Current Progress in Nitrogen Fixing Plants and Microbiome Research
Abstract
:1. Introduction
2. Biological Nitrogen Fixation (BNF)
2.1. The Nitrogenase Protein and Nodule Formation
2.2. Genes Encoding Nitrogenase Enzyme
2.3. Marker-Assisted Selection of Biological Nitrogen-Fixing Plants
3. Host Plant
3.1. Symbiotic Nitrogen Fixation in Legume Nodules
3.2. Nitrogen Fixation in Non-Legumes
3.2.1. Bacterial Nitrogen Fixation in Sugarcane
3.2.2. Bacterial Nitrogen Fixation in Sweet Potato
3.2.3. Bacterial Nitrogen Fixation in Paddy Field
3.2.4. Maize Mucilage and Microbiota Association for Nitrogen Fixation
3.2.5. Bacterial Nitrogen Fixation in Switchgrass
4. Current Strategies and Tools for Engineering Symbiotic Nitrogen Fixation in Non-Legumes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ney, L.; Franklin, D.; Mahmud, K.; Cabrera, M.; Hancock, D.; Habteselassie, M.; Newcomer, Q.; Fatzinger, B. Rebuilding Soil Ecosystems for Improved Productivity in Biosolarized Soils. Int. J. Agron. 2019, 2019, 5827585. [Google Scholar] [CrossRef]
- Vitousek, P.; Howarth, R. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- Hedin, L.O.; Brookshire, E.J.; Menge, D.N.; Barron, A.R. The Nitrogen Paradox in Tropical Forest Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 613–635. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitousek, P.M.; Menge, D.N.L.; Reed, S.C.; Cleveland, C.C. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. B: Boil. Sci. 2013, 368, 20130119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobermann, A. Nutrient use efficiency—Measurement and management. In Proceedings of the International Fertilizer Industry Association, Brussels, Belgium, 7–9 March 2007; pp. 1–22. [Google Scholar]
- Westhoff, P. The economics of biological nitrogen fixation in the global economy. Agron. Monogr. 2009, 52, 309–328. [Google Scholar]
- Santi, C.; Bogusz, D.; Franche, C. Biological nitrogen fixation in non-legume plants. Ann. Bot. 2013, 111, 743–767. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.G.; Serra, G.E.; Moreira, J.R.; Conçalves, J.C.; Goldemberg, J. Energy Balance for Ethyl Alcohol Production from Crops. Science 1978, 201, 903–906. [Google Scholar] [CrossRef]
- Sulieman, S.; Tran, L. Legume Nitrogen Fixation in a Changing Environment; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Lindström, K.; Murwira, M.; Willems, A.; Altier, N. The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res. Microbiol. 2010, 161, 453–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahal, S.; Franklin, D.H.; Cabrera, M.L.; Hancock, D.W.; Stewart, L.; Ney, L.C.; Subedi, A.; Mahmud, K. Spatial Distribution of Inorganic Nitrogen in Pastures as Affected by Management, Landscape, and Cattle Locus. J. Environ. Qual. 2018, 47, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
- Lam, H.-M.; Coschigano, K.T.; Oliveira, I.C.; Melo-Oliveira, R.; Coruzzi, G.M. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Boil. 1996, 47, 569–593. [Google Scholar] [CrossRef] [PubMed]
- Graham, P.H. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can. J. Microbiol. 1992, 38, 475–484. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Ramírez-Puebla, S.T.; Ormeño-Orrillo, E.; Rogel, M.A.; López-Guerrero, M.G.; López-López, A.; Martínez-Romero, J.; Negrete-Yankelevich, S.; Martínez-Romero, E. La diversidad de rizobios nativos de México a la luz de la genómica. Rev. Mex. Biodivers. 2019, 90, 902681. [Google Scholar] [CrossRef] [Green Version]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.-B. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 2010, 30, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Rosenblueth, M.; Ormeño-Orrillo, E.; López-López, A.; Rogel, M.A.; Reyes-Hernández, B.J.; Martínez-Romero, J.C.; Reddy, P.M.; Martínez-Romero, E. Nitrogen Fixation in Cereals. Front. Microbiol. 2018, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.J.; Schniter, E.J. Black Queen markets: Commensalism, dependency, and the evolution of cooperative specialization in human society. J. Bioecon. 2018, 20, 69–105. [Google Scholar] [CrossRef]
- Peix, A.; Ramírez-Bahena, M.H.; Velázquez, E.; Bedmar, E.J. Bacterial associations with legumes. Crit. Rev. Plant Sci. 2015, 34, 17–42. [Google Scholar] [CrossRef]
- Graham, P.H.; Vance, C.P. Legumes: Importance and constraints to greater use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [Green Version]
