Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae
Abstract
:1. Introduction
2. Results and Discussion
2.1. Eupatorium serotinum Michx.
2.2. Eurybia macrophylla (L.) Cass.
2.3. Eutrochium purpureum (L.) E.E. Lamont (syn. Eupatorium purpureum L.)
2.4. Polymnia canadensis L.
2.5. Rudbeckia laciniata L.
2.6. Silphium integrifolium Michx.
2.7. Smallanthus uvedalia (L.) Mack.
2.8. Solidago altissima L. (syn. Solidago canadensis L.)
2.9. Xanthium strumarium L.
2.10. Antifungal Screening
3. Materials and Methods
3.1. Plant Material
3.2. Gas Chromatography–Mass Spectrometry
3.3. Gas Chromatography–Flame Ionization Detection
3.4. Antifungal Screening
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- NCCIH Ayurvedic Medicine: In Depth. Available online: https://nccih.nih.gov/health/ayurveda/introduction.htm (accessed on 17 July 2019).
- Shang, A.; Huwiler, K.; Nartey, L.; Jüni, P.; Egger, M. Placebo-controlled trials of Chinese herbal medicine and conventional medicine—Comparative study. Int. J. Epidemiol. 2007, 36, 1086–1092. [Google Scholar] [CrossRef] [Green Version]
- Avicenna. Canon of Medicine; Kazi Publications: Chicago, IL, USA, 2015; ISBN 978-1567442243. [Google Scholar]
- Setzer, W.N. The phytochemistry of Cherokee aromatic medicinal plants. Medicines 2018, 5, 121. [Google Scholar] [CrossRef] [Green Version]
- Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/MapGallery/County/Conoclinium coelestinum.png (accessed on 7 August 2019).
- Moerman, D.E. Native American Ethnobotany; Timber Press, Inc.: Portland, OR, USA, 1998. [Google Scholar]
- Herz, W.; de Groote, R.; Murari, R.; Kumar, N.; Blount, J.F. Sesquiterpene lactones of Eupatorium serotinum. J. Org. Chem. 1979, 44, 2784–2788. [Google Scholar] [CrossRef]
- Bohlmann, F.; Zdero, C.; King, R.M.; Robinson, H. Further germacranolides from Eupatorium serotinum. Planta Med. 1985, 51, 76–77. [Google Scholar] [CrossRef]
- Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Eurybia (accessed on 17 July 2019).
- Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Eutrochium (accessed on 17 July 2019).
- Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Polymnia (accessed on 17 July 2019).
- Bohlmann, F.; Zdero, C.; King, R.M.; Robinson, H. Ein neues germacran-8.12-olid und neue diterpene aus Polymnia canadensis. Phytochemistry 1980, 19, 115–118. [Google Scholar] [CrossRef]
- Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Rudbeckia (accessed on 17 July 2019).
- Missouri Botanical Garden Tropicos.org. Available online: www.tropicos.org (accessed on 21 December 2019).
- Weakley, A.S. Flora of the Southern and Mid-Atlantic States. Available online: http://www.herbarium.unc.edu/flora.htm (accessed on 17 July 2019).
- Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Silphium (accessed on 17 July 2019).
- Kowalski, R. Secondary metabolites in Silphium integrifolium in the first 2 years of cultivation. N. Z. J. Crop Hortic. Sci. 2004, 32, 397–406. [Google Scholar] [CrossRef]
- Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Smallanthus (accessed on 17 July 2019).
- Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Solidago (accessed on 17 July 2019).
- Reznicek, G.; Jurenitsch, J.; Plasun, M.; Korhammer, S.; Haslinger, E.; Hiller, K.; Kubelka, W. Four major saponins from Solidago canadensis. Phytochemistry 1991, 30, 1629–1633. [Google Scholar] [CrossRef]
- Reznicek, G.; Jurenitsch, J.; Freiler, M.; Korhammer, S.; Haslinger, E.; Hiller, K.; Kubelka, W. Isolation and structure elucidation of further new saponins from Solidago canadensis. Planta Med. 1992, 58, 94–98. [Google Scholar] [CrossRef]
- Apáti, P.; Szentmihályi, K.; Balázs, A.; Baumann, D.; Hamburger, M.; Kristó, T.S.; Szőke, É.; Kéry, Á. HPLC Analysis of the flavonoids in pharmaceutical preparations from Canadian goldenrod (Solidago canadensis). Chromatographia 2002, 56, S65–S68. [Google Scholar] [CrossRef]
- Wu, B.; Takahashi, T.; Kashiwagi, T.; Tebayashi, S.; Kim, C.-S. New flavonoid glycosides from the leaves of Solidago altissima. Chem. Pharm. Bull. 2007, 55, 815–816. [Google Scholar] [CrossRef] [Green Version]
- Radusiene, J.; Marska, M.; Ivanauskas, L.; Jakstas, V.; Karpaviciene, B. Assessment of phenolic compound accumulation in two widespread goldenrods. Ind. Crops Prod. 2015, 63, 158–166. [Google Scholar] [CrossRef]
- Ichihara, K.I.; Kawar, T.; Kaji, M.; Noda, M. A new polyacetylene from Solidago altissima L. Agric. Biol. Chem. 1976, 40, 353–358. [Google Scholar] [CrossRef]
- Ichihara, K.I.; Kawai, T.; Noda, M. Polyacetylenes of Solidago altissima L. Agric. Biol. Chem. 1978, 42, 427–431. [Google Scholar] [CrossRef]
- Tori, M.; Katto, A.; Sono, M. Nine new clerodane diterpenoids from rhizomes of Solidago altissima. Phytochemistry 1999, 52, 487–493. [Google Scholar] [CrossRef]
- Chaturvedula, V.S.P.; Zhou, B.N.; Gao, Z.; Thomas, S.J.; Hecht, S.M.; Kingston, D.G.I. New lupane triterpenoids from Solidago canadensis that inhibit the lyase activity of DNA polymerase β. Bioorg. Med. Chem. 2004, 12, 6271–6275. [Google Scholar] [CrossRef]
- Kartesz, J.T. BONAP’s North American Plant Atlas. Available online: http://bonap.net/Napa/TaxonMaps/Genus/County/Xanthium (accessed on 17 July 2019).
- Kamboj, A.; Saluja, A.K. Phytopharmacological review of Xanthium strumarium L. (Cocklebur). Int. J. Green Pharm. 2010, 4, 129–139. [Google Scholar] [CrossRef]
- Satyal, P.; Craft, J.D.; Dosoky, N.S.; Setzer, W.N. The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale). Foods 2017, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Davé, P.C.; Vogler, B.; Setzer, W.N. Chemical compositions of the leaf essential oils of Aralia spinosa from three habitats in Northern Alabama. Am. J. Plant Sci. 2011, 2, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Eiter, L.C.; Fadamiro, H.; Setzer, W.N. Seasonal variation in the leaf essential oil composition of Zanthoxylum clava-herculis growing in Huntsville, Alabama. Nat. Prod. Commun. 2010, 5, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, K.M.; Satyal, P.; Setzer, W.N. Bark essential oils of Zanthoxylum clava-herculis and Ptelea trifoliata: Enantiomeric distribution of monoterpenoids. Nat. Prod. Commun. 2017, 12, 961–963. [Google Scholar] [CrossRef] [Green Version]
- Woods, K.E.; Chhetri, B.K.; Jones, C.D.; Goel, N.; Setzer, W.N. Bioactivities and compositions of Betula nigra essential oils. J. Med. Act. Plants 2013, 2, 1–9. [Google Scholar]
- Stewart, C.D.; Jones, C.D.; Setzer, W.N. Essential oil compositions of Juniperus virginiana and Pinus virginiana, two important trees in Cherokee traditional medicine. Am. J. Essent. Oils Nat. Prod. 2014, 2, 17–24. [Google Scholar]
- Setzer, W.N. Chemical composition of the leaf essential oil of Lindera benzoin growing in North Alabama. Am. J. Essent. Oils Nat. Prod. 2016, 4, 1–3. [Google Scholar]
- Mekala, A.B.; Satyal, P.; Setzer, W.N. Phytochemicals from the bark of Rhamnus caroliniana. Nat. Prod. Commun. 2017, 12, 403–406. [Google Scholar] [CrossRef] [Green Version]
