5.7%), β-caryophyllene (12.3%), germacrene D (15.5%), δ-cadinene (5.8%), caryophyllene oxide (17.4%)none reported[51]
E. argentinum (leaves)Córdoba, Argentinaα-pinene (17.0%), β-pinene (6.1%), p-cymene (12.5%), thymyl acetate (9.7%), β-caryophyllene (7.2%)none reported[52]
E. arnottianum (aerial parts)Córdoba, Argentinaα-pinene (13.7%), p-cymene (30.0%), β-ocimene (5.3%), thymyl acetate (12.3%), β-caryophyllene (11.7%)none reported[53]
E. arnottianum (aerial parts)Córdoba, Argentinalimonene (32.7%), piperitenone (21.2%), trans-dihydrocarvone (10.2%), camphor (6.8%), cis-dihydrocarvone (6.7%)Antiviral (HSV-1, IC50 52.1 μg/mL; DENV-2, IC50 38.2 μg/mL)[54]
E. arnottii (aerial parts)San Luis, Argentinaβ-caryophyllene (7.9%), γ-elemene (5.9%), germacrene D (9.8%), cadinene (5.8%), spathulenol (10.6%), phytol (8.1%)Insecticidal (Tribolium castaneum, ED50 0.15 mg/cm2)[55]
E. ballotaefolium (aerial parts)Ceará, Brazilα-pinene (6.2%), sabinene (6.5%), β-pinene (5.4%), myrcene (7.3%), limonene (15.3%), (E)-β-ocimene (10.5%), β-caryophyllene (7.5%)none reported[56]
E. betonicaeforme (leaves)Ceará, Brazilβ-caryophyllene (36.1%), α-humulene (13.3%), γ-muurolene (20.3%), bicyclogermacrene (15.0%)Larvicidal (Aedes aegypti, LC50 129 μg/mL)[57]
E. buniifolium (aerial parts)Canelones, Uruguayα-pinene (14.7%), β-elemene (12.2%), germacrene D (11.5%), trans-β-guaiene (6.5%)none reported[58]
E. buniifolium (aerial parts)San Luis, Argentinaα-pinene (51.0%), sabinene (7.5%), limonene (9.6%), β-caryophyllene (5.2%)Insecticidal (Tribolium castaneum, ED50 0.15 mg/cm2)[55]
E. buniifolium (leaves)Canelones, Uruguayα-pinene (8.2%), germacrene D (11.1%), trans-β-guaiene (7.4%)Varroacide (Varroa destructor, LD99 0.3 mg/mL)[59]
E. cannabinum ssp. cannabinum (aerial parts)Agerola, Italyδ-2-carene (6.5%), germacrene D (33.5%), α-farnesene (12.9%)Antibacterial (Staphylococcus aureus, Streptococcus fecalis, Bacillus subtilis, Bacillus cereus, MIC 1.25 mg/mL)[60]
E. cannabinum (leaves)Tuscany, Italythymol methyl ether (7.8%), germacrene D (29.2%), spathulenol (7.3%)none reported[61]
E. cannabinum ssp. corsicum (aerial parts)Corsica, Franceα-phellandrene (19.0%), p-cymene (5.2%), germacrene D (28.5%)none reported[62]
E. cannabinum (aerial parts)Mazandaran, Iranα-terpinene (17.8%), thymol methyl ether (5.2%), germacrene D (9.1%)none reported[63]
E. cannabinum (leaves)Vilnius, Lithuaniathymol methyl ether (5.7%), neryl acetate (9.4%), germacrene D (11.3%), β-bisabolene (6.7%)none reported[64]
E. capillifolium (aerial parts)Cubap-cymene (23.7%), thymol methyl ether (8.9%), β-bisabolene (8.2%), selin-11-en-4α-ol (12.3%)none reported[65]
E. capillifolium (aerial parts)Mississippi, USAmyrcene (15.7%), α-phellandrene (6.5%), thymol methyl ether (36.3%), 2,5-dimethoxy-p-cymene (20.8%)Insecticidal (Stephanitis pyrioides, LC50 5800 μg/mL)[66]
E. catarium (aerial parts)Córdoba, Argentinaspathulenol (15.5%), β-caryophyllene (7.8%), germacrene D (5.5%), bicyclogermacrene (5.1%)Antiviral (HSV-1, IC50 47.9 μg/mL; DENV-2, IC50 57.3 μg/mL)[54]