- King, C.A.; Purcell, L.C. Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. Plant Physiol. 2005, 137, 1389–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wu, L.; Baddeley, J.A.; Watson, C.A. Models of Biological Nitrogen Fixation of Legumes. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2011; Volume 2, pp. 883–905. [Google Scholar]
- Purcell, L.C.; Serraj, R.; De Silva, M.; Sinclair, T.R.; Bona, S. Ureide concentration of field-grown soybean in response to drought and the relationship to nitrogen fixation. J. Plant Nutr. 1998, 21, 949–966. [Google Scholar] [CrossRef]
- Zahran, H.H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultze, M.; Kondorosi, A.J. Regulation of symbiotic root nodule development. Annu. Rev. Genet. 1998, 32, 33–57. [Google Scholar] [CrossRef]
- Oldroyd, G.E.; Downie, J.A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 2008, 59, 519–546. [Google Scholar] [CrossRef]
- Desbrosses, G.J.; Stougaard, J. Root nodulation: A paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe 2011, 10, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Burén, S.; Rubio, L.M. State of the art in eukaryotic nitrogenase engineering. FEMS Microbiol. Lett. 2017, 365. [Google Scholar] [CrossRef]
- Yates, M.; Jones, C. Respiration and Nitrogen Fixation in Azotobacter. In Advances in Microbial Physiology; Elsevier BV: Amsterdam, The Netherlands, 1974; Volume 11, pp. 97–135. [Google Scholar]
- Poole, R.K.; Hill, S. Respiratory protection of nitrogenase activity in Azotobacter vinelandii—Roles of the terminal oxidases. Biosci. Rep. 1997, 17, 303–317. [Google Scholar] [CrossRef]
- Bulen, W.; LeComte, J.J. The nitrogenase system from Azotobacter: Two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis. Proc. Natl. Acad. Sci. USA 1966, 56, 979. [Google Scholar] [CrossRef] [Green Version]
- Bishop, P.E.; Joerger, R.D. Genetics and molecular biology of alternative nitrogen fixation systems. Annu. Rev. Plant Biol. 1990, 41, 109–125. [Google Scholar] [CrossRef]
- Shah, V.K.; Brill, W.J. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. USA 1977, 74, 3249–3253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, P.C.; Fang, Z.; Mason, S.W.; Setubal, J.C.; Dixon, R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genom. 2012, 13, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGlynn, S.E.; Boyd, E.S.; Peters, J.W.; Orphan, V.J. Classifying the metal dependence of uncharacterized nitrogenases. Front. Microbiol. 2013, 3, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, B.; Gresshoff, P.M. The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int. J. Mol. Sci. 2014, 15, 7380–7397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaink, H.P. Root nodulation and infection factors produced by rhizobial bacteria. Annu. Rev. Microbiol. 2000, 54, 257–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmond, J.W.; Batley, M.; Djordjevic, M.A.; Innes, R.W.; Kuempel, P.L.; Rolfe, B.G. Flavones induce expression of nodulation genes in Rhizobium. Nature 1986, 323, 632–635. [Google Scholar] [CrossRef]
- Caetano-Anollés, G.; Gresshoff, P.M. Plant genetic control of nodulation. Annu. Rev. Microbiol. 1991, 45, 345–382. [Google Scholar] [CrossRef]
- Denarie, J.; Debelle, F.; Prome, J.-C. Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 1996, 65, 503–535. [Google Scholar] [CrossRef]
- Szczyglowski, K.; Shaw, R.S.; Wopereis, J.; Copeland, S.; Hamburger, D.; Kasiborski, B.; Dazzo, F.B.; De Bruijn, F.J. Nodule Organogenesis and Symbiotic Mutants of the Model Legume Lotus japonicus. Mol. Plant-Microbe Interact. 1998, 11, 684–697. [Google Scholar] [CrossRef] [Green Version]
- Calvert, H.E.; Pence, M.K.; Pierce, M.; Malik, N.S.A.; Bauer, W.D. Anatomical analysis of the development and distribution of Rhizobium infections in soybean roots. Can. J. Bot. 1984, 62, 2375–2384. [Google Scholar] [CrossRef]
- Mathews, A.; Carroll, B.; Gresshoff, P.J.P. Development of Bradyrhizobium infections in supernodulating and non-nodulating mutants of soybean (Glycine max [L.] Merrill). Protoplasma 1989, 150, 40–47. [Google Scholar] [CrossRef]
- Gresshoff, P.M.; Delves, A.C. Plant genetic approaches to symbiotic nodulation and nitrogen fixation in legumes. In Plant Gene Research; Springer Science and Business Media LLC: Vienna, Austria, 1986; pp. 159–206. [Google Scholar]
