Verification of the Field Productivity and Bioequivalence of a Medicinal Plant (Polygonum multiflorum) Developed Using an In Vitro Culture Method
Abstract
:1. Introduction
2. Results
2.1. Comparison of the Plant Growth Characteristics of SS and CS-Derived Plants
2.2. Multivariate Statistical Analysis and Component Analysis Using Fourier Transform Near-Infrared (FT-NIR) Spectrophotometry and Liquid Chromatography-Mass Spectrometry (LC-MS), Respectively
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Transplanting, and Harvesting
4.2. Assessment of the Underground Polygonum Multiflorum Parts
4.3. FT-NIR Analysis and Quality Inspection
4.4. Extraction
4.5. LC-MS Analysis for Bioequivalence Validation
4.6. Quantitative Analysis of TSG
4.7. Data Recording and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, G.S.; Park, G.S. Quality characteristics of jeungpyun prepared with different ratios of Polygonum multiflorum thunb powder. Korean J Food Cook. Sci. 2011, 27, 35–46. [Google Scholar] [CrossRef]
- Lee, Y.K.; Min, Y.J.; Choi, J.; Moon, B.C.; Kang, Y.M. Effect of in vitro seedling size and different nutrient solutions in DFT (deep flow technique) system for good quality plant production of Polygonum multiflorum Thunberg. J. Agric. Life Sci. 2017, 51, 23–34. [Google Scholar] [CrossRef]
- Chan, Y.C.; Wang, M.F.; Chang, H.C. Polygonum multiflorum extracts improve cognitive performance in senescence accelerated mice. Am. J. Chin. Med. 2003, 31, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Lee, H.S.; Kim, Y.E.; Kim, B.M.; Kim, I.H.; Lee, C.H. Effect of Polygoni multiflori Thunberg extract on lipid metabolism in rats fed high-cholesterol diet. J. Korean Soc. Food Sci. Nutr. 2012, 41, 957–962. [Google Scholar] [CrossRef]
- Yim, T.K.; Wu, W.K.; Mak, D.H.; Ko, M.W. Myocardial protective effect of an antharaquinone-containing extract of Polygonum multiflorum ex vivo. Planta Med. 1998, 64, 607–611. [Google Scholar] [CrossRef]
- Wang, W.; Cao, C.Y.; Wang, D.Q.; Zhao, D.Z. Effect of prepared Polygonum multiflorum on striatum extracellular acetylcholine and choline in rat of intracerebral perfusion with sodium azide. Zhongguo Zhong Yao Za Zhi. 2006, 31, 751–753. [Google Scholar]
- Chiu, P.Y.; Mak, D.H.; Poon, M.K. In vivo antioxidant action of a lignan- enriched extract of Schisandra fruit and an antharaquinone-containing extract of Polygonum root in comparison with schisandrin B and emodin. Planta Med. 2002, 68, 951–956. [Google Scholar] [CrossRef]
- Xiao, P.G.; Xing, S.T.; Wang, L.W. Immunological aspects of Chinese medicinal plant as antiageing drugs. J. Ethnopharmacol. 1993, 38, 167–175. [Google Scholar] [CrossRef]
- Um, M.Y.; Choi, W.H.; Aan, J.Y.; Kim, S.R.; Ha, T.Y. Protective effect of Polygonum multiflorum Thunb on amyloid β-peptide 25-35 induced cognitive deficits in mice. J. Ethnopharmacol. 2006, 104, 144–148. [Google Scholar] [CrossRef]
- Zhang, H.; Jeong, B.S.; Ma, T.H. Antimutagenic property of an herbal medicine, Polygonum multiflorum Thunb detected by the Tradescantia micronucleus assay. J. Environ. Pathol. Toxicol. Oncol. 1999, 18, 127–130. [Google Scholar]
- Li, R.W.; David, L.G.; Myers, S.P.; Leach, D.N. Anti-inflammatory activity of Chinese medicinal vine plants. J. Ethnopharmacol. 2003, 85, 61–67. [Google Scholar] [PubMed]
- Na, M.K.; Park, J.Y.; An, R.B.; Lee, S.M.; Kim, Y.H.; Lee, J.P.; Seong, R.S.; Lee, K.S.; Bae, K.H. Quality evaluation of Polygonum multiflorum radix. Kor. J. Pharmacogn. 2000, 31, 335–339. [Google Scholar]
- Cho, K.M.; Hwang, C.E.; Joo, O.S. Change of physicochemical properties, phytochemical contents and biological activities during the vinegar fermentation of Elaeagnus multiflora fruit. J. Food Preserv. 2017, 24, 125–133. [Google Scholar]
- Kim, I.C. Antioxidative properties and whitening effects of the Polygoni multiflori radix, Polygonati rhizoma and ephedrae herba. J. Korean Oil. Chem. Soc. 2008, 24, 533–538. [Google Scholar]
- Kim, O.K. Antidiabetic effect of Ha-Su-O (Polygoni radix). J. Korean Oil. Chemists. Soc. 2008, 25, 347–354. [Google Scholar]
- Seo, H.; Seo, G.Y.; Ko, S.Z.; Park, Y.H. Inhibitory effects of ethanol extracts from Polygoni multiflori radix and Cynanchi wilfodii radrix on melanogenesis in melanoma cells. J. Korean Soc. Food Sci. Nutr. 2011, 40, 1086–1091. [Google Scholar]
- Kim, H.Y.; Kim, J.Y.; Cho, E.J.; Choi, J.M.; Hwang, C.E.; Lee, H.Y.; Ahn, M.J.; Lee, J.H.; Kim, Y.G.; Ko, K.H.; et al. Free radical scavenging effect and oxidative stress protective activity of domestic processed Polygoni multiflori radix. J. Korean Soc. Food Sci. Nutr. 2015, 44, 809–815. [Google Scholar]