E. conyzoides (aerial parts)Tocantins, Brazilβ-caryophyllene (7.1%), α-humulene (6.6%), germacrene D (16.8%), bicyclogermacrene (7.2%), spathulenol (8.3%)none reported[51]
E. glabratum (leaves)Michoacán, Méxicoα-pinene (29.5%), β-pinene (6.3%), α-phellandrene (19.6%)Insecticidal (Sitophilus zeamais, LC50 18.0 μL/mL)[67]
E. hecatanthum (leaves)Córdoba, Argentinaα-pinene (13.4%), β-pinene (7.8%), β-ocimene (6.2%), carvacrol (7.1%), thymyl acetate (10.6%), β-caryophyllene (8.1%)none reported[52]
E. inulaefolium (aerial parts)San Luis, Argentinalimonene (9.7%), δ-elemene (10.6%), β-caryophyllene (27.7%), α-humulene (5.9%), patchoulene (9.2%), germacrene D (13.7%), viridiflorol (9.2%)Insecticidal (Tribolium castaneum, ED50 0.15 mg/cm2)[55]
E. laevigatum (aerial parts)Roraima, Brazilgermacrene D (8.6%), selina-3,7(11)-diene (6.1%), spathulenol (5.4%), globulol (16.2%), laevigatin (23.6%)none reported[51]
E. laevigatum (leaves)Rio Grande do Sul, Brazilgermacrene D (11.7%), bicyclogermacrene (9.3%), laevigatin (59.6%)none reported[68]
E. macrophyllum (aerial parts)Chapada dos Guimarães, Brazilsabinene (46.7%), limonene (23.3%)none reported[51]
E. marginatum (aerial partsAnanindeua, Pará, Brazilar-curcumene (6.8%), α-zingiberene (57.5%), β-sesquiphellandrene (7.1%), (E)-γ-bisabolene (9.7%)none reported[51]
E. marginatum (aerial partsRoraima, Brazilα-gurjunene (19.5%), germacrene D (14.8%), α-selinene (9.0%), (E)-γ-bisabolene (5.0%)none reported[51]
E. odoratum (aerial parts)Thitsanulok, Thailandα-pinene (8.4%), β-pinene (5.6%), pregeijerene (17.6%), germacrene D (11.1%), β-caryophyllene (7.3%), vestitenone (6.5%)none reported[69]
E. odoratum (leaves)Lagos, Nigeriaα-pinene (42.2%), β-pinene (10.6%), β-caryophyllene (5.4%), germacrene D (9.7%), β-copaen-4α-ol (9.4%)Antibacterial (Bacillus cereus, MIC 39 μg/mL), antifungal (Aspergillus niger, MIC 78 μg/mL)[70]
E. odoratum (aerial parts)Western Ghats, Indiacis-sabinene hydrate (5.7%), pregeijerene (14.2%), epi-cubebol (9.8%), cubebol (8.6%)none reported[71]
E. squalidum (aerial parts)Amapá, Brazilβ-caryophyllene (6.2%), germacrene D (21.6%), bicyclogermacrene (6.0%), spathulenol (14.2%), globulol (25.1%)none reported[51]
E. squalidum (aerial parts)Tocantins, Brazillimonene (6.6%), β-caryophyllene (9.6%), germacrene D (10.4%), caryophyllene oxide (30.1%)none reported[51]
E. subhastatum (leaves)Córdoba, Argentinaα-pinene (11.0%), β-pinene (5.9%), p-cymene (24.8%), α-copaene (5.1%), α-humulene (5.1%)none reported[52]
E. triplinerve (leaves)Lucknow, Indiaδ-elemene (5.9%), β-caryophyllene (14.7%), selina-4(15),7(11)-dien-8-onenone reported[72]
E. viscidum (aerial parts)San Luis, Argentina6-methyl-5-hepten-2-one (18.2%), spathulenol (25.2%)Insecticidal (Tribolium castaneum, ED50 > 0.212 mg/cm2)[55]
Table 3. Chemical composition of the essential oil of Eurybia macrophylla (L.) Cass.
Table 3. Chemical composition of the essential oil of Eurybia macrophylla (L.) Cass.