- Kaler, K.M.; Setzer, W.N. Seasonal variation in the leaf essential oil composition of Sassafras albidum. Nat. Prod. Commun. 2008, 3, 829–832. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.E.; Davé, P.C.; Harbin, L.N.; Setzer, W.N. Allelopathic potential of Sassafras albidum and Pinus taeda essential oils. Allelopath. J. 2011, 27, 111–122. [Google Scholar]
- Craft, J.D.; Setzer, W.N. Leaf essential oil composition of Tsuga canadensis growing wild in North Alabama and Northwest Georgia. Am. J. Essent. Oils Nat. Prod. 2017, 5, 26–29. [Google Scholar]
- Lopez, E.M.; Craft, J.D.; Setzer, W.N. Volatile composition of Vicia caroliniana growing in Huntsville, Alabama. Am. J. Essent. Oils Nat. Prod. 2017, 5, 8–10. [Google Scholar]
- Stewart, C.D.; Jones, C.D.; Setzer, W.N. Leaf essential oil compositions of Rudbeckia fulgida Aiton, Rudbeckia hirta L., and Symphyotrichum novae-angliae (L.) G.L. Nesom (Asteraceae). Am. J. Essent. Oils Nat. Prod. 2014, 2, 36–38. [Google Scholar]
- Lawson, S.K.; Sharp, L.G.; Powers, C.N.; McFeeters, R.L.; Satyal, P.; Setzer, W.N. Essential oil compositions and antifungal activity of sunflower (Helianthus) species growing in north Alabama. Appl. Sci. 2019, 9, 3179. [Google Scholar] [CrossRef] [Green Version]
- Craft, J.D.; Lawson, S.K.; Setzer, W.N. Leaf essential oil compositions of bear’s foot, Smallanthus uvedalia and Polymnia canadensis. Am. J. Essent. Oils Nat. Prod. 2019, 7, 31–35. [Google Scholar]
- Liu, P.-Y.; Liu, D.; Li, W.-H.; Zhao, T.; Sauriol, F.; Gu, Y.-C.; Shi, Q.-W.; Zhang, M.-L. Chemical constituents of plants from the genus Eupatorium (1904–2014). Chem. Biodivers. 2015, 12, 1481–1515. [Google Scholar] [CrossRef] [PubMed]
- Padalia, R.C.; Bisht, D.S.; Joshi, S.C.; Mathela, C.S. Chemical composition of the essential oil from Eupatorium adenophorum Spreng. J. Essent. Oil Res. 2009, 21, 522–524. [Google Scholar] [CrossRef]
- Kurade, N.P.; Jaitak, V.; Kaul, V.K.; Sharma, O.P. Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum. Pharm. Biol. 2010, 48, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Mohan, M.; Singh, P.; Palni, U.T.; Tripathi, N.N. Chemical composition, antibacterial and antioxidant activity of essential oil of Eupatorium adenophorum Spreng. from Eastern Uttar Pradesh, India. Food Biosci. 2014, 7, 80–87. [Google Scholar] [CrossRef]
- Ahluwalia, V.; Sisodia, R.; Walia, S.; Sati, O.P.; Kumar, J.; Kundu, A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J. Pest Sci. 2014, 87, 341–349. [Google Scholar] [CrossRef]
- Maia, J.G.S.; Zoghbi, M.D.G.B.; Andrade, E.H.A.; Da Silva, M.H.L.; Luz, A.I.R.; Da Silva, J.D. Essential oils composition of Eupatorium species growing wild in the Amazon. Biochem. Syst. Ecol. 2002, 30, 1071–1077. [Google Scholar] [CrossRef]
- Zygadlo, J.A.; Maestri, D.M.; Guzmán, C.A. Comparative study of the essential oils from three species of Eupatorium. Flavour Fragr. J. 1996, 11, 153–155. [Google Scholar] [CrossRef]
- Zygadlo, J.A.; Lamarque, A.L.; Grosso, N.R.; Ariza Espinar, L. Analysis of the essential oil of the leaves of Eupatorium arnottianum Griseb. J. Essent. Oil Res. 1995, 7, 677–678. [Google Scholar] [CrossRef]
- García, C.C.; Acosta, E.G.; Carro, A.C.; Belmonte, M.C.F.; Bomben, R.; Duschatzky, C.B.; Perotti, M.; Schuff, C.; Damonte, E.B. Virucidal activity and chemical composition of essential oils from aromatic plants of central west Argentina. Nat. Prod. Commun. 2010, 5, 1307–1310. [Google Scholar] [CrossRef]
- Lancelle, H.G.; Giordano, O.S.; Sosa, M.E.; Tonn, C.E. Chemical composition of four essential oils from Eupatorium spp. Biological activities toward Tribolium castaneum (Coleoptera: Tenebrionidae). Rev. Soc. Entomol. Argent. 2009, 68, 329–338. [Google Scholar]
- Albuquerque, M.R.J.R.; Souza, E.B.D.; Mesquita, E.F.; Nunes, E.P.; Cunha, A.N.; Silveira, E.R. Volatile constituents from leaves of Vernonia chalybaea Mart. and Eupatorium ballotaefolium H.B.K. J. Essent. Oil Res. 2001, 13, 376–377. [Google Scholar] [CrossRef]
- Albuquerque, M.R.; Silveira, E.R.; De AUchôa, D.E.; Lemos, T.L.; Souza, E.B.; Santiago, G.M.; Pessoa, O.D. Chemical composition and larvicidal activity of the essential oils from Eupatorium betonicaeforme (D.C.) Baker (Asteraceae). J. Agric. Food Chem. 2004, 52, 6708–6711. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, D.; Paz, D.; Davies, P.; Villamil, J.; Vila, R.; Cañigueral, S.; Dellacassa, E. Application of multidimensional gas chromatography to the enantioselective characterisation of the essential oil of Eupatorium buniifolium Hooker et Arnott. Phytochem. Anal. 2005, 16, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Umpiérrez, M.L.; Santos, E.; Mendoza, Y.; Altesor, P.; Rossini, C. Essential oil from Eupatorium buniifolium leaves as potential varroacide. Parasitol. Res. 2013, 112, 3389–3400. [Google Scholar] [CrossRef]
- Senatore, F.; De Fusco, R.; Napolitano, F. Eupatorium cannabinum L. ssp. cannabinum (Asteraceae) essential oil: Chemical composition and antibacterial activity. J. Essent. Oil Res. 2001, 13, 463–466. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, P.L.; Morelli, I. Analysis of the essential oil of the leaves and flowers/fruits of Eupatorium cannabinum L. from south Tuscany (central Italy). J. Essent. Oil Res. 2003, 15, 127–129. [Google Scholar] [CrossRef]
- Paolini, J.; Costa, J.; Bernardini, A.-F. Analysis of the essential oil from aerial parts of Eupatorium cannabinum subsp. corsicum (L.) by gas chromatography with electron impact and chemical ionization mass spectrometry. J. Chromatogr. A 2005, 1076, 170–178. [Google Scholar] [CrossRef]
- Morteza-Semnani, K.; Akbarzadeh, M.; Moshiri, K. The essential oil composition of Eupatorium cannabinum L. from Iran. Flavour Fragr. J. 2006, 21, 521–523. [Google Scholar] [CrossRef]
- Judzentiene, A. Chemical composition of leaf and inflorescence essential oils of Eupatorium cannabinum L. from eastern Lithuania. J. Essent. Oil Res. 2007, 19, 403–406. [Google Scholar] [CrossRef]
- Pino, J.A.; Rosado, A.; Fuentes, V. Essential oil of Eupatorium capillifolum (Lam.) Small from Cuba. J. Essent. Oil Res. 1998, 10, 79–80. [Google Scholar] [CrossRef]
- Tabanca, N.; Bernier, U.R.; Tsikolia, M.; Becnel, J.J.; Sampson, B.; Werle, C.; Demirci, B.; Baser, K.H.C.; Blythe, E.K.; Pounders, C.; et al. Eupatorium capillifolium essential oil: Chemical composition, antifungal activity, and insecticidal activity. Nat. Prod. Commun. 2010, 5, 1409–1415. [Google Scholar] [CrossRef]
- Pimienta-Ramírez, L.; García-Rodríguez, Y.M.; Ríos-Ramírez, E.M.; Lindig-Cisneros, R.; Espinosa-García, F.J. Chemical composition and evaluation of the essential oil from Eupatorium glabratum as biopesticide against Sitophilus zeamais and several stored maize fungi. J. Essent. Oil Res. 2016, 28, 113–120. [Google Scholar] [CrossRef]
- Schossler, P.; Schneider, G.L.; Wunsch, D.; Soares, G.L.G.; Zini, C.A. Volatile compounds of Baccharis punctulata, Baccharis dracunculifolia and Eupatorium laevigatum obtained using solid phase microextraction and hydrodistillation. J. Braz. Chem. Soc. 2009, 20, 277–287. [Google Scholar] [CrossRef]