- Timmers, A.; Auriac, M.-C.; Truchet, G.J.D. Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 1999, 126, 3617–3628. [Google Scholar] [PubMed]
- Wopereis, J.; Pajuelo, E.; Dazzo, F.B.; Jiang, Q.; Gresshoff, P.M.; De Bruijn, F.J.; Stougaard, J.; Szczyglowski, K. Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J. 2000, 23, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, W.; Sippell, D.; Peterson, R.J. The early morphogenesis of Glycine max and Pisum sativum root nodules. Can. J. Bot. 1979, 57, 2603–2616. [Google Scholar] [CrossRef]
- Rolfe, B.G.; Gresshoff, P.J.; Biology, P.M. Genetic analysis of legume nodule initiation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1988, 39, 297–319. [Google Scholar] [CrossRef]
- Galibert, F.; Finan, T.M.; Long, S.R.; Pühler, A.; Abola, P.; Ampe, F.; Barloy-Hubler, F.; Barnett, M.J.; Becker, A.; Boistard, P.; et al. The Composite Genome of the Legume Symbiont Sinorhizobium meliloti. Science 2001, 293, 668–672. [Google Scholar] [CrossRef] [Green Version]
- Giraud, E.; Moulin, L.; Vallenet, D.; Barbe, V.; Cytryn, E.; Avarre, J.-C.; Jaubert, M.; Simon, D.; Cartieaux, F.; Prin, Y.; et al. Legumes Symbioses: Absence of Nod Genes in Photosynthetic Bradyrhizobia. Science 2007, 316, 1307–1312. [Google Scholar] [CrossRef]
- Kaneko, T.; Nakamura, Y.; Sato, S.; Asamizu, E.; Kato, T.; Sasamoto, S.; Watanabe, A.; Idesawa, K.; Ishikawa, A.; Kawashima, K.; et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 2000, 7, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Adams, T.H.; McClung, C.R.; Chelm, B.K. Physical organization of the Bradyrhizobium japonicum nitrogenase gene region. J. Bacteriol. 1984, 159, 857–862. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.R.; Brigle, K.E.; Bennett, L.T.; Setterquist, R.A.; Wilson, M.S.; Cash, V.L.; Beynon, J.; Newton, W.E.; Dean, D.R. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J. Bacteriol. 1989, 171, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Pedrosa, F.; Teixeira, K.; Machado, I.; Steffens, M.; Klassen, G.; Benelli, E.; Machado, H.; Funayama, S.; Rigo, L.; Ishida, M.; et al. Structural organization and regulation of the nif genes of Herbaspirillum seropedicae. Soil Boil. Biochem. 1997, 29, 843–846. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, J.; Dou, Y.; Chen, M.; Ping, S.; Peng, J.; Lu, W.; Zhang, W.; Yao, Z.; Li, H.; et al. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc. Natl. Acad. Sci. USA 2008, 105, 7564–7569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masepohl, B.; Drepper, T.; Paschen, A.; Gross, S.; Pawlowski, A.; Raabe, K.; Riedel, K.-U.; Klipp, W. Regulation of nitrogen fixation in the phototrophic purple bacterium Rhodobacter capsulatus. J. Mol. Microbiol. Biotechnol. 2002, 4, 243–248. [Google Scholar] [PubMed]
- Lee, S.; Reth, A.; Meletzus, D.; Sevilla, M.; Kennedy, C. Characterization of a Major Cluster of nif,fix, and Associated Genes in a Sugarcane Endophyte,Acetobacter diazotrophicus. J. Bacteriol. 2000, 182, 7088–7091. [Google Scholar] [CrossRef] [Green Version]
- Kallas, T.; Coursin, T.; Rippka, R.J. Different organization of nif genes in nonheterocystous and heterocystous cyanobacteria. Plant Mol. Biol. 1985, 5, 321–329. [Google Scholar] [CrossRef]
- Earl, C.; Ronson, C.; Ausubel, F.J. Genetic and structural analysis of the Rhizobium meliloti fixA, fixB, fixC, and fixX genes. J. Bacteriol. 1987, 169, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Edgren, T.; Nordlund, S.J. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J. Bacteriol. 2004, 186, 2052–2060. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, L.; Domínguez, J.; Quinto, C.; López-Lara, I.M.; Lugtenberg, B.J.; Spaink, H.P.; Rademaker, G.J.; Haverkamp, J.; Thomas-Oates, J.E. Isolation, chemical structures and biological activity of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli. Plant Mol. Boil. 1995, 29, 453–464. [Google Scholar] [CrossRef]
- Mus, F.; Crook, M.B.; Garcia, K.; Costas, A.G.; Geddes, B.A.; Kouri, E.D.; Paramasivan, P.; Ryu, M.-H.; Oldroyd, G.E.D.; Poole, P.S.; et al. Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Appl. Environ. Microbiol. 2016, 82, 3698–3710. [Google Scholar] [CrossRef] [Green Version]
- Perret, X.; Staehelin, C.; Broughton, W.J. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 2000, 64, 180–201. [Google Scholar] [CrossRef] [Green Version]