RI aRI bCompound% ± SDRI aRI bCompound% ± SD
801797(3Z)-Hexenal0.06 ± 0.0113871389β-Elemene1.48 ± 0.04
802801Hexanal0.31 ± 0.0514181417β-Caryophyllene4.60 ± 0.07
850846(2E)-Hexenal1.44 ± 0.0614271434γ-Elemene3.16 ± 0.01
8658631-Hexanol0.11 ± 0.0214311432trans-α-Bergamotene0.05 ± 0.02
924924α-Thujene0.16 ± 0.0114541452α-Humulene0.64 ± 0.01
932974α-Pinene3.12 ± 0.0414731471Massoia lactone0.35 ± 0.04
948946Camphene0.60 ± 0.0014801484Germacrene D19.81 ± 0.20
971969Sabinene0.15 ± 0.0214871489β-Selinene0.31 ± 0.05
977974β-Pinene8.57 ± 0.0714941500Bicyclogermacrene1.95 ± 0.02
988988Myrcene1.79 ± 0.0214971500α-Muurolene0.16 ± 0.03
989988Dehydro-1,8-cineole0.28 ± 0.0115161522δ-Cadinene0.19 ± 0.02
10061002α-Phellandrene0.88 ± 0.0115361537α-Cadinene0.10 ± 0.02
10161014α-Terpinene0.16 ± 0.0215571559Germacrene B7.07 ± 0.07
10241020p-Cymene0.15 ± 0.0115751577Spathulenol0.10 ± 0.01
10281024Limonene28.66 ± 0.3315811582Caryophyllene oxide0.38 ± 0.01
10301025β-Phellandrene0.75 ± 0.0315951592Viridiflorol0.23 ± 0.03
10341032(Z)-β-Ocimene0.18 ± 0.0016271629iso-Spathulenol0.08 ± 0.01
10441044(E)-β-Ocimene2.14 ± 0.0216411638τ-Cadinol0.09 ± 0.02
10571054γ-Terpinene0.37 ± 0.0116431640τ-Murrolol0.12 ± 0.03
10841086Terpinolene5.35 ± 0.0816461644α-Muurolol (=δ-Cadinol)0.10 ± 0.01
11121114(E)-4,8-Dimethylnona-1,3,7-triene0.35 ± 0.0116541652α-Cadinol0.47 ± 0.02
11241118cis-p-Menth-2-en-1-ol0.72 ± 0.0118321835Neophytadiene0.05 ± 0.02
11421136trans-p-Menth-2-en-1-ol0.44 ± 0.0118381841Phytone0.05 ± 0.02
11871179p-Cymen-8-ol0.21 ± 0.03 Green leaf volatiles1.91
11951186α-Terpineol0.06 ± 0.02 Monoterpene hydrocarbons53.03
11971195cis-Piperitol0.15 ± 0.02 Oxygenated monoterpenoids2.30
12091207trans-Piperitol0.17 ± 0.01 Sesquiterpene hydrocarbons40.03
12831287Bornyl acetate0.27 ± 0.10 Oxygenated sesquiterpenoids1.59
12921293Undecan-2-one0.05 ± 0.01 Diterpenoids0.11
13331335δ-Elemene0.50 ± 0.00 Others0.75
Total Identified99.72
a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases.
Table 4. Chemical composition of the essential oil of Eutrochium purpureum (L.) E.E. Lamont.
Table 4. Chemical composition of the essential oil of Eutrochium purpureum (L.) E.E. Lamont.
RI aRI bCompound% ± SDRI aRI bCompound% ± SD
801797(3Z)-Hexenal1.01 ± 0.1112061201Decanal0.37 ± 0.05
802801Hexanal6.78 ± 0.1713511356Eugenol11.68 ± 0.14
850946(2E)-Hexenal60.59 ± 1.0014171417β-Caryophyllene0.24 ± 0.02
8659631-Hexanol2.35 ± 0.4114791484Germacrene D0.67 ± 0.10
931932α-Pinene1.48 ± 0.0915591561(E)-Nerolidol0.50 ± 0.01
943---Unidentified c0.56 ± 0.07 Green leaf volatiles71.47
1004998Octanal0.33 ± 0.04 Monoterpene hydrocarbons2.36
10051004(3Z)-Hexenyl acetate0.72 ± 0.12 Sesquiterpene hydrocarbons0.91
10281024Limonene0.88 ± 0.07 Oxygenated sesquiterpenoids0.50
10451036Benzene acetaldehyde0.60 ± 0.03 Benzenoids22.59
11051100Nonanal0.91 ± 0.19 Fatty aldehydes1.61
11921190Methyl salicylate10.31 ± 0.18 Total Identified99.44
a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c MS(EI): 208(8%), 97(100%), 96(17%), 86(9%), 69(12%), 56(22%), 55(64%), 43(18%).
Table 5. Chemical composition of the essential oil of Polymnia canadensis L.
Table 5. Chemical composition of the essential oil of Polymnia canadensis L.