- Pisutthanan, N.; Liawruangrath, B.; Liawruangrath, S.; Baramee, A.; Apisariyakul, A.; Korth, J.; Bremner, J.B. Constituents of the essential oil from aerial parts of Chromolaena odorata from Thailand. Nat. Prod. Res. 2006, 20, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Owolabi, M.S.; Ogundajo, A.; Yusuf, K.O.; Lajide, L.; Villanueva, H.E.; Tuten, J.A.; Setzer, W.N. Chemical composition and bioactivity of the essential oil of Chromolaena odorata from Nigeria. Rec. Nat. Prod. 2010, 4, 72–78. [Google Scholar]
- Joshi, R.K. Chemical composition of the essential oils of aerial parts and flowers of Chromolaena odorata (L.) R. M. King & H. Rob. from Western Ghats region of north west Karnataka, India. J. Essent. Oil-Bear. Plants 2013, 16, 71–75. [Google Scholar]
- Gupta, D.; Charles, R.; Garg, S.N. Chemical examination of the essential oil from the leaves of Eupatorium triplinerve Vahl. J. Essent. oil Res. 2004, 16, 473–475. [Google Scholar] [CrossRef]
- Moldovan, Z.; Buleandrǎ, M.; Oprea, E.; Mînea, Z. Studies on chemical composition and antioxidant activity of Rudbeckia triloba. J. Anal. Methods Chem. 2017, 2017, 3407312. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, R.; Wierciński, J.; Mardarowicz, M. Essential oil in leaves and inflorescences of Silphium integrifolium Michx. J. Essent. Oil Res. 2005, 17, 220–222. [Google Scholar] [CrossRef]
- Kowalski, R. The chemical composition of essential oils and lipophilic extracts of Silphium integrifolium Michx. and S. trifoliatum L. leaves. Flavour Fragr. J. 2008, 23, 164–171. [Google Scholar] [CrossRef]
- Kowalski, R. Antimicrobial activity of essential oils and extracts of rosinweed (Silphium trifoliatum and Silphium integrifolium) plants used by the American Indians. Flavour Fragr. J. 2008, 23, 426–433. [Google Scholar] [CrossRef]
- Kowalski, R. Chemical composition of essential oils and lipophilic extracts of Silphium integrifolium and S. trifoliatum inflorescences. Chem. Nat. Compd. 2008, 44, 241–244. [Google Scholar] [CrossRef]
- Kowalski, R. The chemical composition of essential oils and lipophilic extracts of Silphium integrifolium Michx. and Silphium trifoliatum L. rhizomes. J. Essent. Oil Res. 2008, 20, 255–259. [Google Scholar] [CrossRef]
- Cicció, J.F. Composition of the essential oil from leaves of Smallanthus maculatus (Cav.) H. Rob. (Asteraceae). J. Essent. Oil Res. 2004, 16, 353–355. [Google Scholar] [CrossRef]
- Chaverri, C.; Cicció, J.F. Composition of the essential oil from leaves of Smallanthus quichensis (Asteraceae) from Costa Rica. Bol. Latinoam. Caribe Plantas Med. Aromat. 2015, 14, 355–363. [Google Scholar]
- Li, J.; Liu, J.; Lan, H.; Zheng, M.; Rong, T. GC-MS analysis of the chemical constituents of the essential oil from the leaves of yacon (Smallanthus sonchifolia). Front. Agric. China 2009, 3, 40–42. [Google Scholar] [CrossRef]
- Weyerstahl, P.; Marschall, H.; Christiansen, C.; Kalemba, D.; Góra, J. Constituents of the essential oil of Solidago canadensis (“goldenrod”) from Poland—A correction. Planta Med. 1993, 59, 281–282. [Google Scholar] [CrossRef]
- Schmidt, C.O.; Bouwmeester, H.J.; Bülow, N.; König, W.A. Isolation, characterization, and mechanistic studies of (-)-α-gurjunene synthase from Solidago canadensis. Arch. Biochem. Biophys. 1999, 364, 167–177. [Google Scholar] [CrossRef]
- Kasali, A.A.; Ekundayo, O.; Paul, C.; König, W.A. epi-Cubebanes from Solidago canadensis. Phytochemistry 2002, 59, 805–810. [Google Scholar] [CrossRef]
- Vogler, B.; Setzer, W.N. Characterization of Natural Products. In Natural Products from Plants; Cseke, L.J., Kirakosyan, A., Kaufman, P.B., Warber, S.L., Duke, J.A., Brielmann, H., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 319–387. ISBN 978-0-8493-2976-0. [Google Scholar]
- Chanotiya, C.S.; Yadav, A. Natural variability in enantiomeric composition of bioactive chiral terpenoids in the essential oil of Solidago canadensis L. from Uttarakhand, India. Nat. Prod. Commun. 2008, 3, 263–266. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.; Joshi, S.; Sah, S.P.; Bischt, G. Chemical composition, analgesic and antimicrobial activity of Solidago canadensis essential oil from India. J. Pharm. Res. 2011, 44, 63–66. [Google Scholar]
- Grul’ova, D.; Baranova, B.; Ivanova, V.; de Martino, L.; Mancini, E.; de Feo, V. Composition and bio activity of essential oils of Solidago spp. and their impact on radish and garden cress. Allelopath. J. 2016, 39, 129–142. [Google Scholar]
- Shelepova, O.; Vinogradova, Y.; Zaitchik, B.; Ruzhitsky, A.; Grygorieva, O.; Brindza, J. Constituents of the essential oil in Solidago canadensis L. from Eurasia. Slovak J. Food Sci. 2018, 12, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Grul’ová, D.; Baranová, B.; Caputo, L.; De Martino, L.; Sedlák, V.; Camele, I.; De Feo, V. Antimicrobial activity and chemical composition of essential oil extracted from Solidago canadensis L. growing wild in Slovakia. Molecules 2019, 24, 1206. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Pavela, R.; Cianfaglione, K.; Nagy, D.U.; Canale, A.; Maggi, F. Evaluation of two invasive plant invaders in Europe (Solidago canadensis and Solidago gigantea) as possible sources of botanical insecticides. J. Pest Sci. 2019, 92, 805–821. [Google Scholar] [CrossRef]
- El-Sherei, M.; Khaleel, A.; Motaal, A.A.; Abd-Elbaki, P. Effect of seasonal variation on the composition of the essential oil of Solidago canadensis cultivated in Egypt. J. Essent. Oil-Bear. Plants 2014, 17, 891–898. [Google Scholar] [CrossRef]
- Esmaeili, A.; Rustaiyan, A.; Akbari, M.T.; Moazami, N.; Masoudi, S.; Amiri, H. Composition of the essential oils of Xanthium strumarium L. and Cetaurea solstitialis L. from Iran. J. Essent. Oil Res. 2006, 18, 427–429. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Hoseini-Alfatemi, S.M.; Sharifi-Rad, M.; Sharifi-Rad, M.; Iriti, M.; Sharifi-Rad, M.; Sharifi-Rad, R.; Raeisi, S. Phytochemical compositions and biological activities of essential oil from Xanthium strumarium L. Molecules 2015, 20, 7034–7047. [Google Scholar] [CrossRef] [Green Version]
- Parveen, Z.; Mazhar, S.; Siddique, S.; Manzoor, A.; Ali, Z. Chemical composition and antifungal activity of essential oil from Xanthium strumarium L. leaves. Indian J. Pharm. Sci. 2017, 79, 316–321. [Google Scholar] [CrossRef]
- Jacyno, J.M.; Montemurro, N.; Bates, A.D.; Cutler, H.G. Phytotoxic and antimicrobial properties of cyclocolorenone from Magnolia grandiflora L. J. Agric. Food Chem. 1991, 39, 1166–1168. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Noletto, J.A.; Vogler, B.; Setzer, W.N. Abaco bush medicine: Chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J. Herbs Spices Med. Plants 2006, 12, 43–65. [Google Scholar] [CrossRef]
- Gardini, F.; Lanciotti, R.; Caccioni, D.R.L.; Guerzoni, M.E. Antifungal activity of hexanal as dependent on its vapor pressure. J. Agric. Food Chem. 1997, 45, 4297–4302. [Google Scholar] [CrossRef]
- Gardini, F.; Lanciotti, R.; Guerzoni, M.E. Effect of trans-2-hexenal on the growth of Aspergillus flavus in relation to its concentration, temperature and water activity. Lett. Appl. Microbiol. 2001, 33, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neri, F.; Mari, M.; Menniti, A.M.; Brigati, S. Activity of trans-2-hexenal against Penicillium expansum in “Conference” pears. J. Appl. Microbiol. 2006, 100, 1186–1193. [Google Scholar] [CrossRef]