- Kamfwa, K.; Cichy, K.A.; Kelly, J.D. Identification of quantitative trait loci for symbiotic nitrogen fixation in common bean. Theor. Appl. Genet. 2019, 132, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Ohlson, E.W.; Seido, S.L.; Mohammed, S.; Santos, C.A.F.; Timko, M.P. QTL Mapping of Ineffective Nodulation and Nitrogen Utilization-Related Traits in the IC-1 Mutant of Cowpea. Crop Sci. 2018, 58, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, A.; Gondo, T.; Akashi, R.; Zheng, S.H.; Arima, S.; Suzuki, A. Quantitative trait locus analysis of symbiotic nitrogen fixation activity in the model legume Lotus japonicus. J. Plant Res. 2012, 125, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xie, X.; Yang, M.; Dixon, R.; Wang, Y.-P. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity. Proc. Natl. Acad. Sci. USA 2017, 114, E2460–E2465. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, N.; Qi, X.; Li, M.-W.; Xie, M.; Gao, Y.; Cheung, M.-Y.; Wong, F.-L.; Lam, H.-M. Improvement in nitrogen fixation capacity could be part of the domestication process in soybean. Heredity 2016, 117, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zheng, J.; Yang, Y.; Liao, H. INCREASING NODULE SIZE1 Expression Is Required for Normal Rhizobial Symbiosis and Nodule Development. Plant Physiol. 2018, 178, 1233–1248. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.L.; Nguyen, C.; Finlay, R.D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 2009, 321, 5–33. [Google Scholar] [CrossRef]
- Günter, N.; Volker, R. The release of root exudates as affected by the plant physiological status. In The Rhizophere: Biochemistry and Organic Substances at the Soilplant Interface; Pinton, R., Varanini, Z., Nannipieri, P., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 23–72. [Google Scholar]
- Turner, T.R.; James, E.K.; Poole, P.S. The plant microbiome. Genome Biol. 2013, 14, 209. [Google Scholar] [CrossRef] [Green Version]
- Turner, T.R.; Ramakrishnan, K.; Walshaw, J.; Heavens, D.; Alston, M.; Swarbreck, D.; Osbourn, A.; Grant, A.; Poole, P.S. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 2013, 7, 2248–2258. [Google Scholar] [CrossRef] [Green Version]
- Baetz, U.; Martinoia, E.J. Root exudates: The hidden part of plant defense. Trends Plant Sci. 2014, 19, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Kamilova, F.; Kravchenko, L.V.; Shaposhnikov, A.I.; Azarova, T.; Makarova, N.; Lugtenberg, B. Organic Acids, Sugars, and l -Tryptophane in Exudates of Vegetables Growing on Stonewool and Their Effects on Activities of Rhizosphere Bacteria. Mol. Plant-Microbe Interact. 2006, 19, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Kamilova, F.; Validov, S.; Azarova, T.; Mulders, I.; Lugtenberg, B. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbiol. 2005, 7, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Van Egeraat, A. The possible role of homoserine in the development of Rhizobium leguminosarum in the rhizosphere of pea seedlings. Plant Soil 1975, 42, 381–386. [Google Scholar] [CrossRef]
- Vanderlinde, E.M.; Hynes, M.F.; Yost, C.K. Homoserine catabolism by Rhizobium leguminosarum bv. viciae 3841 requires a plasmid-borne gene cluster that also affects competitiveness for nodulation. Environ. Microbiol. 2014, 16, 205–217. [Google Scholar] [PubMed]
- Fan, J.; Crooks, C.; Creissen, G.; Hill, L.; Fairhurst, S.; Doerner, P.; Lamb, C. Pseudomonas sax Genes Overcome Aliphatic Isothiocyanate-Mediated Non-Host Resistance in Arabidopsis. Science 2011, 331, 1185–1188. [Google Scholar] [CrossRef] [PubMed]
- Mondy, S.; Lenglet, A.; Libanga, C.; Ratet, P.; Faure, D.; Dessaux, Y.; Beury-Cirou, A. An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations. Mol. Ecol. 2014, 23, 4846–4861. [Google Scholar] [CrossRef] [PubMed]
- Oger, P.; Petit, A.; Dessaux, Y.J. Genetically engineered plants producing opines alter their biological environment. Nat. Biotechnol. 1997, 15, 369. [Google Scholar] [CrossRef]
- Mayer, J.; Buegger, F.; Jensen, E.S.; Schloter, M.; Heß, J. Estimating N rhizodeposition of grain legumes using a 15N in situ stem labelling method. Soil Boil. Biochem. 2003, 35, 21–28. [Google Scholar] [CrossRef]
- McNeill, A.; Fillery, I.J.P. Field measurement of lupin belowground nitrogen accumulation and recovery in the subsequent cereal-soil system in a semi-arid Mediterranean-type climate. Plant Soil 2008, 302, 297–316. [Google Scholar] [CrossRef]