- Choi, H.K.; Jang, Y.Y.; Oh, J.H. Antioxidant and antimicrobial activities of Jeok Hasuo (Polygoni multiflori Thunb) and Baek Haso (Cynanchi wilfordii Radix) root extracts. J. Food Preserv. 2016, 23, 432–437. [Google Scholar]
- Huang, H.P.; Wang, J.; Huang, Q.L.; Gao, L.S.; Huang, P.; Wang, L.D. Germplasm preservation in vitro of Polygonum multiflorum Thunb. Pharmacogn. Mag. 2014, 10, 179–184. [Google Scholar]
- Kang, Y.M.; Lee, K.Y.; Choi, J.E.; Richard, K.; Min, J.; Ju, S.; Kim, S.W.; Youn, C.; Kim, Y.-G.; Moon, B.C. Maximizing seedling and root tuber production in Polygonum multiflorum for use in ethnomedicine. S. Afr. J. Bot. 2018, 119, 119–131. [Google Scholar]
- Kim, Y.-G.; Richard, K.; Choi, J.E.; Lee, K.Y.; Lee, T.K.; Kim, K.H.; Moon, B.C.; Kim, S.W.; Kang, Y.M. Mass production of Pinellia ternate multiple egg-shaped micro-tubers (MESMT) through optimized growthconditions for use in ethnomedicine. PCTOC 2020, 140, 173–184. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Richard, K.; Jeong, D.H.; Park, Y.M.; Lee, T.K.; Kim, K.H.; Lee, A.Y.; Moon, B.C.; Kang, Y.M. Verification of the field productivity of Rehmannia glutinosa (Gaertn.) DC. developed through optimized in vitro culture method. Plants 2020, 9, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriwaki, T.; Miyazawa, Y.; Kobayashi, A.; Uchida, M.; Watanabe, C.; Fujii, N.; Takahashi, H. Hormonal regulation of lateral root development in Arabidopsis modulated by MIZ1 and requirement of GNOM activity for MIZ1 function. Plant. Physiol. 2011, 157, 1209–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, M.W. Hormonal regulation of plant growth and development. PLoS Biol. 2004, 2, e311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Reddy, P.M. In vitro plant propagation: A review. J. For. Sci. 2011, 27, 61–72. [Google Scholar]
- Lavenus, J.; Goh, T.; Roberts, I. Lateral root development in Arabidopsis: Fifty shades of auxin. Trends Plant. Sci. 2013, 18, 450–458. [Google Scholar] [CrossRef]
- Roumeliotis, E.; Visser, R.G.; Bachem, C.W. A crosstalk of auxin and GA during tuber development. Plant. Signal. Behav. 2012, 7, 1360–1363. [Google Scholar] [CrossRef] [Green Version]
- Toshihiko, E.; Satoshi, Y. Effects of application of sucrose and cytokinin to roots on the formation of tuberous roots in sweetpotato (Ipomoea batatas (L.) Lam.). Plant Root. 2008, 2, 7–13. [Google Scholar]
- Cardinale, J.; Wright, P.; Cadotte, W.; Carroll, T.; Hector, A.; Srivastava, S.; Loreau, M.; Jerome, J. Impacts of plant diversity on biomass production increase through time because of species complementarity Weis. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef] [Green Version]
- Li, R.Y.; Feng, W.W.; Li, X.F.; Zhang, D.K.; Li, C.Y.; Meng, Y.K.; Bai, Z.F.; Song, H.B.; Du, X.X.; Xia, H.L.; et al. Influence of metal ions on stability of 2,3,5,4’-tetrahydroxy stilbene-2-O-β-D-glucoside contained in Polygoni Multiflori Radix. Yao Xue Xue Bao 2016, 51, 116–121. [Google Scholar]
Compound | 2,3,5,4′-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) | Samples | Contents of TSG (μg/mg) c |
---|---|---|---|
R2 a LOD (μg/mg) b | 0.997 0.073 | SS CS | 50.75 (5.075%) 53.59 (5.359%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-G.; Komakech, R.; Jeong, D.H.; Jeon, K.; Park, Y.; Lee, T.K.; Kim, K.H.; Moon, B.C.; Kang, Y. Verification of the Field Productivity and Bioequivalence of a Medicinal Plant (Polygonum multiflorum) Developed Using an In Vitro Culture Method. Plants 2020, 9, 1280. https://doi.org/10.3390/plants9101280
Kim Y-G, Komakech R, Jeong DH, Jeon K, Park Y, Lee TK, Kim KH, Moon BC, Kang Y. Verification of the Field Productivity and Bioequivalence of a Medicinal Plant (Polygonum multiflorum) Developed Using an In Vitro Culture Method. Plants. 2020; 9(10):1280. https://doi.org/10.3390/plants9101280
Chicago/Turabian StyleKim, Yong-Goo, Richard Komakech, Dae Hui Jeong, Kwonseok Jeon, Yunmi Park, Tae Kyoung Lee, Ki Hyun Kim, Byeong Cheol Moon, and Youngmin Kang. 2020. "Verification of the Field Productivity and Bioequivalence of a Medicinal Plant (Polygonum multiflorum) Developed Using an In Vitro Culture Method" Plants 9, no. 10: 1280. https://doi.org/10.3390/plants9101280
APA StyleKim, Y.-G., Komakech, R., Jeong, D. H., Jeon, K., Park, Y., Lee, T. K., Kim, K. H., Moon, B. C., & Kang, Y. (2020). Verification of the Field Productivity and Bioequivalence of a Medicinal Plant (Polygonum multiflorum) Developed Using an In Vitro Culture Method. Plants, 9(10), 1280. https://doi.org/10.3390/plants9101280