- Van Vuuren, S.F.; Viljoen, A.M. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour Fragr. J. 2007, 22, 540–544. [Google Scholar] [CrossRef]
- Ma, B.; Ban, X.; Huang, B.; He, J.; Tian, J.; Zeng, H.; Chen, Y.; Wang, Y. Interference and mechanism of dill seed essential oil and contribution of carvone and limonene in preventing Sclerotinia rot of rapeseed. PLoS ONE 2015, 10, e0131733. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal activity of Citrus essential oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [Google Scholar] [CrossRef]
- DeCarlo, A.; Johnson, S.; Okeke-Agulu, K.I.; Dosoky, N.S.; Wax, S.J.; Owolabi, M.S.; Setzer, W.N. Compositional analysis of the essential oil of Boswellia dalzielii frankincense from West Africa reveals two major chemotypes. Phytochemistry 2019, 164, 24–32. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST17. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
- Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
- Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Thesis, University of Alabama in Huntsville, Huntsville, AL, USA, 2015. [Google Scholar]
- Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules 2018, 23, 1549. [Google Scholar] [CrossRef] [Green Version]
RI a | RI b | Compound | % ± SD | RI a | RI b | Compound | % ± SD |
---|---|---|---|---|---|---|---|
802 | 801 | Hexanal | 0.16 ± 0.02 | 1531 | 1533 | trans-Cadina-1,4-diene | 0.20 ± 0.07 |
810 | 796 | 2-Hexanol | 0.92 ± 0.01 | 1540 | --- | Unidentified e | 1.28 ± 0.05 |
850 | 846 | (2E)-Hexenal | 0.86 ± 0.11 | 1542 | 1539 | α-Copaen-11-ol | 7.89 ± 0.13 |
932 | 932 | α-Pinene | 0.17 ± 0.01 | 1548 | --- | Unidentified f | 1.76 ± 0.04 |
949 | 946 | Camphene | 1.78 ± 0.02 | 1550 | --- | Unidentified g | 0.75 ± 0.03 |
977 | 974 | β-Pinene | 0.18 ± 0.02 | 1558 | 1559 | Germacrene B | 0.44 ± 0.03 |
999 | 1001 | δ-2-Carene | 0.15 ± 0.01 | 1562 | --- | Eudesmenol h | 0.32 ± 0.09 |
1029 | 1024 | Limonene | 0.26 ± 0.01 | 1569 | 1567 | Palustrol | 5.32 ± 0.12 |
1283 | 1287 | Bornyl acetate | 4.72 ± 0.07 | 1575 | 1574 | Germacra-1(10),5-dien-4β-ol | 0.91 ± 1.10 |
1326 | --- | Unidentified c | 0.93 ± 0.03 | 1581 | 1577 | Spathulenol | 1.58 ± 0.83 |
1346 | 1345 | α-Cubebene | 0.59 ± 0.01 | 1588 | 1590 | Globulol | 0.58 ± 0.03 |
1375 | 1374 | α-Copaene | 0.11 ± 0.05 | 1593 | 1592 | Viridiflorol | 1.12 ± 0.09 |
1383 | 1387 | β-Bourbonene | 0.06 ± 0.01 | 1596 | --- | Unidentified i | 1.20 ± 0.02 |
1397 | 1387 | β-Cubebene | 3.65 ± 0.09 | 1603 | 1602 | Ledol | 2.80 ± 0.03 |
1406 | 1409 | α-Gurjunene | 0.74 ± 0.02 | 1620 | 1611 | Germacra-1(10),5-dien-4α-ol | 1.44 ± 0.13 |
1417 | 1419 | β-Ylangene | 0.09 ± 0.03 | 1622 | 1624 | Selina-6-en-4β-ol | 0.31 ± 0.03 |
1418 | 1417 | β-Caryophyllene | 0.96 ± 0.01 | 1627 | 1627 | 1-epi-Cubenol | 0.61 ± 0.10 |
1428 | 1434 | γ-Elemene | 0.28 ± 0.05 | 1638 | 1639 | cis-Guaia-3,9-dien-11-ol | 0.12 ± 0.01 |
1448 | 1448 | cis-Muurola-3,5-diene | 0.07 ± 0.03 | 1642 | 1638 | τ-Cadinol | 0.80 ± 0.03 |
1455 | 1452 | α-Humulene | 0.41 ± 0.04 | 1642 | 1640 | τ-Muurolol | 0.62 ± 0.08 |
1471 | 1475 | trans-Cadina-1(6),4-diene | 0.25 ± 0.03 | 1646 | 1644 | α-Muurolol (=δ-Cadinol) | 0.69 ± 0.07 |
1480 | 1484 | Germacrene D | 6.58 ± 0.09 | 1648 | 1646 | Agarospirol II | 1.10 ± 0.04 |
1486 | 1488 | δ-Selinene | 0.27 ± 0.02 | 1654 | 1652 | α-Cadinol | 2.31 ± 0.04 |
1488 | 1489 | β-Selinene | 0.17 ± 0.01 | 1668 | --- | Unidentifiedj | 5.72 ± 0.14 |
1491 | 1493 | trans-Muurola-4(14),5-diene | 0.69 ± 0.03 | 1751 | 1759 | Cyclocolorenone | 23.38 ± 0.43 |
1494 | 1493 | epi-Cubebol | 1.81 ± 0.03 | Green leaf volatiles | 1.94 | ||
1497 | 1500 | α-Muurolene | 0.34 ± 0.02 | Monoterpene hydrocarbons | 2.53 | ||
1502 | --- | Unidentified d | 1.30 ± 0.02 | Oxygenated monoterpenoids | 4.72 | ||
1512 | 1513 | γ-Cadinene | 0.21 ± 0.00 | Sesquiterpene hydrocarbons | 19.14 | ||
1514 | 1514 | Cubebol | 4.18 ± 0.11 | Oxygenated sesquiterpenoids | 57.90 | ||
1517 | 1522 | δ-Cadinene | 3.02 ± 0.25 | Total Identified | 86.23 |
Eupatorium spp. Essential Oil | Location | Major Components | Biological Activity | Ref. |
---|---|---|---|---|
E. adenophorum (aerial parts) | Nainital, India | camphene (8.9%), p-cymene (16.6%), bornyl acetate (15.6%), amorph-4-en-7-ol (9.6%), α-cadinol (6.2%), amorpha-4,7(11)-dien-8-one (7.8%) | none reported | [47] |
E. adenophorum (leaves) | Palampur, India | bornyl acetate (9.0%), germacrene D (5.7%), β-bisabolene (6.2%), 1-naphthalenol (17.5%), α-bisabolol (9.5%) | Antibacterial (Rhodococcus rhodochrous, MBC 12.5 μL/mL) | [48] |
E. adenophorum (twigs) | Uttar Pradesh, India | camphene (12.1%), α-phellandrene (8.6%), α-terpinene (6.5%), p-cymene (11.6%), bornyl acetate (10.6%), acoradiene (10.1%), α-bisabolol (5.3%) | Antibacterial (Erwinia herbicola, MIC 0.25 μL/mL; Pseudomonas putida, MIC 2.0 μL/mL) | [49] |
E. adenophorum (inflorescence) | Palampur, India | bornyl acetate (6.3%), β-caryophyllene (5.4%), γ-muurolene (11.7%), γ-curcumene (5.7%), γ-cadinene (18.4%), 3-acetoxyamorpha-4,7(11)-dien-8-one (7.4%) | Antifungal (Macrophomina phaseolina, EC50 0.076 μL/mL; Rhizoctonia solani, EC50 0.094 μL/mL; Fusarium oxysporum, EC50 0.120 μL/mL) | [50] |
E. amygdalinum (aerial parts) | Amapá, Brazil | β-cubebene (5.7%), β-caryophyllene (12.3%), germacrene D (15.5%), δ-cadinene (5.8%), caryophyllene oxide (17.4%) | none reported | [51] |
E. argentinum (leaves) | Córdoba, Argentina | α-pinene (17.0%), β-pinene (6.1%), p-cymene (12.5%), thymyl acetate (9.7%), β-caryophyllene (7.2%) | none reported | [52] |
E. arnottianum (aerial parts) | Córdoba, Argentina | α-pinene (13.7%), p-cymene (30.0%), β-ocimene (5.3%), thymyl acetate (12.3%), β-caryophyllene (11.7%) | none reported | [53] |
E. arnottianum (aerial parts) | Córdoba, Argentina | limonene (32.7%), piperitenone (21.2%), trans-dihydrocarvone (10.2%), camphor (6.8%), cis-dihydrocarvone (6.7%) | Antiviral (HSV-1, IC50 52.1 μg/mL; DENV-2, IC50 38.2 μg/mL) | [54] |
E. arnottii (aerial parts) | San Luis, Argentina | β-caryophyllene (7.9%), γ-elemene (5.9%), germacrene D (9.8%), cadinene (5.8%), spathulenol (10.6%), phytol (8.1%) | Insecticidal (Tribolium castaneum, ED50 0.15 mg/cm2) | [55] |
E. ballotaefolium (aerial parts) | Ceará, Brazil | α-pinene (6.2%), sabinene (6.5%), β-pinene (5.4%), myrcene (7.3%), limonene (15.3%), (E)-β-ocimene (10.5%), β-caryophyllene (7.5%) | none reported | [56] |
E. betonicaeforme (leaves) | Ceará, Brazil | β-caryophyllene (36.1%), α-humulene (13.3%), γ-muurolene (20.3%), bicyclogermacrene (15.0%) | Larvicidal (Aedes aegypti, LC50 129 μg/mL) | [57] |
E. buniifolium (aerial parts) | Canelones, Uruguay | α-pinene (14.7%), β-elemene (12.2%), germacrene D (11.5%), trans-β-guaiene (6.5%) | none reported | [58] |
E. buniifolium (aerial parts) | San Luis, Argentina | α-pinene (51.0%), sabinene (7.5%), limonene (9.6%), β-caryophyllene (5.2%) | Insecticidal (Tribolium castaneum, ED50 0.15 mg/cm2) | [55] |
E. buniifolium (leaves) | Canelones, Uruguay | α-pinene (8.2%), germacrene D (11.1%), trans-β-guaiene (7.4%) | Varroacide (Varroa destructor, LD99 0.3 mg/mL) | [59] |