- Ta, T.; Faris, M.J.P. Effects of environmental conditions on the fixation and transfer of nitrogen from alfalfa to associated timothy. Plant Soil 1988, 107, 25–30. [Google Scholar] [CrossRef]
- Bohlool, B.B.; Ladha, J.K.; Garrity, D.P.; George, T. Biological nitrogen fixation for sustainable agriculture: A perspective. Plant Soil 1992, 141, 1–11. [Google Scholar] [CrossRef]
- Unkovich, M.J.; Baldock, J.; Peoples, M.B. Prospects and problems of simple linear models for estimating symbiotic N2 fixation by crop and pasture legumes. Plant Soil 2010, 329, 75–89. [Google Scholar] [CrossRef]
- Cornish, P.S.; Baginska, B.; Kuczera, G.; Jones, D.; Mohammad, A. Measuring the effects of land use and land management on river water quality. In Proceedings of the 8th Australian Agronomy Conference, Toowoomba, Australia, 30 January–2 February 1996. [Google Scholar]
- Khan, W.D.F.; Peoples, M.B.; Herridge, D.F. Quantifying below-ground nitrogen of legumes. Plant Soil 2002, 245, 327–334. [Google Scholar] [CrossRef]
- Van Sambeek, J.; Ponder, F.; Rietveld, W. Legumes increase growth and alter foliar nutrient levels of black walnut saplings. For. Ecol. Manag. 1986, 17, 159–167. [Google Scholar] [CrossRef]
- Van Sambeek, J.; Garrett, H. Ground Cover Management in Walnut and Other Hardwood Plantings. In Proceedings of the 6th Walnut Council Research Symposium, St. Paul, MN, USA, 25–28 July 2004; pp. 85–100. [Google Scholar]
- Zapata, F.; Danso, S.K.A.; Hardarson, G.; Fried, M. Time Course of Nitrogen Fixation in Field-Grown Soybean Using Nitrogen-15 Methodology1. Agron. J. 1987, 79, 172–176. [Google Scholar] [CrossRef]
- Frame, J.; Laidlaw, A.J. Prospects for temperate forage legumes. In Grasslands: Developments, Opportunities, Perspectives; Reynolds, S.G., Frame, J., Eds.; Science Publishers, Inc.: Enfield, NH, USA, 2005; pp. 1–28. [Google Scholar]
- Adhikari, L.; Missaoui, A.M. Nodulation response to molybdenum supplementation in alfalfa and its correlation with root and shoot growth in low pH soil. J. Plant Nutr. 2017, 40, 2290–2302. [Google Scholar] [CrossRef]
- Loreau, M.; Hector, A.J.N. Partitioning selection and complementarity in biodiversity experiments. Nature 2001, 412, 72. [Google Scholar] [CrossRef]
- Heichel, G.; Barnes, D.; Vance, C.J. Nitrogen Fixation of Alfalfa in the Seeding Year. Crop Sci. 1981, 21, 330–335. [Google Scholar] [CrossRef]
- Arpiwi, N.L.; Yan, G.; Barbour, E.L.; Plummer, J.A. Genetic diversity, seed traits and salinity tolerance of Millettia pinnata (L.) Panigrahi, a biodiesel tree. Genet. Resour. Crop Evol. 2013, 60, 677–692. [Google Scholar] [CrossRef]
- Kesari, V.; Ramesh, A.M.; Rangan, L.J. Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. BioMed Res. Int. 2013. [Google Scholar] [CrossRef] [Green Version]
- Rasul, A.; Amalraj, E.L.D.; Praveen Kumar, G.; Grover, M.; Venkateswarlu, B. Characterization of rhizobial isolates nodulating Millettia pinnata in India. FEMS Microbiol. Lett. 2012, 336, 148–158. [Google Scholar] [CrossRef]
- Samuel, S.; Scott, P.T.; Gresshoff, P.M. Nodulation in the legume biofuel feedstock tree Pongamia pinnata. Agric. Res. 2013, 2, 207–214. [Google Scholar] [CrossRef] [Green Version]
- James, E.J. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res. 2000, 65, 197–209. [Google Scholar] [CrossRef]
- White, J.F.; Crawford, H.; Torres, M.S.; Mattera, R.; Irizarry, I.; Bergen, M. A proposed mechanism for nitrogen acquisition by grass seedlings through oxidation of symbiotic bacteria. Symbiosis 2012, 57, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, D.; Lynch, J.J. Microbial growth in the rhizosphere. Soil Biol. Biochem. 1977, 9, 305–308. [Google Scholar] [CrossRef]
- Delwiche, C.; Wijler, J.J. Non-symbiotic nitrogen fixation in soil. Plant Soil 1956, 7, 113–129. [Google Scholar] [CrossRef]
- Okon, Y.; Heytler, P.; Hardy, R.J. N2 fixation by Azospirillum brasilense and its incorporation into host Setaria italica. Appl. Environ. Microbiol. 1983, 46, 694–697. [Google Scholar] [CrossRef] [Green Version]
- Pankievicz, V.C.S.; Amaral, F.P.D.; Santos, K.F.D.N.; Agtuca, B.; Xu, Y.; Schueller, M.J.; Arisi, A.C.M.; Steffens, M.B.; De Souza, E.M.; Pedrosa, F.O.; et al. Robust biological nitrogen fixation in a model grass-bacterial association. Plant J. 2015, 81, 907–919. [Google Scholar] [CrossRef]