RI aRI bCompound% ± SDRI aRI bCompound% ± SD
802801Hexanal0.28 ± 0.0414171417β-Caryophyllene3.05 ± 0.02
8117962-Hexanol0.17 ± 0.0114281430β-Copaene0.09 ± 0.02
850850(3Z)-Hexenol4.31 ± 0.1614461453Geranyl acetone0.17 ± 0.01
861854(2E)-Hexenol0.08 ± 0.0114541452α-Humulene1.14 ± 0.00
8648631-Hexanol0.30 ± 0.0214581458allo-Aromadendrene0.17 ± 0.02
921921Tricyclene0.07 ± 0.0114791484Germacrene D11.42 ± 0.01
924924α-Thujene0.06 ± 0.0114841486Phenylethyl 2-methylbutanoate0.18 ± 0.04
932932α-Pinene19.71 ± 0.1114871489β-Selinene0.41 ± 0.03
948946Camphene0.80 ± 0.0114901490Phenylethyl 3-methylbutanoate0.09 ± 0.01
971969Sabinene1.96 ± 0.0014931500Bicyclogermacrene1.03 ± 0.00
976974β-Pinene0.87 ± 0.0114961500α-Muurolene0.12 ± 0.01
987988Myrcene0.53 ± 0.0115021509Lavandulyl 3-methylbutanoate0.76 ± 0.01
10061002α-Phellandrene28.30 ± 0.1615111513γ-Cadinene0.21 ± 0.01
10161014α-Terpinene0.09 ± 0.0115151518Bornyl 3-methylbutanoate0.39 ± 0.01
10241020p-Cymene4.42 ± 0.0215161522δ-Cadinene0.36 ± 0.01
10281024Limonene0.38 ± 0.0115271529Kessane0.59 ± 0.04
10301025β-Phellandrene0.06 ± 0.0215351534Liguloxide0.84 ± 0.01
10341032(Z)-β-Ocimene0.17 ± 0.0115591561(E)-Nerolidol1.71 ± 0.01
10441044(E)-β-Ocimene0.19 ± 0.0115651565Thymyl 2-methylbutanoate0.69 ± 0.01
10571054γ-Terpinene0.09 ± 0.0115681570Neryl 2-methylbutanoate0.76 ± 0.01
10691065cis-Sabinene hydrate0.08 ± 0.0115751574Germacrene D-4β-ol0.18 ± 0.01
10841086Terpinolene0.07 ± 0.0115811582Caryophyllene oxide0.21 ± 0.02
10991095Linalooltr c16081613Copaborneol0.18 ± 0.05
11011098trans-Sabinene hydratetr16411638τ-Cadinol0.59 ± 0.02
11411135trans-Pinocarveol0.08 ± 0.0216541652α-Cadinol0.81 ± 0.02
11451140trans-Verbenol0.14 ± 0.0116571658Selin-11-en-4α-ol0.15 ± 0.01
11631165Lavandulol0.12 ± 0.0116841685Germacra-4(15),5,10(14)-trien-1α-ol0.49 ± 0.03
11721165Borneol0.11 ± 0.01169316956-epi-Shyobunol0.20 ± 0.02
11801174Terpinen-4-ol0.26 ± 0.002227dKauran-16β-ol3.48 ± 0.01
12081204Verbenone0.06 ± 0.012243dKauran-16α-ol0.17 ± 0.02
12281232Thymol methyl ether2.89 ± 0.01 Green leaf volatiles5.13
134213457-epi-Silphiperfol-5-ene0.59 ± 0.02 Monoterpene hydrocarbons57.78
13511356Eugenol0.18 ± 0.03 Oxygenated monoterpenoids6.34
13671369Cyclosativene0.08 ± 0.01 Sesquiterpene hydrocarbons18.92
13671371Longicyclenetr Oxygenated sesquiterpenoids5.96
13721377Silphiperol-6-ene0.06 ± 0.00 Diterpenoids3.65
13741374α-Copaene0.12 ± 0.01 Benzenoids0.45
13801382Modheph-2-ene0.11 ± 0.00 Others0.17
13861387β-Cubebene0.06 ± 0.01 Total Identified98.40
13871389β-Elemene0.50 ± 0.01
a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c tr = “trace” (<0.05%). d Assignment tentative; based on MS only.
Table 6. Chemical composition of the essential oil of Rudbeckia laciniata L.
Table 6. Chemical composition of the essential oil of Rudbeckia laciniata L.
RI aRI bCompound% ± SDRI aRI bCompound% ± SD
802801Hexanal0.05 ± 0.0012061204Verbenone0.10 ± 0.03
8107962-Hexanol0.34 ± 0.0112181215trans-Carveol0.25 ± 0.06
922921Tricyclene0.10 ± 0.0012321226cis-Carveol0.07 ± 0.02
924924α-Thujene0.10 ± 0.0112431239Carvone0.49 ± 0.02
932932α-Pinene10.18 ± 0.0612831287Bornyl acetate2.68 ± 0.02
948946Camphene2.24 ± 0.0213491350α-Longipinene0.08 ± 0.02
971969Sabinene0.90 ± 0.0113681369Cyclosativene0.06 ± 0.02
977974β-Pinene9.21 ± 0.0513751374α-Copaene0.16 ± 0.01
988988Myrcene5.26 ± 0.0213911390Sativene0.05 ± 0.01
10041003p-Mentha-1(7),8-diene0.07 ± 0.0114171419β-Ylangenetr
10241020p-Cymene0.11 ± 0.0114181417β-Caryophyllene0.43 ± 0.03
10291024Limonene58.07 ± 0.4714281434γ-Elemene0.07 ± 0.00
10301025β-Phellandrene0.74 ± 0.0814311432trans-α-Bergamotene0.19 ± 0.02