E. cannabinum ssp. cannabinum (aerial parts) | Agerola, Italy | δ-2-carene (6.5%), germacrene D (33.5%), α-farnesene (12.9%) | Antibacterial (Staphylococcus aureus, Streptococcus fecalis, Bacillus subtilis, Bacillus cereus, MIC 1.25 mg/mL) | [60] |
E. cannabinum (leaves) | Tuscany, Italy | thymol methyl ether (7.8%), germacrene D (29.2%), spathulenol (7.3%) | none reported | [61] |
E. cannabinum ssp. corsicum (aerial parts) | Corsica, France | α-phellandrene (19.0%), p-cymene (5.2%), germacrene D (28.5%) | none reported | [62] |
E. cannabinum (aerial parts) | Mazandaran, Iran | α-terpinene (17.8%), thymol methyl ether (5.2%), germacrene D (9.1%) | none reported | [63] |
E. cannabinum (leaves) | Vilnius, Lithuania | thymol methyl ether (5.7%), neryl acetate (9.4%), germacrene D (11.3%), β-bisabolene (6.7%) | none reported | [64] |
E. capillifolium (aerial parts) | Cuba | p-cymene (23.7%), thymol methyl ether (8.9%), β-bisabolene (8.2%), selin-11-en-4α-ol (12.3%) | none reported | [65] |
E. capillifolium (aerial parts) | Mississippi, USA | myrcene (15.7%), α-phellandrene (6.5%), thymol methyl ether (36.3%), 2,5-dimethoxy-p-cymene (20.8%) | Insecticidal (Stephanitis pyrioides, LC50 5800 μg/mL) | [66] |
E. catarium (aerial parts) | Córdoba, Argentina | spathulenol (15.5%), β-caryophyllene (7.8%), germacrene D (5.5%), bicyclogermacrene (5.1%) | Antiviral (HSV-1, IC50 47.9 μg/mL; DENV-2, IC50 57.3 μg/mL) | [54] |
E. conyzoides (aerial parts) | Tocantins, Brazil | β-caryophyllene (7.1%), α-humulene (6.6%), germacrene D (16.8%), bicyclogermacrene (7.2%), spathulenol (8.3%) | none reported | [51] |
E. glabratum (leaves) | Michoacán, México | α-pinene (29.5%), β-pinene (6.3%), α-phellandrene (19.6%) | Insecticidal (Sitophilus zeamais, LC50 18.0 μL/mL) | [67] |
E. hecatanthum (leaves) | Córdoba, Argentina | α-pinene (13.4%), β-pinene (7.8%), β-ocimene (6.2%), carvacrol (7.1%), thymyl acetate (10.6%), β-caryophyllene (8.1%) | none reported | [52] |
E. inulaefolium (aerial parts) | San Luis, Argentina | limonene (9.7%), δ-elemene (10.6%), β-caryophyllene (27.7%), α-humulene (5.9%), patchoulene (9.2%), germacrene D (13.7%), viridiflorol (9.2%) | Insecticidal (Tribolium castaneum, ED50 0.15 mg/cm2) | [55] |
E. laevigatum (aerial parts) | Roraima, Brazil | germacrene D (8.6%), selina-3,7(11)-diene (6.1%), spathulenol (5.4%), globulol (16.2%), laevigatin (23.6%) | none reported | [51] |
E. laevigatum (leaves) | Rio Grande do Sul, Brazil | germacrene D (11.7%), bicyclogermacrene (9.3%), laevigatin (59.6%) | none reported | [68] |
E. macrophyllum (aerial parts) | Chapada dos Guimarães, Brazil | sabinene (46.7%), limonene (23.3%) | none reported | [51] |
E. marginatum (aerial parts | Ananindeua, Pará, Brazil | ar-curcumene (6.8%), α-zingiberene (57.5%), β-sesquiphellandrene (7.1%), (E)-γ-bisabolene (9.7%) | none reported | [51] |
E. marginatum (aerial parts | Roraima, Brazil | α-gurjunene (19.5%), germacrene D (14.8%), α-selinene (9.0%), (E)-γ-bisabolene (5.0%) | none reported | [51] |
E. odoratum (aerial parts) | Thitsanulok, Thailand | α-pinene (8.4%), β-pinene (5.6%), pregeijerene (17.6%), germacrene D (11.1%), β-caryophyllene (7.3%), vestitenone (6.5%) | none reported | [69] |
E. odoratum (leaves) | Lagos, Nigeria | α-pinene (42.2%), β-pinene (10.6%), β-caryophyllene (5.4%), germacrene D (9.7%), β-copaen-4α-ol (9.4%) | Antibacterial (Bacillus cereus, MIC 39 μg/mL), antifungal (Aspergillus niger, MIC 78 μg/mL) | [70] |
E. odoratum (aerial parts) | Western Ghats, India | cis-sabinene hydrate (5.7%), pregeijerene (14.2%), epi-cubebol (9.8%), cubebol (8.6%) | none reported | [71] |
E. squalidum (aerial parts) | Amapá, Brazil | β-caryophyllene (6.2%), germacrene D (21.6%), bicyclogermacrene (6.0%), spathulenol (14.2%), globulol (25.1%) | none reported | [51] |
E. squalidum (aerial parts) | Tocantins, Brazil | limonene (6.6%), β-caryophyllene (9.6%), germacrene D (10.4%), caryophyllene oxide (30.1%) | none reported | [51] |
E. subhastatum (leaves) | Córdoba, Argentina | α-pinene (11.0%), β-pinene (5.9%), p-cymene (24.8%), α-copaene (5.1%), α-humulene (5.1%) | none reported | [52] |
E. triplinerve (leaves) | Lucknow, India | δ-elemene (5.9%), β-caryophyllene (14.7%), selina-4(15),7(11)-dien-8-one | none reported | [72] |
E. viscidum (aerial parts) | San Luis, Argentina | 6-methyl-5-hepten-2-one (18.2%), spathulenol (25.2%) | Insecticidal (Tribolium castaneum, ED50 > 0.212 mg/cm2) | [55] |
RI a | RI b | Compound | % ± SD | RI a | RI b | Compound | % ± SD |
---|---|---|---|---|---|---|---|
801 | 797 | (3Z)-Hexenal | 0.06 ± 0.01 | 1387 | 1389 | β-Elemene | 1.48 ± 0.04 |
802 | 801 | Hexanal | 0.31 ± 0.05 | 1418 | 1417 | β-Caryophyllene | 4.60 ± 0.07 |
850 | 846 | (2E)-Hexenal | 1.44 ± 0.06 | 1427 | 1434 | γ-Elemene | 3.16 ± 0.01 |
865 | 863 | 1-Hexanol | 0.11 ± 0.02 | 1431 | 1432 | trans-α-Bergamotene | 0.05 ± 0.02 |
924 | 924 | α-Thujene | 0.16 ± 0.01 | 1454 | 1452 | α-Humulene | 0.64 ± 0.01 |
932 | 974 | α-Pinene | 3.12 ± 0.04 | 1473 | 1471 | Massoia lactone | 0.35 ± 0.04 |
948 | 946 | Camphene | 0.60 ± 0.00 | 1480 | 1484 | Germacrene D | 19.81 ± 0.20 |
971 | 969 | Sabinene | 0.15 ± 0.02 | 1487 | 1489 | β-Selinene | 0.31 ± 0.05 |
977 | 974 | β-Pinene | 8.57 ± 0.07 | 1494 | 1500 | Bicyclogermacrene | 1.95 ± 0.02 |
988 | 988 | Myrcene | 1.79 ± 0.02 | 1497 | 1500 | α-Muurolene | 0.16 ± 0.03 |
989 | 988 | Dehydro-1,8-cineole | 0.28 ± 0.01 | 1516 | 1522 | δ-Cadinene | 0.19 ± 0.02 |
1006 | 1002 | α-Phellandrene | 0.88 ± 0.01 | 1536 | 1537 | α-Cadinene | 0.10 ± 0.02 |
1016 | 1014 | α-Terpinene | 0.16 ± 0.02 | 1557 | 1559 | Germacrene B | 7.07 ± 0.07 |
1024 | 1020 | p-Cymene | 0.15 ± 0.01 | 1575 | 1577 | Spathulenol | 0.10 ± 0.01 |
1028 | 1024 | Limonene | 28.66 ± 0.33 | 1581 | 1582 | Caryophyllene oxide | 0.38 ± 0.01 |
1030 | 1025 | β-Phellandrene | 0.75 ± 0.03 | 1595 | 1592 | Viridiflorol | 0.23 ± 0.03 |
1034 | 1032 | (Z)-β-Ocimene | 0.18 ± 0.00 | 1627 | 1629 | iso-Spathulenol | 0.08 ± 0.01 |
1044 | 1044 | (E)-β-Ocimene | 2.14 ± 0.02 | 1641 | 1638 | τ-Cadinol | 0.09 ± 0.02 |
1057 | 1054 | γ-Terpinene | 0.37 ± 0.01 | 1643 | 1640 | τ-Murrolol | 0.12 ± 0.03 |
1084 | 1086 | Terpinolene | 5.35 ± 0.08 | 1646 | 1644 | α-Muurolol (=δ-Cadinol) | 0.10 ± 0.01 |
1112 | 1114 | (E)-4,8-Dimethylnona-1,3,7-triene | 0.35 ± 0.01 | 1654 | 1652 | α-Cadinol | 0.47 ± 0.02 |
1124 | 1118 | cis-p-Menth-2-en-1-ol | 0.72 ± 0.01 | 1832 | 1835 | Neophytadiene | 0.05 ± 0.02 |
1142 | 1136 | trans-p-Menth-2-en-1-ol | 0.44 ± 0.01 | 1838 | 1841 | Phytone | 0.05 ± 0.02 |
1187 | 1179 | p-Cymen-8-ol | 0.21 ± 0.03 | Green leaf volatiles | 1.91 | ||
1195 | 1186 | α-Terpineol | 0.06 ± 0.02 | Monoterpene hydrocarbons | 53.03 | ||
1197 | 1195 | cis-Piperitol | 0.15 ± 0.02 | Oxygenated monoterpenoids | 2.30 | ||
1209 | 1207 | trans-Piperitol | 0.17 ± 0.01 | Sesquiterpene hydrocarbons | 40.03 | ||
1283 | 1287 | Bornyl acetate | 0.27 ± 0.10 | Oxygenated sesquiterpenoids | 1.59 | ||
1292 | 1293 | Undecan-2-one | 0.05 ± 0.01 | Diterpenoids | 0.11 | ||
1333 | 1335 | δ-Elemene | 0.50 ± 0.00 | Others | 0.75 | ||
Total Identified | 99.72 |
RI a | RI b | Compound | % ± SD | RI a | RI b | Compound | % ± SD |
---|---|---|---|---|---|---|---|