- Iniguez, A.L.; Dong, Y.; Triplett, E.W. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol. Plant-Microbe Interact. 2004, 17, 1078–1085. [Google Scholar] [CrossRef] [Green Version]
- Bonaldi, K.; Gourion, B.; Fardoux, J.; Hannibal, L.; Cartieaux, F.; Boursot, M.; Vallenet, D.; Chaintreuil, C.; Prin, Y.; Nouwen, N.; et al. Large-Scale Transposon Mutagenesis of Photosynthetic Bradyrhizobium Sp. Strain ORS278 Reveals New Genetic Loci Putatively Important for Nod-Independent Symbiosis with Aeschynomene indica. Mol. Plant-Microbe Interact. 2010, 23, 760–770. [Google Scholar] [CrossRef] [Green Version]
- Chaintreuil, C.; Arrighi, J.-F.; Giraud, E.; Miché, L.; Moulin, L.; Dreyfus, B.; Munive-Hernández, J.; Villegas-Hernandez, M.D.C.; Béna, G. Evolution of symbiosis in the legume genusAeschynomene. New Phytol. 2013, 200, 1247–1259. [Google Scholar] [CrossRef]
- Chi, F.; Shen, S.-H.; Cheng, H.-P.; Jing, Y.-X.; Yanni, Y.G.; Dazzo, F.B. Ascending Migration of Endophytic Rhizobia, from Roots to Leaves, inside Rice Plants and Assessment of Benefits to Rice Growth Physiology. Appl. Environ. Microbiol. 2005, 71, 7271–7278. [Google Scholar] [CrossRef] [Green Version]
- Thaweenut, N.; Hachisuka, Y.; Ando, S.; Yanagisawa, S.; Yoneyama, T. Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): Expression of nifH genes similar to those of rhizobia. Plant Soil 2011, 338, 435–449. [Google Scholar] [CrossRef]
- Terakado-Tonooka, J.; Fujihara, S.; Ohwaki, Y. Possible contribution of Bradyrhizobium on nitrogen fixation in sweet potatoes. Plant Soil 2013, 367, 639–650. [Google Scholar] [CrossRef]
- Alazard, D.J. Nitrogen fixation in pure culture by rhizobia isolated from stem nodules of tropical Aeschynomene species. FEMS Microbiol. Lett. 1990, 68, 177–182. [Google Scholar] [CrossRef]
- Chen, W.M.; Moulin, L.; Bontemps, C.; Vandamme, P.; Béna, G.; Boivin-Masson, C. Legume symbiotic nitrogen fixation byβ-proteobacteria is widespread in nature. J. Bacteriol. 2003, 185, 7266–7272. [Google Scholar] [CrossRef] [Green Version]
- Dreyfus, B.; Elmerich, C.; Dommergues, Y.J. Free-living Rhizobium strain able to grow on N2 as the sole nitrogen source. Appl. Environ. Microbiol. 1983, 45, 711–713. [Google Scholar] [CrossRef] [Green Version]
- Elliott, G.N.; Chen, W.M.; Chou, J.H.; Wang, H.C.; Sheu, S.Y.; Perin, L.; Reis, V.M.; Moulin, L.; Simon, M.F.; Bontemps, C.; et al. Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol. 2007, 173, 168–180. [Google Scholar]
- Gebhardt, C.; Turner, G.L.; Gibson, A.H.; Dreyfus, B.L.; Bergersen, F.J. Nitrogen-fixing Growth in Continuous Culture of a Strain of Rhizobium sp. Isolated from Stem Nodules on Sesbania rostrata. Microbiology 1984, 130, 843–848. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, S.S.; Bender, G.L.; Shine, J.; Rolfe, B.G.; Gresshoff, P.M. In vitro expression of nitrogenase activity in Parasponia-Rhizobium strain ANU 289. Arch. Microbiol. 1983, 134, 12–16. [Google Scholar] [CrossRef]
- Dobereiner, J. Nitrogen-fixing bacteria of the genusBeijerinckia Derx in the rhizosphere of sugar cane. Plant Soil 1961, 15, 211–216. [Google Scholar] [CrossRef]
- Hill, W.A.; Bacon-Hill, P.; Crossman, S.M.; Stevens, C. Characterization of N2-fixing bacteria associated with sweet potato roots. Can. J. Microbiol. 1983, 29, 860–862. [Google Scholar] [CrossRef]
- Yoneyama, T.; Terakado, J.; Masuda, T. Natural abundance of 15 N in sweet potato, pumpkin, sorghum and castor bean: possible input of N 2 -derived nitrogen in sweet potato. Boil. Fertil. Soils 1997, 26, 152–154. [Google Scholar] [CrossRef]
- Nzoué, A.; Miché, L.; Klonowska, A.; Laguerre, G.; De Lajudie, P.; Moulin, L. Multilocus sequence analysis of bradyrhizobia isolated from Aeschynomene species in Senegal. Syst. Appl. Microbiol. 2009, 32, 400–412. [Google Scholar] [CrossRef]
- Yoshida, T.; Ancajas, R.R. Nitrogen-Fixing Activity in Upland and Flooded Rice Fields. Soil Sci. Soc. Am. J. 1973, 37, 42–46. [Google Scholar] [CrossRef]
- Kimura, M.; Panichsakpatana, S.; Wada, H.; Takai, Y. Influences of organic debris and rice root on the nitrogen fixation in the submerged soil. Soil Sci. Plant Nutr. 1979, 25, 637–640. [Google Scholar] [CrossRef] [Green Version]
- App, A.A.; Watanabe, I.; Alexander, M.; Ventura, W.; Daez, C.; Santiago, T.; De Datta, S.K. Nonsymbiotic nitrogen fixation associated with the rice plant in flooded soils. Soil Sci. 1980, 130, 283–289. [Google Scholar] [CrossRef]