10341032(Z)-β-Ocimene0.09 ± 0.0114541452α-Humulene0.12 ± 0.01
10441044(E)-β-Ocimene1.07 ± 0.0314731478γ-Muurolene0.05 ± 0.01
10691067cis-Linalool oxide (furanoid)0.19 ± 0.0014801484Germacrene D2.52 ± 0.02
10851084trans-Linalool oxide (furanoid)0.05 ± 0.0114821484(Z,Z)-α-Farnesene0.05 ± 0.01
11211119trans-p-Mentha-2,8-dien-1-ol0.37 ± 0.0114941500Bicyclogermacrene0.06 ± 0.01
11301131Limona ketone0.06 ± 0.0114971500α-Muurolene0.07 ± 0.01
11321132cis-Limonene oxide0.20 ± 0.0015141514Cubebol0.12 ± 0.01
11361133cis-p-Mentha-2,8-dien-1-ol0.26 ± 0.0115171522δ-Cadinene0.15 ± 0.01
11361137trans-Limonene oxide0.27 ± 0.0115751574Germacra-1(10),5-dien-4β-ol0.20 ± 0.02
11381135Nopinone0.06 ± 0.0115811582Caryophyllene oxide0.19 ± 0.03
11401135trans-Pinocarveol0.19 ± 0.0315911594Salvial-4(14)-en-1-onetr
11451140trans-Verbenol0.07 ± 0.0116011594Carotol0.18 ± 0.01
11621160Pinocarvone0.12 ± 0.0016201611Germacra-1(10),5-dien-4α-ol0.20 ± 0.01
11711165Borneol0.11 ± 0.02 Green leaf volatiles0.39
117811792-Isopropenyl-5-methyl-4-hexenal0.08 ± 0.01 Monoterpene hydrocarbons88.15
11801174Terpinen-4-ol0.11 ± 0.02 Oxygenated monoterpenoids6.18
11871183Cryptone0.10 ± 0.01 Sesquiterpene hydrocarbons4.06
11951195Myrtenal0.23 ± 0.02 Oxygenated sesquiterpenoids0.89
11971200trans-Dihydrocarvone tr c Total Identified99.67
11991195cis-Piperitol0.11 ± 0.07
a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c tr = “trace” (<0.05%).
Table 7. Chemical composition of the essential oil of Silphium integrifolium Michx.
Table 7. Chemical composition of the essential oil of Silphium integrifolium Michx.
RI aRI bCompound% ± SDRI aRI bCompound% ± SD
800797(3Z)-Hexenaltr c13871387β-Cubebenetr
801801Hexanal0.07 ± 0.0213881389β-Elemene0.06 ± 0.01
8107962-Hexanoltr14171419β-Ylangenetr
849846(2E)-Hexenal0.33 ± 0.0214181417β-Caryophyllene2.50 ± 0.02
850844(3E)-Hexenol0.27 ± 0.0414291430β-Copaenetr
922921Tricyclene0.12 ± 0.0014321432trans-α-Bergamotene0.13 ± 0.02
925924α-Thujene0.19 ± 0.0014541452α-Humulene1.07 ± 0.02
933932α-Pinene58.59 ± 0.21146914714,5-di-epi-Aristolochene0.05 ± 0.00
947945α-Fenchenetr14731478γ-Muurolene0.06 ± 0.01
949946Camphene2.44 ± 0.0214801484Germacrene D2.95 ± 0.01
971969Sabinene1.78 ± 0.0014821484(Z,Z)-α-Farnesene0.10 ± 0.01
977974β-Pinene14.69 ± 0.0714881489β-Selinene0.15 ± 0.01
988988Myrcene9.70 ± 0.0214911493trans-Muurola-4(14),5-dienetr
10041003p-Mentha-1(7),8-dienetr14941500Bicyclogermacrene0.08 ± 0.00
10241020p-Cymenetr14971500α-Muurolenetr
10281024Limonene1.76 ± 0.0115121513γ-Cadinenetr
10301025β-Phellandrene0.31 ± 0.0315171522δ-Cadinene0.10 ± 0.02
10341032(Z)-β-Ocimene0.05 ± 0.0115751574Germacra-1(10),5-dien-4β-ol0.27 ± 0.02
10441044(E)-β-Ocimene0.44 ± 0.0315811582Caryophyllene oxide0.47 ± 0.01
10571054γ-Terpinenetr16091608Humulene epoxide II0.13 ± 0.01
10851086Terpinolenetr20192026(E,E)-Geranyl linalool0.06 ± 0.01
10991099α-Pinene oxide0.10 ± 0.01222822377α-Hydroxymanool0.16 ± 0.02
11121113(E)-4,8-Dimethylnona-1,3,7-trienetr23002300Tricosanetr
11261122α-Campholenaltr25002500Pentacosane0.16 ± 0.01
11401135trans-Pinocarveoltr27002700Heptacosane0.16 ± 0.02
11451140trans-Verbenol0.11 ± 0.02 Green leaf volatiles0.66
11621160Pinocarvonetr Monoterpene hydrocarbons90.09
11801174Terpinen-4-oltr Oxygenated monoterpenoids0.38
11951195Myrtenal0.06 ± 0.01 Sesquiterpene hydrocarbons7.37
12061204Verbenone0.10 ± 0.02 Oxygenated sesquiterpenoids1.09
13681369Cyclosativene0.06 ± 0.00 Others0.32
13751374α-Copaene0.08 ± 0.01 Total Identified99.90
13831387β-Bourbonenetr
a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c tr = “trace” (<0.05%).
Table 8. Chemical composition of the essential oil of Smallanthus uvedalia (L.) Mack.