801 | 797 | (3Z)-Hexenal | 1.01 ± 0.11 | 1206 | 1201 | Decanal | 0.37 ± 0.05 |
802 | 801 | Hexanal | 6.78 ± 0.17 | 1351 | 1356 | Eugenol | 11.68 ± 0.14 |
850 | 946 | (2E)-Hexenal | 60.59 ± 1.00 | 1417 | 1417 | β-Caryophyllene | 0.24 ± 0.02 |
865 | 963 | 1-Hexanol | 2.35 ± 0.41 | 1479 | 1484 | Germacrene D | 0.67 ± 0.10 |
931 | 932 | α-Pinene | 1.48 ± 0.09 | 1559 | 1561 | (E)-Nerolidol | 0.50 ± 0.01 |
943 | --- | Unidentified c | 0.56 ± 0.07 | Green leaf volatiles | 71.47 | ||
1004 | 998 | Octanal | 0.33 ± 0.04 | Monoterpene hydrocarbons | 2.36 | ||
1005 | 1004 | (3Z)-Hexenyl acetate | 0.72 ± 0.12 | Sesquiterpene hydrocarbons | 0.91 | ||
1028 | 1024 | Limonene | 0.88 ± 0.07 | Oxygenated sesquiterpenoids | 0.50 | ||
1045 | 1036 | Benzene acetaldehyde | 0.60 ± 0.03 | Benzenoids | 22.59 | ||
1105 | 1100 | Nonanal | 0.91 ± 0.19 | Fatty aldehydes | 1.61 | ||
1192 | 1190 | Methyl salicylate | 10.31 ± 0.18 | Total Identified | 99.44 |
RI a | RI b | Compound | % ± SD | RI a | RI b | Compound | % ± SD |
---|---|---|---|---|---|---|---|
802 | 801 | Hexanal | 0.28 ± 0.04 | 1417 | 1417 | β-Caryophyllene | 3.05 ± 0.02 |
811 | 796 | 2-Hexanol | 0.17 ± 0.01 | 1428 | 1430 | β-Copaene | 0.09 ± 0.02 |
850 | 850 | (3Z)-Hexenol | 4.31 ± 0.16 | 1446 | 1453 | Geranyl acetone | 0.17 ± 0.01 |
861 | 854 | (2E)-Hexenol | 0.08 ± 0.01 | 1454 | 1452 | α-Humulene | 1.14 ± 0.00 |
864 | 863 | 1-Hexanol | 0.30 ± 0.02 | 1458 | 1458 | allo-Aromadendrene | 0.17 ± 0.02 |
921 | 921 | Tricyclene | 0.07 ± 0.01 | 1479 | 1484 | Germacrene D | 11.42 ± 0.01 |
924 | 924 | α-Thujene | 0.06 ± 0.01 | 1484 | 1486 | Phenylethyl 2-methylbutanoate | 0.18 ± 0.04 |
932 | 932 | α-Pinene | 19.71 ± 0.11 | 1487 | 1489 | β-Selinene | 0.41 ± 0.03 |
948 | 946 | Camphene | 0.80 ± 0.01 | 1490 | 1490 | Phenylethyl 3-methylbutanoate | 0.09 ± 0.01 |
971 | 969 | Sabinene | 1.96 ± 0.00 | 1493 | 1500 | Bicyclogermacrene | 1.03 ± 0.00 |
976 | 974 | β-Pinene | 0.87 ± 0.01 | 1496 | 1500 | α-Muurolene | 0.12 ± 0.01 |
987 | 988 | Myrcene | 0.53 ± 0.01 | 1502 | 1509 | Lavandulyl 3-methylbutanoate | 0.76 ± 0.01 |
1006 | 1002 | α-Phellandrene | 28.30 ± 0.16 | 1511 | 1513 | γ-Cadinene | 0.21 ± 0.01 |
1016 | 1014 | α-Terpinene | 0.09 ± 0.01 | 1515 | 1518 | Bornyl 3-methylbutanoate | 0.39 ± 0.01 |
1024 | 1020 | p-Cymene | 4.42 ± 0.02 | 1516 | 1522 | δ-Cadinene | 0.36 ± 0.01 |
1028 | 1024 | Limonene | 0.38 ± 0.01 | 1527 | 1529 | Kessane | 0.59 ± 0.04 |
1030 | 1025 | β-Phellandrene | 0.06 ± 0.02 | 1535 | 1534 | Liguloxide | 0.84 ± 0.01 |
1034 | 1032 | (Z)-β-Ocimene | 0.17 ± 0.01 | 1559 | 1561 | (E)-Nerolidol | 1.71 ± 0.01 |
1044 | 1044 | (E)-β-Ocimene | 0.19 ± 0.01 | 1565 | 1565 | Thymyl 2-methylbutanoate | 0.69 ± 0.01 |
1057 | 1054 | γ-Terpinene | 0.09 ± 0.01 | 1568 | 1570 | Neryl 2-methylbutanoate | 0.76 ± 0.01 |
1069 | 1065 | cis-Sabinene hydrate | 0.08 ± 0.01 | 1575 | 1574 | Germacrene D-4β-ol | 0.18 ± 0.01 |
1084 | 1086 | Terpinolene | 0.07 ± 0.01 | 1581 | 1582 | Caryophyllene oxide | 0.21 ± 0.02 |
1099 | 1095 | Linalool | tr c | 1608 | 1613 | Copaborneol | 0.18 ± 0.05 |
1101 | 1098 | trans-Sabinene hydrate | tr | 1641 | 1638 | τ-Cadinol | 0.59 ± 0.02 |
1141 | 1135 | trans-Pinocarveol | 0.08 ± 0.02 | 1654 | 1652 | α-Cadinol | 0.81 ± 0.02 |
1145 | 1140 | trans-Verbenol | 0.14 ± 0.01 | 1657 | 1658 | Selin-11-en-4α-ol | 0.15 ± 0.01 |
1163 | 1165 | Lavandulol | 0.12 ± 0.01 | 1684 | 1685 | Germacra-4(15),5,10(14)-trien-1α-ol | 0.49 ± 0.03 |
1172 | 1165 | Borneol | 0.11 ± 0.01 | 1693 | 1695 | 6-epi-Shyobunol | 0.20 ± 0.02 |
1180 | 1174 | Terpinen-4-ol | 0.26 ± 0.00 | 2227 | d | Kauran-16β-ol | 3.48 ± 0.01 |
1208 | 1204 | Verbenone | 0.06 ± 0.01 | 2243 | d | Kauran-16α-ol | 0.17 ± 0.02 |
1228 | 1232 | Thymol methyl ether | 2.89 ± 0.01 | Green leaf volatiles | 5.13 | ||
1342 | 1345 | 7-epi-Silphiperfol-5-ene | 0.59 ± 0.02 | Monoterpene hydrocarbons | 57.78 | ||
1351 | 1356 | Eugenol | 0.18 ± 0.03 | Oxygenated monoterpenoids | 6.34 | ||
1367 | 1369 | Cyclosativene | 0.08 ± 0.01 | Sesquiterpene hydrocarbons | 18.92 | ||
1367 | 1371 | Longicyclene | tr | Oxygenated sesquiterpenoids | 5.96 | ||
1372 | 1377 | Silphiperol-6-ene | 0.06 ± 0.00 | Diterpenoids | 3.65 | ||
1374 | 1374 | α-Copaene | 0.12 ± 0.01 | Benzenoids | 0.45 | ||
1380 | 1382 | Modheph-2-ene | 0.11 ± 0.00 | Others | 0.17 | ||
1386 | 1387 | β-Cubebene | 0.06 ± 0.01 | Total Identified | 98.40 | ||
1387 | 1389 | β-Elemene | 0.50 ± 0.01 |
RI a | RI b | Compound | % ± SD | RI a | RI b | Compound | % ± SD |
---|---|---|---|---|---|---|---|
802 | 801 | Hexanal | 0.05 ± 0.00 | 1206 | 1204 | Verbenone | 0.10 ± 0.03 |
810 | 796 | 2-Hexanol | 0.34 ± 0.01 | 1218 | 1215 | trans-Carveol | 0.25 ± 0.06 |
922 | 921 | Tricyclene | 0.10 ± 0.00 | 1232 | 1226 | cis-Carveol | 0.07 ± 0.02 |
924 | 924 | α-Thujene | 0.10 ± 0.01 | 1243 | 1239 | Carvone | 0.49 ± 0.02 |
932 | 932 | α-Pinene | 10.18 ± 0.06 | 1283 | 1287 | Bornyl acetate | 2.68 ± 0.02 |
948 | 946 | Camphene | 2.24 ± 0.02 | 1349 | 1350 | α-Longipinene | 0.08 ± 0.02 |
971 | 969 | Sabinene | 0.90 ± 0.01 | 1368 | 1369 | Cyclosativene | 0.06 ± 0.02 |
977 | 974 | β-Pinene | 9.21 ± 0.05 | 1375 | 1374 | α-Copaene | 0.16 ± 0.01 |
988 | 988 | Myrcene | 5.26 ± 0.02 | 1391 | 1390 | Sativene | 0.05 ± 0.01 |
1004 | 1003 | p-Mentha-1(7),8-diene | 0.07 ± 0.01 | 1417 | 1419 | β-Ylangene | tr |
1024 | 1020 | p-Cymene | 0.11 ± 0.01 | 1418 | 1417 | β-Caryophyllene | 0.43 ± 0.03 |
1029 | 1024 | Limonene | 58.07 ± 0.47 | 1428 | 1434 | γ-Elemene | 0.07 ± 0.00 |
1030 | 1025 | β-Phellandrene | 0.74 ± 0.08 | 1431 | 1432 | trans-α-Bergamotene | 0.19 ± 0.02 |
1034 | 1032 | (Z)-β-Ocimene | 0.09 ± 0.01 | 1454 | 1452 | α-Humulene | 0.12 ± 0.01 |
1044 | 1044 | (E)-β-Ocimene | 1.07 ± 0.03 | 1473 | 1478 | γ-Muurolene | 0.05 ± 0.01 |
1069 | 1067 | cis-Linalool oxide (furanoid) | 0.19 ± 0.00 | 1480 | 1484 | Germacrene D | 2.52 ± 0.02 |
1085 | 1084 | trans-Linalool oxide (furanoid) | 0.05 ± 0.01 | 1482 | 1484 | (Z,Z)-α-Farnesene | 0.05 ± 0.01 |
1121 | 1119 | trans-p-Mentha-2,8-dien-1-ol | 0.37 ± 0.01 | 1494 | 1500 | Bicyclogermacrene | 0.06 ± 0.01 |
1130 | 1131 | Limona ketone | 0.06 ± 0.01 | 1497 | 1500 | α-Muurolene | 0.07 ± 0.01 |
1132 | 1132 | cis-Limonene oxide | 0.20 ± 0.00 | 1514 | 1514 | Cubebol | 0.12 ± 0.01 |
1136 | 1133 | cis-p-Mentha-2,8-dien-1-ol | 0.26 ± 0.01 | 1517 | 1522 | δ-Cadinene | 0.15 ± 0.01 |
1136 | 1137 | trans-Limonene oxide | 0.27 ± 0.01 | 1575 | 1574 | Germacra-1(10),5-dien-4β-ol | 0.20 ± 0.02 |
1138 | 1135 | Nopinone | 0.06 ± 0.01 | 1581 | 1582 | Caryophyllene oxide | 0.19 ± 0.03 |
1140 | 1135 | trans-Pinocarveol | 0.19 ± 0.03 | 1591 | 1594 | Salvial-4(14)-en-1-one | tr |
1145 | 1140 | trans-Verbenol | 0.07 ± 0.01 | 1601 | 1594 | Carotol | 0.18 ± 0.01 |
1162 | 1160 | Pinocarvone | 0.12 ± 0.00 | 1620 | 1611 | Germacra-1(10),5-dien-4α-ol | 0.20 ± 0.01 |
1171 | 1165 | Borneol | 0.11 ± 0.02 | Green leaf volatiles | 0.39 | ||
1178 | 1179 | 2-Isopropenyl-5-methyl-4-hexenal | 0.08 ± 0.01 | Monoterpene hydrocarbons | 88.15 | ||
1180 | 1174 | Terpinen-4-ol | 0.11 ± 0.02 | Oxygenated monoterpenoids | 6.18 | ||
1187 | 1183 | Cryptone | 0.10 ± 0.01 | Sesquiterpene hydrocarbons | 4.06 | ||
1195 | 1195 | Myrtenal | 0.23 ± 0.02 | Oxygenated sesquiterpenoids | 0.89 | ||