- Yoneyama, T.; Terakado-Tonooka, J.; Minamisawa, K. Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: a review and synthesis. Soil Sci. Plant Nutr. 2017, 63, 578–590. [Google Scholar] [CrossRef] [Green Version]
- Ladha, J.K.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; Van Kessel, C.; Richter, D.D.B.; Chakraborty, D.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Sci. Rep. 2016, 6, 19355. [Google Scholar] [CrossRef] [Green Version]
- Ueda, T.; Suga, Y.; Yahiro, N.; Matsuguchi, T. Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J. Bacteriol. 1995, 177, 1414–1417. [Google Scholar] [CrossRef] [Green Version]
- Ueda, T.; Suga, Y.; Yahiro, N.; Matsuguchi, T. Genetic diversity of N2-fixing bacteria associated with rice roots by molecular evolutionary analysis of a nifD library. Can. J. Microbiol. 1995, 41, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Van Deynze, A.; Zamora, P.; Delaux, P.-M.; Heitmann, C.; Jayaraman, D.; Rajasekar, S.; Graham, D.; Maeda, J.; Gibson, D.; Schwartz, K.D.; et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Boil. 2018, 16, e2006352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochholdinger, F.; Woll, K.; Sauer, M.; Dembinsky, D. Genetic Dissection of Root Formation in Maize (Zea mays) Reveals Root-type Specific Developmental Programmes. Ann. Bot. 2004, 93, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, D.; McCully, M.; Wenzel, C.J. The nodal roots of Zea: Their development in relation to structural features of the stem. Can. J. Bot. 1986, 64, 2524–2537. [Google Scholar] [CrossRef]
- Li, Y.J.; Fu, Y.R.; Huang, J.G.; Wu, C.A.; Zheng, C.C. Transcript profiling during the early development of the maize brace root via Solexa sequencing. FEBS J. 2011, 278, 156–166. [Google Scholar] [CrossRef]
- McLaughlin, S.B.; Kszos, L.A. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 2005, 28, 515–535. [Google Scholar] [CrossRef]
- Robertson, G.P.; Hamilton, S.K.; Barham, B.L.; Dale, B.E.; Izaurralde, R.C.; Jackson, R.D.; Landis, D.A.; Swinton, S.M.; Thelen, K.D.; Tiedje, J.M. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science 2017, 356, eaal2324. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.; Zuberer, D.; Weaver, R. Nitrogen fixation by intact grass-soil cores using 15N2 and acetylene reduction. Soil Boil. Biochem. 1985, 17, 87–91. [Google Scholar] [CrossRef]
- Tjepkema, J.; Burris, R. Nitrogenase activity associated with some wisconsin prairie grasses. Plant Soil 1976, 45, 81–94. [Google Scholar] [CrossRef]
- Compant, S.; Nowak, J.; Coenye, T.; Clément, C.; Ait Barka, E. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 2008, 32, 607–626. [Google Scholar] [CrossRef] [Green Version]
- Oldroyd, G.E.; Murray, J.D.; Poole, P.S.; Downie, J.A. The Rules of Engagement in the Legume-Rhizobial Symbiosis. Annu. Rev. Genet. 2011, 45, 119–144. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, G.E. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 2013, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Wu, T.; Wang, M.; Shi, S.; Yuan, G.; Li, X.; Chong, H.; Wu, B.; Zheng, P. Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nat. Commun. 2019, 10, 2775. [Google Scholar] [CrossRef]
- Rubio, L.M.; Ludden, P.W. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu. Rev. Microbiol. 2008, 62. [Google Scholar] [CrossRef] [Green Version]
- Curatti, L.; Rubio, L.M. Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. Plant Sci. 2014, 225, 130–137. [Google Scholar] [CrossRef]
- Griesmann, M.; Chang, Y.; Liu, X.; Song, Y.; Haberer, G.; Crook, M.B.; Billault-Penneteau, B.; Lauressergues, M.; Keller, J.; Imanishi, L.; et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 2018, 361, eaat1743. [Google Scholar] [CrossRef] [Green Version]
- Van Velzen, R.; Holmer, R.; Bu, F.; Rutten, L.; Van Zeijl, A.; Liu, W.; Santuari, L.; Cao, Q.; Sharma, T.; Shen, D.; et al. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc. Natl. Acad. Sci. USA 2018, 115, E4700–E4709. [Google Scholar] [CrossRef] [Green Version]
- Savka, M.A.; Farrand, S.K. Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nat. Biotechnol. 1997, 15, 363. [Google Scholar] [CrossRef]