Table 8. Chemical composition of the essential oil of Smallanthus uvedalia (L.) Mack.
RI aRI bCompound% ± SDRI aRI bCompound% ± SD
7958012-Methylhept-2-ene0.10 ± 0.0012071204Verbenone0.09 ± 0.01
801801Hexanal0.86 ± 0.1613461345α-Cubebene0.15 ± 0.04
850846(2E)-Hexenal1.40 ± 0.0913821387β-Bourbonene0.15 ± 0.02
8658631-Hexanol0.22 ± 0.0114181417β-Caryophyllene3.80 ± 0.07
922921Tricyclene0.08 ± 0.0014541452α-Humulene0.36 ± 0.02
924924α-Thujene1.28 ± 0.0214731478γ-Muurolene0.56 ± 0.12
932932α-Pinene62.56 ± 0.7915121513γ-Cadinene0.29 ± 0.09
948946Camphene1.35 ± 0.0115171522δ-Cadinene0.63 ± 0.03
971969Sabinene0.16 ± 0.0315361537α-Cadinene0.22 ± 0.04
977974β-Pinene6.00 ± 0.0915761577Spathulenol0.58 ± 0.11
988988Myrcene2.43 ± 0.0715811582Caryophyllene oxide1.37 ± 0.02
10241020p-Cymene0.15 ± 0.01 Green leaf volatiles2.48
10281024Limonene11.43 ± 0.11 Monoterpene hydrocarbons88.28
10301025β-Phellandrene0.70 ± 0.10 Oxygenated monoterpenoids0.74
10441044(E)-β-Ocimene1.87 ± 0.09 Sesquiterpene hydrocarbons6.16
10571054γ-Terpinene0.26 ± 0.01 Oxygenated sesquiterpenoids1.95
11261122α-Campholenal0.29 ± 0.01 Others0.10
11401135trans-Pinocarveol0.23 ± 0.04 Total Identified99.71
11451140trans-Verbenol0.14 ± 0.05
a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases.
Table 9. Chemical composition of the essential oil of Solidago altissima L.
Table 9. Chemical composition of the essential oil of Solidago altissima L.
RI aRI bCompound% ± SDRI aRI bCompound% ± SD
802801Hexanal0.17 ± 0.0113821387β-Bourbonenetr
850846(2E)-Hexenal1.21 ± 0.0313861387β-Cubebene0.10 ± 0.01
921921Tricyclene0.06 ± 0.0013871389β-Elemene0.18 ± 0.00
924924α-Thujene1.30 ± 0.0014161419β-Ylangene0.14 ± 0.01
931932α-Pinene13.91 ± 0.0414181417β-Caryophyllene0.50 ± 0.03
948946Camphene2.41 ± 0.0114281430β-Copaene0.14 ± 0.01
971969Sabinene14.25 ± 0.0314541452α-Humulene0.17 ± 0.00
976974β-Pinene4.62 ± 0.0214731478γ-Muurolene0.59 ± 0.03
988988Myrcene20.29 ± 0.0414771483α-Amorphene0.12 ± 0.02
10051004(3Z)-Hexenyl acetatetr c14791484Germacrene D10.67 ± 0.03
10061002α-Phellandrene2.84 ± 0.0214871489β-Selinenetr
10161014α-Terpinene0.10 ± 0.0014901495γ-Amorphene0.59 ± 0.01
10241020p-Cymene2.26 ± 0.0014941500Bicyclogermacrene0.18 ± 0.00
10281024Limonene1.27 ± 0.0114961500α-Muurolene0.14 ± 0.01
10301025β-Phellandrene0.35 ± 0.0115111513γ-Cadinene0.30 ± 0.01
10441044(E)-β-Ocimene0.08 ± 0.0115131514Cubebol0.06 ± 0.02
10571054γ-Terpinene0.38 ± 0.0015161522δ-Cadinene0.68 ± 0.02
10691065cis-Sabinene hydrate0.24 ± 0.0015351537α-Cadinene0.09 ± 0.01
10841086Terpinolene0.15 ± 0.0115471548Elemol0.06 ± 0.01
109010906,7-Epoxymyrcene0.05 ± 0.0015751574Germacra-1(10),5-dien-4β-ol0.14 ± 0.01
10991099α-Pinene oxidetr15811582Caryophyllene oxide0.06 ± 0.01
11011098trans-Sabinene hydrate0.15 ± 0.0015911594Salvial-4(14)-en-1-one0.06 ± 0.01
11051100Nonanaltr16191611Germacra-1(10),5-dien-4α-ol0.12 ± 0.01
11121113(E)-4,8-Dimethylnona-1,3,7-triene0.11 ± 0.0316271629iso-Spathulenol0.20 ± 0.01
11241124cis-p-Menth-2-en-1-ol0.05 ± 0.0016411638τ-Cadinol0.09 ± 0.02
11801174Terpinen-4-ol0.73 ± 0.0116431640τ-Murrolol0.14 ± 0.01
11951186α-Terpineol0.06 ± 0.0116451644α-Muurolol (=δ-Cadinol)0.10 ± 0.01
12031202cis-Sabinol0.50 ± 0.0116541652α-Cadinol0.41 ± 0.03
12191219cis-Sabinene hydrate acetate0.15 ± 0.01 Green leaf volatiles1.38
12831287Bornyl acetate14.44 ± 0.02 Monoterpene hydrocarbons64.26
13331335δ-Elemene0.05 ± 0.00 Oxygenated monoterpenoids16.37
13451345α-Cubebene0.12 ± 0.00 Sesquiterpene hydrocarbons14.90
13671373α-Ylangenetr Oxygenated sesquiterpenoids1.44
13681373Linalyl isobutyratetr Others0.11
13741374α-Copaene0.05 ± 0.00 Total Identified98.45
a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases. c tr = “trace” (<0.05%).