1197 | 1200 | trans-Dihydrocarvone | tr c | Total Identified | 99.67 | ||
1199 | 1195 | cis-Piperitol | 0.11 ± 0.07 |
RI a | RI b | Compound | % ± SD | RI a | RI b | Compound | % ± SD |
---|---|---|---|---|---|---|---|
800 | 797 | (3Z)-Hexenal | tr c | 1387 | 1387 | β-Cubebene | tr |
801 | 801 | Hexanal | 0.07 ± 0.02 | 1388 | 1389 | β-Elemene | 0.06 ± 0.01 |
810 | 796 | 2-Hexanol | tr | 1417 | 1419 | β-Ylangene | tr |
849 | 846 | (2E)-Hexenal | 0.33 ± 0.02 | 1418 | 1417 | β-Caryophyllene | 2.50 ± 0.02 |
850 | 844 | (3E)-Hexenol | 0.27 ± 0.04 | 1429 | 1430 | β-Copaene | tr |
922 | 921 | Tricyclene | 0.12 ± 0.00 | 1432 | 1432 | trans-α-Bergamotene | 0.13 ± 0.02 |
925 | 924 | α-Thujene | 0.19 ± 0.00 | 1454 | 1452 | α-Humulene | 1.07 ± 0.02 |
933 | 932 | α-Pinene | 58.59 ± 0.21 | 1469 | 1471 | 4,5-di-epi-Aristolochene | 0.05 ± 0.00 |
947 | 945 | α-Fenchene | tr | 1473 | 1478 | γ-Muurolene | 0.06 ± 0.01 |
949 | 946 | Camphene | 2.44 ± 0.02 | 1480 | 1484 | Germacrene D | 2.95 ± 0.01 |
971 | 969 | Sabinene | 1.78 ± 0.00 | 1482 | 1484 | (Z,Z)-α-Farnesene | 0.10 ± 0.01 |
977 | 974 | β-Pinene | 14.69 ± 0.07 | 1488 | 1489 | β-Selinene | 0.15 ± 0.01 |
988 | 988 | Myrcene | 9.70 ± 0.02 | 1491 | 1493 | trans-Muurola-4(14),5-diene | tr |
1004 | 1003 | p-Mentha-1(7),8-diene | tr | 1494 | 1500 | Bicyclogermacrene | 0.08 ± 0.00 |
1024 | 1020 | p-Cymene | tr | 1497 | 1500 | α-Muurolene | tr |
1028 | 1024 | Limonene | 1.76 ± 0.01 | 1512 | 1513 | γ-Cadinene | tr |
1030 | 1025 | β-Phellandrene | 0.31 ± 0.03 | 1517 | 1522 | δ-Cadinene | 0.10 ± 0.02 |
1034 | 1032 | (Z)-β-Ocimene | 0.05 ± 0.01 | 1575 | 1574 | Germacra-1(10),5-dien-4β-ol | 0.27 ± 0.02 |
1044 | 1044 | (E)-β-Ocimene | 0.44 ± 0.03 | 1581 | 1582 | Caryophyllene oxide | 0.47 ± 0.01 |
1057 | 1054 | γ-Terpinene | tr | 1609 | 1608 | Humulene epoxide II | 0.13 ± 0.01 |
1085 | 1086 | Terpinolene | tr | 2019 | 2026 | (E,E)-Geranyl linalool | 0.06 ± 0.01 |
1099 | 1099 | α-Pinene oxide | 0.10 ± 0.01 | 2228 | 2237 | 7α-Hydroxymanool | 0.16 ± 0.02 |
1112 | 1113 | (E)-4,8-Dimethylnona-1,3,7-triene | tr | 2300 | 2300 | Tricosane | tr |
1126 | 1122 | α-Campholenal | tr | 2500 | 2500 | Pentacosane | 0.16 ± 0.01 |
1140 | 1135 | trans-Pinocarveol | tr | 2700 | 2700 | Heptacosane | 0.16 ± 0.02 |
1145 | 1140 | trans-Verbenol | 0.11 ± 0.02 | Green leaf volatiles | 0.66 | ||
1162 | 1160 | Pinocarvone | tr | Monoterpene hydrocarbons | 90.09 | ||
1180 | 1174 | Terpinen-4-ol | tr | Oxygenated monoterpenoids | 0.38 | ||
1195 | 1195 | Myrtenal | 0.06 ± 0.01 | Sesquiterpene hydrocarbons | 7.37 | ||
1206 | 1204 | Verbenone | 0.10 ± 0.02 | Oxygenated sesquiterpenoids | 1.09 | ||
1368 | 1369 | Cyclosativene | 0.06 ± 0.00 | Others | 0.32 | ||
1375 | 1374 | α-Copaene | 0.08 ± 0.01 | Total Identified | 99.90 | ||
1383 | 1387 | β-Bourbonene | tr |
RI a | RI b | Compound | % ± SD | RI a | RI b | Compound | % ± SD |
---|---|---|---|---|---|---|---|
795 | 801 | 2-Methylhept-2-ene | 0.10 ± 0.00 | 1207 | 1204 | Verbenone | 0.09 ± 0.01 |
801 | 801 | Hexanal | 0.86 ± 0.16 | 1346 | 1345 | α-Cubebene | 0.15 ± 0.04 |
850 | 846 | (2E)-Hexenal | 1.40 ± 0.09 | 1382 | 1387 | β-Bourbonene | 0.15 ± 0.02 |
865 | 863 | 1-Hexanol | 0.22 ± 0.01 | 1418 | 1417 | β-Caryophyllene | 3.80 ± 0.07 |
922 | 921 | Tricyclene | 0.08 ± 0.00 | 1454 | 1452 | α-Humulene | 0.36 ± 0.02 |
924 | 924 | α-Thujene | 1.28 ± 0.02 | 1473 | 1478 | γ-Muurolene | 0.56 ± 0.12 |
932 | 932 | α-Pinene | 62.56 ± 0.79 | 1512 | 1513 | γ-Cadinene | 0.29 ± 0.09 |
948 | 946 | Camphene | 1.35 ± 0.01 | 1517 | 1522 | δ-Cadinene | 0.63 ± 0.03 |
971 | 969 | Sabinene | 0.16 ± 0.03 | 1536 | 1537 | α-Cadinene | 0.22 ± 0.04 |
977 | 974 | β-Pinene | 6.00 ± 0.09 | 1576 | 1577 | Spathulenol | 0.58 ± 0.11 |
988 | 988 | Myrcene | 2.43 ± 0.07 | 1581 | 1582 | Caryophyllene oxide | 1.37 ± 0.02 |
1024 | 1020 | p-Cymene | 0.15 ± 0.01 | Green leaf volatiles | 2.48 | ||
1028 | 1024 | Limonene | 11.43 ± 0.11 | Monoterpene hydrocarbons | 88.28 | ||
1030 | 1025 | β-Phellandrene | 0.70 ± 0.10 | Oxygenated monoterpenoids | 0.74 | ||
1044 | 1044 | (E)-β-Ocimene | 1.87 ± 0.09 | Sesquiterpene hydrocarbons | 6.16 | ||
1057 | 1054 | γ-Terpinene | 0.26 ± 0.01 | Oxygenated sesquiterpenoids | 1.95 | ||
1126 | 1122 | α-Campholenal | 0.29 ± 0.01 | Others | 0.10 | ||
1140 | 1135 | trans-Pinocarveol | 0.23 ± 0.04 | Total Identified | 99.71 | ||
1145 | 1140 | trans-Verbenol | 0.14 ± 0.05 |
RI a | RI b | Compound | % ± SD | RI a | RI b | Compound | % ± SD |
---|---|---|---|---|---|---|---|
802 | 801 | Hexanal | 0.17 ± 0.01 | 1382 | 1387 | β-Bourbonene | tr |
850 | 846 | (2E)-Hexenal | 1.21 ± 0.03 | 1386 | 1387 | β-Cubebene | 0.10 ± 0.01 |
921 | 921 | Tricyclene | 0.06 ± 0.00 | 1387 | 1389 | β-Elemene | 0.18 ± 0.00 |
924 | 924 | α-Thujene | 1.30 ± 0.00 | 1416 | 1419 | β-Ylangene | 0.14 ± 0.01 |
931 | 932 | α-Pinene | 13.91 ± 0.04 | 1418 | 1417 | β-Caryophyllene | 0.50 ± 0.03 |
948 | 946 | Camphene | 2.41 ± 0.01 | 1428 | 1430 | β-Copaene | 0.14 ± 0.01 |
971 | 969 | Sabinene | 14.25 ± 0.03 | 1454 | 1452 | α-Humulene | 0.17 ± 0.00 |
976 | 974 | β-Pinene | 4.62 ± 0.02 | 1473 | 1478 | γ-Muurolene | 0.59 ± 0.03 |
988 | 988 | Myrcene | 20.29 ± 0.04 | 1477 | 1483 | α-Amorphene | 0.12 ± 0.02 |
1005 | 1004 | (3Z)-Hexenyl acetate | tr c | 1479 | 1484 | Germacrene D | 10.67 ± 0.03 |
1006 | 1002 | α-Phellandrene | 2.84 ± 0.02 | 1487 | 1489 | β-Selinene | tr |
1016 | 1014 | α-Terpinene | 0.10 ± 0.00 | 1490 | 1495 | γ-Amorphene | 0.59 ± 0.01 |
1024 | 1020 | p-Cymene | 2.26 ± 0.00 | 1494 | 1500 | Bicyclogermacrene | 0.18 ± 0.00 |
1028 | 1024 | Limonene | 1.27 ± 0.01 | 1496 | 1500 | α-Muurolene | 0.14 ± 0.01 |
1030 | 1025 | β-Phellandrene | 0.35 ± 0.01 | 1511 | 1513 | γ-Cadinene | 0.30 ± 0.01 |
1044 | 1044 | (E)-β-Ocimene | 0.08 ± 0.01 | 1513 | 1514 | Cubebol | 0.06 ± 0.02 |
1057 | 1054 | γ-Terpinene | 0.38 ± 0.00 | 1516 | 1522 | δ-Cadinene | 0.68 ± 0.02 |
1069 | 1065 | cis-Sabinene hydrate | 0.24 ± 0.00 | 1535 | 1537 | α-Cadinene | 0.09 ± 0.01 |
1084 | 1086 | Terpinolene | 0.15 ± 0.01 | 1547 | 1548 | Elemol | 0.06 ± 0.01 |
1090 | 1090 | 6,7-Epoxymyrcene | 0.05 ± 0.00 | 1575 | 1574 | Germacra-1(10),5-dien-4β-ol | 0.14 ± 0.01 |
1099 | 1099 | α-Pinene oxide | tr | 1581 | 1582 | Caryophyllene oxide | 0.06 ± 0.01 |
1101 | 1098 | trans-Sabinene hydrate | 0.15 ± 0.00 | 1591 | 1594 | Salvial-4(14)-en-1-one | 0.06 ± 0.01 |
1105 | 1100 | Nonanal | tr | 1619 | 1611 | Germacra-1(10),5-dien-4α-ol | 0.12 ± 0.01 |
1112 | 1113 | (E)-4,8-Dimethylnona-1,3,7-triene | 0.11 ± 0.03 | 1627 | 1629 | iso-Spathulenol | 0.20 ± 0.01 |
1124 | 1124 | cis-p-Menth-2-en-1-ol | 0.05 ± 0.00 | 1641 | 1638 | τ-Cadinol | 0.09 ± 0.02 |
1180 | 1174 | Terpinen-4-ol | 0.73 ± 0.01 | 1643 | 1640 | τ-Murrolol | 0.14 ± 0.01 |
1195 | 1186 | α-Terpineol | 0.06 ± 0.01 | 1645 | 1644 | α-Muurolol (=δ-Cadinol) | 0.10 ± 0.01 |
1203 | 1202 | cis-Sabinol | 0.50 ± 0.01 | 1654 | 1652 | α-Cadinol | 0.41 ± 0.03 |
1219 | 1219 | cis-Sabinene hydrate acetate | 0.15 ± 0.01 | Green leaf volatiles | 1.38 | ||
1283 | 1287 | Bornyl acetate | 14.44 ± 0.02 | Monoterpene hydrocarbons | 64.26 | ||
1333 | 1335 | δ-Elemene | 0.05 ± 0.00 | Oxygenated monoterpenoids | 16.37 | ||