- Knee, E.M.; Gong, F.-C.; Gao, M.; Teplitski, M.; Jones, A.R.; Foxworthy, A.; Mort, A.J.; Bauer, W.D. Root Mucilage from Pea and Its Utilization by Rhizosphere Bacteria as a Sole Carbon Source. Mol. Plant-Microbe Interact. 2001, 14, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Rossbach, S.; McSpadden, B.; Kulpa, D.; Rasul, G.; Ganoof, M.; De Bruijn, F.J. Use of rhizopine synthesis and catabolism genes to monitor soil bacteria and to create biased rhizospheres. Mol. Ecol. 1994, 3, 610–611. [Google Scholar]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivleva, N.B.; Groat, J.; Staub, J.M.; Stephens, M. Expression of active subunit of nitrogenase via integration into plant organelle genome. PLoS ONE 2016, 11, e0160951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Torrejón, G.; Jimenez-Vicente, E.; Buesa, J.M.; Hernandez, J.A.; Verma, H.K.; Rubio, L.M. Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast. Nat. Commun. 2016, 7, 11426. [Google Scholar] [CrossRef] [Green Version]
- Hiruma, K.; Gerlach, N.; Sacristán, S.; Nakano, R.T.; Hacquard, S.; Kracher, B.; Neumann, U.; Ramirez, D.; Bucher, M.; O’Connell, R.J.; et al. Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell 2016, 165, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Murphy, P.; Wexler, W.; Grzemski, W.; Rao, J.; Gordon, D. Rhizopines—Their role in symbiosis and competition. Soil Boil. Biochem. 1995, 27, 525–529. [Google Scholar] [CrossRef]
- Savka, M.A.; Dessaux, Y.; Gardener, B.B.M.; Mondy, S.; Kohler, P.R.A.; Rossbach, S. The “Biased Rhizosphere” Concept and Advances in the Omics Era to Study Bacterial Competitiveness and Persistence in the Phytosphere. Mol. Microb. Ecol. Rhizosphere 2013, 1, 1145–1161. [Google Scholar]
- Wexler, M.; Gordon, D.; Murphy, P. The distribution of inositol rhizopine genes in Rhizobium populations. Soil Boil. Biochem. 1995, 27, 531–537. [Google Scholar] [CrossRef]
- Gordon, D.M.; Ryder, M.H.; Heinrich, K.; Murphy, P.J. An Experimental Test of the Rhizopine Concept in Rhizobium meliloti. Appl. Environ. Microbiol. 1996, 62, 3991–3996. [Google Scholar] [CrossRef] [Green Version]
- Murphy, P.J.; Trenz, S.P.; Grzemski, W.; De Bruijn, F.J.; Schell, J. The Rhizobium meliloti rhizopine mos locus is a mosaic structure facilitating its symbiotic regulation. J. Bacteriol. 1993, 175, 5193–5204. [Google Scholar] [CrossRef] [Green Version]
- Murphy, P.J.; Heycke, N.; Banfalvi, Z.; Tate, M.E.; De Bruijn, F.; Kondorosi, A.; Tempé, J.; Schell, J. Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked and on the Sym plasmid. Proc. Natl. Acad. Sci. USA 1987, 84, 493–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geddes, B.A.; Paramasivan, P.; Joffrin, A.; Thompson, A.L.; Christensen, K.; Jorrin, B.; Brett, P.; Conway, S.J.; Oldroyd, G.E.D.; Poole, P.S. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Chromosome Number | QTL or Marker Interval | Plant Response | QTL-Effect, R2 (%) |
---|---|---|---|---|
Common bean (Phaseolus vulgaris L.) | 7 | Ndfa7.1DB,SA | N derived from atmosphere (Ndfa) | 14.9 |
Soybean [Glycine max (L.) Merr.] | 16 | qBNF-16 | Nodule size & number | 15.9–59 |
Soybean [Glycine max (L.) Merr.] | 17 | qBNF-17 | Nodule size & number | 12.6–18.6 |
Lotus japonicus | 2 | TM0550–TM0324 | Acetylene reduction activity per plant (ARA/P) | 15.1 |
Lotus japonicus | 2 | TM0550–TM0002 | ARA per nodule number (ARA/NN) | 11.1 |
Lotus japonicus | 4 | TM0664 | ARA per nodule weight (ARA/NW) | 10.8 |
Lotus japonicus | 5 | TM1417–TM0095 | ARA per nodule weight (ARA/NW) | 13 |
Lotus japonicus | 3 | TM0083 | Nodule number (NN) | 21.6 |
Lotus japonicus | 1 | TM0113–TM0805 | Stem length (SL) | 13.3 |
Lotus japonicus | 1 | TM0027–TM0063 | Shoot length without inoculation (SL bac−) | 16.7 |
Lotus japonicus | 1 | TM0113–TM0805 | Shoot length without inoculation (SL bac−) | 16 |
Lotus japonicus | 5 | TM0095–TM0909 | Shoot dry weight without inoculation (SW bac−) | 10.7 |
Cowpea [Vigna unguiculata (L.) Walp.] | 4 (Likage group) | 2_12850/2_54418 | Nodule number | 48.4 |
Cowpea [Vigna unguiculata (L.) Walp.] | 6 (Likage group) | 2_11936/2_49231 | Nodule fresh weight | 21.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants 2020, 9, 97. https://doi.org/10.3390/plants9010097
Mahmud K, Makaju S, Ibrahim R, Missaoui A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants. 2020; 9(1):97. https://doi.org/10.3390/plants9010097
Chicago/Turabian StyleMahmud, Kishan, Shiva Makaju, Razi Ibrahim, and Ali Missaoui. 2020. "Current Progress in Nitrogen Fixing Plants and Microbiome Research" Plants 9, no. 1: 97. https://doi.org/10.3390/plants9010097