Table 10. Comparison of the major components in Solidago altissima (syn. S. canadensis) essential oils.
Table 10. Comparison of the major components in Solidago altissima (syn. S. canadensis) essential oils.
ComponentSource of S. altissima (S. canadensis)
Commercial (Young Living)
[85]
Bimtal, India
[86]
Bimtal, India
[87]
Slovakia
[88]
Moscow, Russia
[89]
Slovakia
[90]
Hungary
[91]
Giza, Egypt
[92]
Poland
[82]
Alabama (This Work)
α-Pinene13.35.00.41.8–36.328.111.64.629.214.713.9
Sabinene8.02.40.3---0.53.90.1---0.214.2
β-Pinene---1.20.20.5–6.52.83.11.24.81.54.6
Myrcene6.32.8------7.3---tr13.74.220.2
Limonene11.012.54.24.3-9.07.012.51.09.69.31.3
Bornyl acetate4.32.13.4---7.36.313.46.21.314.4
Germacrene D34.456.764.10.0–11.139.234.911.010.319.810.6
Table 11. Chemical composition of the essential oil of Xanthium strumarium L.
Table 11. Chemical composition of the essential oil of Xanthium strumarium L.
RI aRI bCompound% ± SDRI aRI bCompound% ± SD
7937881-Octene0.09 ± 0.0114171417β-Caryophyllene0.93 ± 0.04
801797(3Z)-Hexenal0.11 ± 0.0114281430β-Copaene0.06 ± 0.01
802801Hexanal0.75 ± 0.0714541452α-Humulene0.49 ± 0.03
859846(2E)-Hexenal5.79 ± 0.0314791484Germacrene D13.92 ± 0.05
8658631-Hexanol0.12 ± 0.0114871489β-Selinene0.11 ± 0.01
921921Tricyclene0.05 ± 0.0114931500Bicyclogermacrene0.29 ± 0.01
924924α-Thujene0.08 ± 0.0314961500α-Muurolene0.13 ± 0.01
931932α-Pinene0.80 ± 0.0115111513γ-Cadinene0.19 ± 0.01
948946Camphene0.95 ± 0.0215161522δ-Cadinene0.27 ± 0.03
971969Sabinene4.89 ± 0.0215751547Germacra-1(10),5-dien-4β-ol0.21 ± 0.01
976974β-Pinene0.30 ± 0.0115811582Caryophyllene oxide0.23 ± 0.01
9789741-Octen-3-ol0.20 ± 0.0216411638τ-Cadinol0.31 ± 0.02
987988Myrcene14.31 ± 0.0416431640τ-Muurolol0.23 ± 0.02
10041003p-Mentha-1(7),8-diene0.05 ± 0.0116541652α-Cadinol0.59 ± 0.05
10161014α-Terpinene0.06 ± 0.0116631668ar-Turmerone0.10 ± 0.01
10281024Limonene48.23 ± 0.2216931688Shyobunol0.27 ± 0.03
10301025β-Phellandrene0.90 ± 0.0319321931Beyerene0.64 ± 0.02
10441044(E)-β-Ocimene0.10 ± 0.0221052106(E)-Phytol0.25 ± 0.03
10571054γ-Terpinene0.16 ± 0.01 Green leaf volatiles6.77
10691067cis-Linalool oxide (furanoid)0.06 ± 0.01 Monoterpene hydrocarbons70.87
10991095Linalool1.16 ± 0.01 Oxygenated monoterpenoids2.22
11801174Terpinen-4-ol0.39 ± 0.01 Sesquiterpene hydrocarbons16.58
12191217β-Cyclocitral0.11 ± 0.02 Oxygenated sesquiterpenoids1.95
12831287Bornyl acetate0.56 ± 0.01 Diterpenoids0.89
13511356Eugenol0.28 ± 0.03 Benzenoids0.28
13861387β-Cubebene0.10 ± 0.02 Others0.29
14161419β-Ylangene0.08 ± 0.03 Total Identified99.85
a RI = Retention index determined in reference to a homologous series of n-alkanes on a ZB-5ms column. b RI values from the databases.
Table 12. Major components and antifungal activities of Asteraceae essential oils.