1345 | 1345 | α-Cubebene | 0.12 ± 0.00 | Sesquiterpene hydrocarbons | 14.90 | ||
1367 | 1373 | α-Ylangene | tr | Oxygenated sesquiterpenoids | 1.44 | ||
1368 | 1373 | Linalyl isobutyrate | tr | Others | 0.11 | ||
1374 | 1374 | α-Copaene | 0.05 ± 0.00 | Total Identified | 98.45 |
Component | Source of S. altissima (S. canadensis) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Commercial (Young Living) [85] | Bimtal, India [86] | Bimtal, India [87] | Slovakia [88] | Moscow, Russia [89] | Slovakia [90] | Hungary [91] | Giza, Egypt [92] | Poland [82] | Alabama (This Work) | |
α-Pinene | 13.3 | 5.0 | 0.4 | 1.8–36.3 | 28.1 | 11.6 | 4.6 | 29.2 | 14.7 | 13.9 |
Sabinene | 8.0 | 2.4 | 0.3 | --- | 0.5 | 3.9 | 0.1 | --- | 0.2 | 14.2 |
β-Pinene | --- | 1.2 | 0.2 | 0.5–6.5 | 2.8 | 3.1 | 1.2 | 4.8 | 1.5 | 4.6 |
Myrcene | 6.3 | 2.8 | --- | --- | 7.3 | --- | tr | 13.7 | 4.2 | 20.2 |
Limonene | 11.0 | 12.5 | 4.2 | 4.3-9.0 | 7.0 | 12.5 | 1.0 | 9.6 | 9.3 | 1.3 |
Bornyl acetate | 4.3 | 2.1 | 3.4 | --- | 7.3 | 6.3 | 13.4 | 6.2 | 1.3 | 14.4 |
Germacrene D | 34.4 | 56.7 | 64.1 | 0.0–11.1 | 39.2 | 34.9 | 11.0 | 10.3 | 19.8 | 10.6 |
RI a | RI b | Compound | % ± SD | RI a | RI b | Compound | % ± SD |
---|---|---|---|---|---|---|---|
793 | 788 | 1-Octene | 0.09 ± 0.01 | 1417 | 1417 | β-Caryophyllene | 0.93 ± 0.04 |
801 | 797 | (3Z)-Hexenal | 0.11 ± 0.01 | 1428 | 1430 | β-Copaene | 0.06 ± 0.01 |
802 | 801 | Hexanal | 0.75 ± 0.07 | 1454 | 1452 | α-Humulene | 0.49 ± 0.03 |
859 | 846 | (2E)-Hexenal | 5.79 ± 0.03 | 1479 | 1484 | Germacrene D | 13.92 ± 0.05 |
865 | 863 | 1-Hexanol | 0.12 ± 0.01 | 1487 | 1489 | β-Selinene | 0.11 ± 0.01 |
921 | 921 | Tricyclene | 0.05 ± 0.01 | 1493 | 1500 | Bicyclogermacrene | 0.29 ± 0.01 |
924 | 924 | α-Thujene | 0.08 ± 0.03 | 1496 | 1500 | α-Muurolene | 0.13 ± 0.01 |
931 | 932 | α-Pinene | 0.80 ± 0.01 | 1511 | 1513 | γ-Cadinene | 0.19 ± 0.01 |
948 | 946 | Camphene | 0.95 ± 0.02 | 1516 | 1522 | δ-Cadinene | 0.27 ± 0.03 |
971 | 969 | Sabinene | 4.89 ± 0.02 | 1575 | 1547 | Germacra-1(10),5-dien-4β-ol | 0.21 ± 0.01 |
976 | 974 | β-Pinene | 0.30 ± 0.01 | 1581 | 1582 | Caryophyllene oxide | 0.23 ± 0.01 |
978 | 974 | 1-Octen-3-ol | 0.20 ± 0.02 | 1641 | 1638 | τ-Cadinol | 0.31 ± 0.02 |
987 | 988 | Myrcene | 14.31 ± 0.04 | 1643 | 1640 | τ-Muurolol | 0.23 ± 0.02 |
1004 | 1003 | p-Mentha-1(7),8-diene | 0.05 ± 0.01 | 1654 | 1652 | α-Cadinol | 0.59 ± 0.05 |
1016 | 1014 | α-Terpinene | 0.06 ± 0.01 | 1663 | 1668 | ar-Turmerone | 0.10 ± 0.01 |
1028 | 1024 | Limonene | 48.23 ± 0.22 | 1693 | 1688 | Shyobunol | 0.27 ± 0.03 |
1030 | 1025 | β-Phellandrene | 0.90 ± 0.03 | 1932 | 1931 | Beyerene | 0.64 ± 0.02 |
1044 | 1044 | (E)-β-Ocimene | 0.10 ± 0.02 | 2105 | 2106 | (E)-Phytol | 0.25 ± 0.03 |
1057 | 1054 | γ-Terpinene | 0.16 ± 0.01 | Green leaf volatiles | 6.77 | ||
1069 | 1067 | cis-Linalool oxide (furanoid) | 0.06 ± 0.01 | Monoterpene hydrocarbons | 70.87 | ||
1099 | 1095 | Linalool | 1.16 ± 0.01 | Oxygenated monoterpenoids | 2.22 | ||
1180 | 1174 | Terpinen-4-ol | 0.39 ± 0.01 | Sesquiterpene hydrocarbons | 16.58 | ||
1219 | 1217 | β-Cyclocitral | 0.11 ± 0.02 | Oxygenated sesquiterpenoids | 1.95 | ||
1283 | 1287 | Bornyl acetate | 0.56 ± 0.01 | Diterpenoids | 0.89 | ||
1351 | 1356 | Eugenol | 0.28 ± 0.03 | Benzenoids | 0.28 | ||
1386 | 1387 | β-Cubebene | 0.10 ± 0.02 | Others | 0.29 | ||
1416 | 1419 | β-Ylangene | 0.08 ± 0.03 | Total Identified | 99.85 |
Plant Species | Major Components (>5%) in the Essential Oil | Antifungal Activity, MIC, μg/mL a | ||
---|---|---|---|---|
Aspergillus niger | Candida albicans | Cryptococcus neoformans | ||
Eupatorium serotinum Michx. | germacrene D (6.6%), palustrol (5.4%), cyclocolorenone (23.5%) | 313 | 625 | 78 |
Eurybia macrophylla (L.) Cass. | β-pinene (8.5%), limonene (28.6%), terpinolene (5.3%), germacrene D (19.7%), germacrene B (7.0%) | 625 | 625 | 156 |
Eutrochium purpureum (L.) E.E. Lamont | hexanal (6.8%), (2E)-hexenal (59.7%), methyl salicylate (10.4%), eugenol (11.8%) | 625 | 625 | 625 |
Polymnia canadensis L. | α-pinene (19.6%), α-phellandrene (28.2%), germacrene D (11.4%) | 625 | 625 | 156 |
Rudbeckia laciniata L. | α-pinene (10.2%), β-pinene (9.2%), myrcene (5.3%), limonene (58.9%) | 625 | 1250 | 156 |
Silphium integrifolium Michx. | α-pinene (58.5%), β-pinene (14.7%), myrcene (9.7%) | n.t. b | n.t. | n.t. |
Smallanthus uvedalia (L.) Mack. | α-pinene (62.3%), β-pinene (6.0%), limonene (11.3%) | n.t. | n.t. | n.t. |
Solidago altissima L. | α-pinene (13.9%), sabinene (14.2%), myrcene (20.2%), bornyl acetate (14.4%), germacrene D (10.6%) | 625 | 1250 | 313 |
Xanthium strumarium L. | (2E)-hexenal (5.8%), myrcene (14.3%), limonene (48.0%), germacrene D (13.9%) | 625 | 1250 | n.t. |
Compound | Aspergillus niger | Candida albicans | Cryptococcus neoformans |
---|---|---|---|
α-Pinene | 1250 | 625 | 313 |
β-Pinene | 625 | 1250 | 625 |
Limonene | 625 | 1250 | 625 |
Myrcene | 625 | 625 | 625 |
Methyl salicylate | 625 | 625 | 625 |
Eugenol | 78 | 313 | 156 |
Bornyl acetate | 625 | 625 | 625 |
Plant | Collection Site, Date | Voucher Number | Mass of Aerial Parts (g) | Yield of Essential Oil (mg) |
---|---|---|---|---|
Eupatorium serotinum Michx. | 34°38′29″ N, 86°24′39″ W, elev. 199 m 13 September 2018 | 233754 | 49.09 | 6.4 (0.013%) |
Eurybia macrophylla (L.) Cass. | 34°39′25″ N, 86°24′45″ W, elev. 241 m 15 September 2018 | 233117 | 56.56 | 10.6 (0.019%) |
Eutrochium purpureum (L.) E.E. Lamont | 34°38′40″ N, 86°27′22″ W, elev. 180 m 12 August 2018 | 091843 | 63.44 | 12.3 (0.019%) |
Polymnia canadensis L. | 34°38′29″ N, 86°24′39″ W, elev. 199 m 21 July 2018 | 184700 | 52.89 | 39.1 (0.074%) |
Rudbeckia laciniata L. | 34°42′42″ N, 86°32′38″ W, elev. 345 m 13 September 2018 | 004426 | 54.53 | 6.0 (0.011%) |
Silphium integrifolium Michx. | 34°42′42″ N, 86°32′38″ W, elev. 345 m 15 September 2018 | 004152 | 15.02 | 6.4 (0.043%) |
Smallanthus uvedalia (L.) Mack. | 34°42′42″ N, 86°32′38″ W, elev. 345 m 15 September 2018 | 000714 | 56.21 | 5.9 (0.010%) |
Solidago altissima L. | 34°38′40″ N, 86°27′22″ W, elev. 180 m 12 August 2018 | 001425 | 54.41 | 44.9 (0.083%) |
Xanthium strumarium L. | 34°38′49″ N, 86°24′38″ W, elev. 200 m 15 September 2018 | 224724 | 69.69 | 7.0 (0.010%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawson, S.K.; Sharp, L.G.; Powers, C.N.; McFeeters, R.L.; Satyal, P.; Setzer, W.N. Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae. Plants 2020, 9, 126. https://doi.org/10.3390/plants9010126
Lawson SK, Sharp LG, Powers CN, McFeeters RL, Satyal P, Setzer WN. Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae. Plants. 2020; 9(1):126. https://doi.org/10.3390/plants9010126
Chicago/Turabian StyleLawson, Sims K., Layla G. Sharp, Chelsea N. Powers, Robert L. McFeeters, Prabodh Satyal, and William N. Setzer. 2020. "Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae" Plants 9, no. 1: 126. https://doi.org/10.3390/plants9010126
APA StyleLawson, S. K., Sharp, L. G., Powers, C. N., McFeeters, R. L., Satyal, P., & Setzer, W. N. (2020). Volatile Compositions and Antifungal Activities of Native American Medicinal Plants: Focus on the Asteraceae. Plants, 9(1), 126. https://doi.org/10.3390/plants9010126