Table 12. Major components and antifungal activities of Asteraceae essential oils.
Plant SpeciesMajor Components (>5%) in the Essential OilAntifungal Activity, MIC, μg/mL a
Aspergillus nigerCandida albicansCryptococcus neoformans
Eupatorium serotinum Michx.germacrene D (6.6%), palustrol (5.4%), cyclocolorenone (23.5%)31362578
Eurybia macrophylla (L.) Cass.β-pinene (8.5%), limonene (28.6%), terpinolene (5.3%), germacrene D (19.7%), germacrene B (7.0%)625625156
Eutrochium purpureum (L.) E.E. Lamonthexanal (6.8%), (2E)-hexenal (59.7%), methyl salicylate (10.4%), eugenol (11.8%)625625625
Polymnia canadensis L.α-pinene (19.6%), α-phellandrene (28.2%), germacrene D (11.4%)625625156
Rudbeckia laciniata L.α-pinene (10.2%), β-pinene (9.2%), myrcene (5.3%), limonene (58.9%)6251250156
Silphium integrifolium Michx.α-pinene (58.5%), β-pinene (14.7%), myrcene (9.7%)n.t. bn.t.n.t.
Smallanthus uvedalia (L.) Mack.α-pinene (62.3%), β-pinene (6.0%), limonene (11.3%)n.t.n.t.n.t.
Solidago altissima L.α-pinene (13.9%), sabinene (14.2%), myrcene (20.2%), bornyl acetate (14.4%), germacrene D (10.6%)6251250313
Xanthium strumarium L.(2E)-hexenal (5.8%), myrcene (14.3%), limonene (48.0%), germacrene D (13.9%)6251250n.t.
a Each minimum inhibitory concentration (MIC) determination was carried out in triplicate. b n.t. = not tested due to limited availability of the essential oil.
Table 13. Antifungal activities (MIC, μg/mL) of essential oil components.
Table 13. Antifungal activities (MIC, μg/mL) of essential oil components.
CompoundAspergillus nigerCandida albicansCryptococcus neoformans
α-Pinene1250625313
β-Pinene6251250625
Limonene6251250625
Myrcene625625625
Methyl salicylate625625625
Eugenol78313156
Bornyl acetate625625625
Table 14. Plant collection sites and essential oil yields of Asteraceae from north Alabama.
Table 14. Plant collection sites and essential oil yields of Asteraceae from north Alabama.
PlantCollection Site, DateVoucher NumberMass of Aerial Parts (g)Yield of Essential Oil (mg)
Eupatorium serotinum Michx.34°38′29″ N, 86°24′39″ W,
elev. 199 m
13 September 2018
23375449.096.4 (0.013%)
Eurybia macrophylla (L.) Cass.34°39′25″ N, 86°24′45″ W,
elev. 241 m
15 September 2018
23311756.5610.6 (0.019%)
Eutrochium purpureum (L.) E.E. Lamont34°38′40″ N, 86°27′22″ W,
elev. 180 m
12 August 2018
09184363.4412.3 (0.019%)
Polymnia canadensis L.34°38′29″ N, 86°24′39″ W,
elev. 199 m
21 July 2018
18470052.8939.1 (0.074%)
Rudbeckia laciniata L.34°42′42″ N, 86°32′38″ W,
elev. 345 m
13 September 2018
00442654.536.0 (0.011%)
Silphium integrifolium Michx.34°42′42″ N, 86°32′38″ W,
elev. 345 m
15 September 2018
00415215.026.4 (0.043%)
Smallanthus uvedalia (L.) Mack.34°42′42″ N, 86°32′38″ W,
elev. 345 m
15 September 2018
00071456.215.9 (0.010%)
Solidago altissima L.34°38′40″ N, 86°27′22″ W,
elev. 180 m
12 August 2018
00142554.4144.9 (0.083%)
Xanthium strumarium L.34°38′49″ N, 86°24′38″ W,
elev. 200 m
15 September 2018
22472469.697.0 (0.010%)

Share and Cite

MDPI and ACS Style

Lawson, S.K.; Sharp, L.G.; Powers, C.N.; McFeeters, R.L.; Satyal, P.; Setzer, W.N. Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae. Plants 2020, 9, 126. https://doi.org/10.3390/plants9010126

AMA Style

Lawson SK, Sharp LG, Powers CN, McFeeters RL, Satyal P, Setzer WN. Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae. Plants. 2020; 9(1):126. https://doi.org/10.3390/plants9010126

Chicago/Turabian Style

Lawson, Sims K., Layla G. Sharp, Chelsea N. Powers, Robert L. McFeeters, Prabodh Satyal, and William N. Setzer. 2020. "Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae" Plants 9, no. 1: 126. https://doi.org/10.3390/plants9010126

APA Style

Lawson, S. K., Sharp, L. G., Powers, C. N., McFeeters, R. L., Satyal, P., & Setzer, W. N. (2020). Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae. Plants, 9(1), 126. https://doi.org/10.3390/plants9010126

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop